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Abstract

This article is devoted to the analysis of the parabolic—parabolic chemotaxis system with multi-components over
R?. The optimal small initial condition on the global existence of solutions for multi-species chemotaxis model in
the fully parabolic situation had not been attained as far as the author knows. In this paper, we prove that under the
sub-critical mass condition, any solutions to conflict-free system exist globally. Moreover, the global existence of
solutions to system with strong self-repelling effect has been discussed even for large initial data. The proof is based
on the modified free energy functional and the Moser—Trudinger inequality for system.

1. Introduction
The well-known classical parabolic—parabolic Keller—Segel model reads as [24]

du=Au—aV - uVv), xeR?, >0,

1.1
tv=Av—Bv+yu, xeR?, >0, (.1

where u = u(x, t) and v = v(x, t) denote the cell density and the concentration of the chemical substance,
respectively. o and y are positive constants. The constants T and 8 are non-negative. The system (1.1) can
be regarded as one of the simplest models to describe the overall behaviour of cells under the influence
of chemotaxis, that is the motion of cells partially orient their movement towards higher concentration
of a certain chemical substance produced by cells themselves. A striking feature of the Keller—Segel
system is that the behaviour of solutions is determined by the total mass of cells which remains constant
over time, see [5, 16, 31, 34] for instance. Namely, given a non-negative and suitable smooth initial
data uy, any solution with m = ||u||.1®2) < 87 /(axy) exists globally, while blow-up solution appears if
m > 8m /(ay). Note that the main idea to prove the global existence is based on the following free energy
functional,

}‘KS=/ ulogudx—i—i/ (|Vv|2+ﬁv2)dx—oz/ uvdx,
R? 2y Jre R2

which is a monotonic non-increasing function with respect to time variable. In view of this fact, Calvez
and Corrias use a minimisation principle for entropy functionals and Onofri’s inequality to derive a
priori estimates under the sub-critical mass m < 87 /(ay), where the assumptions u, log(l + |x|2) €
L'(R?) and u, log uy € L'(R?) are necessary [5], while these extra assumptions have been removed
by applying a modified free energy functional with the Moser-Trudinger inequality in unbounded
domain [31].
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For the parabolic—elliptic Keller—Segel system (i.e. taking 7 =0 in (1.1),)
0=Av—Bv+yu,

the above two-dimensional mass threshold phenomenon also exists. See [4, 8, 33] for the global well-
posedness results and [3, 4] for the blow-up arguments. The main feature to prove the global existence of
solutions in this simplified chemotaxis system over (1.1) is that v could be expressed by the fundamental
solution of the elliptic equation, then it leads to a single parabolic problem for u. For example, if 8 =0,
an explicit expression for v takes form like v =y K % u, so (1.1), becomes

Qu=Au—ayV- -uVKxu), xeR* >0,

where K=—(1/2m)log|-|. A direct application of the logarithmic Hardy-Littlewood—Sobolev
inequality (see [2]) on the corresponding free energy yields the global existence of solutions if m <
87 /(ay) [4].

Compared with the one-population chemotaxis system (1.1), an interesting and complex question
is to derive sharp conditions to recognise global existence and blow-up of solutions for the following
multi-species chemotaxis model in R?,

8,“,‘ =Au,—ZOl,JV '(M,'VVI'), lEIZ{l,' . 7n}’
= (1.2)
GOV =Avi— By + Y v, jeT ={1,-- ,m},
i=1

where 7; > 0, j € J. This model was first proposed by Wolansky in [42] to describe the chemotactic
movement of n populations with respect to m chemical substances. Here, u; = u;(x, ) denotes the density
of i-th population, and v; = v;(x, t) represents the concentration of j-th chemical signal. The total num-
ber of species |Z| =n > 1 is assumed to be finite. & = (&;;)uxm and ¥ = (Vi;)uxm define a pair of n x m
matrices for the sensitivity parameter and the production/consumption rate, respectively. ;€ R, j € 7,
presents the growth/degradation rate for chemical substance. We introduce B = (8;,).uxn» With B;; = B;6;,
as am x m diagonal matrix for convenience, where §;, satisfies

1, if j=1,
0, if j#£L

il

It is very important to understand the multi-species chemotaxis in biology, and this phenomenon has
been observed in numerous experiments. We take the following two examples. First one is that a system
with two different species, reacting on one common chemical, appears in the cell sorting process during
the early aggregation state of mound formation [40]. And a two-species chemotaxis system with two
chemicals has been proposed in [25] to imitate the breast cancer metastatic process. The readers could
see [20, 21] for other biological motivations.

Just recently, some authors have started to look more closely at the parabolic—elliptic case of (1.2)
(i.e. ; = 0) for n-populations interacting via a self-produced chemical agent. Consider (1.2) with |Z| =
|J| =n is subject to symmetric sensitivity coefficients matrix & = (o;;),«, With non-negative entries,
zero matrix § and unit matrix y, that is,

atui = Au,- — Z OlWV . (M,'VVJ‘),

J=1 (1.3)
—Avi=uw, Ljel={l,---,n}.
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Karmakar and Wolansky [22] had derived the global well-posedness of weak solutions with respect to
time in the sub-critical regime

Ax(m):= 87 Z m; — Z agmm, >0, Y @#£KCT, (1.4)

ek ikelC

where m; = |[ug||1g2). Furthermore, the borderline case of critical mass Az(m)=0, and Ax(m) > 0,
V£ K CZ, has been considered in [23]. It shows that a free energy solution exists globally in
time. According to analogous results about (1.1) mentioned above, it is expected that if the condition
Ax(m) >0 for some @ # IC C 7 is violated, a finite-time blow-up solution appears. Using the second-
moment techniques in [15], some solutions of (1.3) blow-up in finite time provided A z(m) < 0. While
the basic strategy to prove global existence is the logarithmic Hardy-Littlewood—Sobolev inequality for
system, see [38] for details. In particular, in the case of parabolic—elliptic system (1.2) with |Z] =2,
|J|=1, Espejo et al. [7, 12] discovered a threshold curve to help us to determine whether the solu-
tions of system are blow-up or global in time. See related works for parabolic—elliptic system (1.2) with
|Z] =1J|=2in [18, 19]. Moreover, [9-11, 13] could be refereed to characterise the simultaneous or
non-simultaneous blow-up results in two-species model.

However, it should be noted that fewer papers have been considered on Cauchy problem of the fully
parabolic multi-species (i.e. t; >0 in (1.2)) than the parabolic—elliptic case. For a two-dimensional
bounded domain, the author and coauthors have researched the initial boundary problems of (1.2),
and we have tried to find optimal conditions on the global existence or blow-up in [27-30]. In this
article, under a conflict-free situation given by Definition 1 (i), a sufficient (or possibly optimal) condi-
tion on the global solvability of the Cauchy problem for parabolic—parabolic system (1.2) with arbitrary
|Z| =n > 1and |J|=m > 1 has been obtained. For simplicity, we assume 7; = 1 forall j € J in (1.2) and

consider
ou; = Au; — i o, V-V, 1€,
j=1
8,vj=Avj—,8jvj+iyiJui, jeJd, (1.5)
uip(x) = u;(x, 0), vjo(:)lz vi(x,0), ieZ, jeJ,
with initial data g = (119, - - - , Uy9) and vy = (vyg, - - - , Vo) satisfying
up(x) € CORH N LY (R NL! (Rz, log(l + |x|2) dx) N L*(R?),
up>0 and wups#0, i€, (1.6)

vio(x) € WP[R) N WH(R?)  with some p>2, jeJ.

Before stating our main results, let us go over some notations and definitions in [42].

)\.i,kiz ZO{,'J)/W =ocl.T~yk, i,kGI,

j=1

is the number to quantify the tendency of a population i towards a population k by taking an accounting of
the action of all the agents, where &; = (@; 1, - - , ;)" and ¥, = (¥i1, -+ » Vim)" - The condition A;; > 0
means that a population i is attracted by a population k; otherwise, the population i is repelled from
the population & if A;; < 0. Especially, a population is self-attracting (resp. self-repelling) if A;; > 0
(resp. A;; < 0). A pair (i, k) of populations i, k € I is said to be in a conflict if A;; x A;; < 0. In general,
A = (Aip)irez is not symmetric. We assume that there exist nonzero constants ay, - - - , a, satisfying

ai)\'i,k = ak)"k,i, i’ ke I, (17)
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then D,A is symmetric, where D, =Diag{a,, - ,a,}. If A is non-singular, there exists a m x m
symmetric matrix B which transforms y, into a;«; for alli € Z, i.e.

By,=au;, icl. (1.8)

In fact, denote

oy i

o= (ai,j)nxm = ’ }’ = (Vi,/)nxm =

aT },T
First, we observe that the ranks R(e) = R(y) =n due to A =ap” is non-singular. Then, there exists a
solution X = (x;;),.x. to a linear system of equations yX = D,a since both the ranks of its coefficient
matrix and augmented matrix equal to n. Finally, the choice B = X" fulfils (1.8). Moreover, using the
symmetry of D,A, one is able to show that yB"y” = yBy”. This implies that B can be symmetric.

Now we give the following definitions throughout this paper.

Definition 1. (i) A pair (i,k) of populations i,k € L is said to be in a conflict if Az x A; <0. All
populations are mutually attractive if A, >0, Vi,keT.

(ii) System (1.5) is called a conflict-free system if A, X A; >0, Vi, k € L, and if there exist positive
constants a,, - - - , a, such that (1.7) is valid.

The main result of this article is stated as follows.

Theorem 1.1. Let ¥ = (Vi )nxm A= Rifduxn € = (;j)uxm With full column rank R(e) =m, and B =
(BiDmxm With B, =B, B €R, j,l€ J. Assume that (1.5) is a conflict-free system with initial data

(ug, vo) satisfying (1.6). Suppose that there exist positive constants ay, - - - ,a, and a positive definite
matrix R = (rip)uxn with riy > 0, i, k € Z, such that
o'R'ay,=aua;, Viel. (1.9)

Then for any initial data satisfying
A% (m) =: 87 Z am; — Z aagrygmme >0, VY 3 #£KCT, (1.10)
el ikelC
the corresponding initial boundary value problem (1.5) possesses a unique smooth global solution.
We would like to give an explanation for assumptions in Theorem 1.1. First, since ot = (ct;;),xm iS
required to be full column rank, it ensures that B = (b;),xn = 'R 'aisa positive definite matrix if R
is chosen to be positive definition. Condition (1.9) can probably be viewed as one of necessary condition

for the existence of energy functional for the conflict-free system (1.5) (see [20, 30, 42]). In order to
handle the whole domain case better in this paper, we use a modified free energy functional F as

n 1 m m
Fluvl=) g / (;+ 1) log(at; + Ddx + >0 by / (Vv; - Vv + Bjv) dx
i=1 R R

j=1 I=1
n m
— E E a,-a,-d-/ u;v;dx.
=1 j=1 R?

Second, condition (1.10) can be regarded as an optimality condition to guarantee the global existence of
solution to (1.5). This is because if D,A is a positive definite matrix with A;; >0, Vi, k € Z, then (1.10)
is actually equivalent to the following sub-critical mass condition obtained in [30, 42]

87 Z a;m; — Z arigmmy. >0, VY O#KCT.

ielC ikelC
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Indeed, let R = (7,;),, = D;'A". Then in terms of A, = & - y, and R(a) = m, B = "R ™' is a positive
definite matrix which satisfies By, = a,a;, V i € Z. Moreover, we obtain

8 Z am; — Z a;\igmmy, = 81 Z am; — Z aariygmmy, >0, VO#KCI,
ek ikelC ek ikelC
fromr, = A;/a; >0,i,kel.

Theorem 1.1 gives a sharp criterion on the global existence of the general chemotaxis system (1.5).
Hence, a large amount of known global existence results are particular cases in our paper. We give
several typical examples here. It is obvious that the sub-critical mass condition (1.10) recovers the thresh-
old condition, i.e. m < 8 /(ay), for global regularity of the Keller—Segel model (1.1). When |Z| =2,

|J| =1, consider a chemotaxis system involving two species that interact via one-single chemical
signal [40]

(1.11)

oy = Auy — o )V - (u;Vvy), i€l ={1,2},
v = Avy —vi + Yl + Yol

withe;; >0,y =1,i=1,2.Note that A;; = ;; > 0, i, k=1, 2. Then, (1.9) can be satisfied if one takes
a; = 1/a;, and chooses a positive definite matrix

|: “12,1(1+6) ayon,(l _6)]

o0, (1 —€) 05%,1(14‘6)
for some small € € (0, 1). Then, (1.10) reads as

81 > a1 (1 +€)my,

81 > 012,1(1 + E)mz, (112)
87‘L’<ﬂ + &> > (m + my)* + e(m; — my)%.
(701 (025
However, (1.12) can be simplified as m, <8x/ay;, m,<8m/an; and (m; +my)* <

8 (ml Jagy +my /azyl) by letting ¢ — 0, which coincides with global existence condition for (1.11) in
a bounded domain ([27, Theorem 1.1]).

Now suppose that |Z| = |J| =n, B =0, & = (a;),x» With «;; > 0 is positive definite, and y is an unit
matrix. Then, (1.5) becomes

O, = Auy; — Y o ;V - (u; V),
=1 (1.13)
ovi=Avi4+u, ijel={l,---,n}.

Taking a; =1 and A;; = «;y, i, k € Z, one can find that Cauchy problem (1.13) has a global solution if
(1.4) is valid. This global result is similar to that of the parabolic—elliptic system (1.3) [15, 22].
The idea to show the global existence is to derive an a prior estimate for modified total entropy

Stul =Y Il + 1) log(t; + Dl
i=1

For this purpose, we need to give a lower bound for F. In this situation, the last term consisting of «; and
v; in F could be controlled by S and the last second term under (1.10). For the case of single variable, a
common approach to achieve this goal is to use the well-known Moser-Trudinger inequality [32, 39]

1
5/ |Vp|*dx — 8w log(/ e”dx) >—C, V peH)Q), (1.14)
Q Q
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where Q2 C R? is a bounded domain. For initial Neumann boundary value problem (1.1), Nagai et al.
[36] had used a version of (1.14) in the Sobolev space W'? (see also [6]) to obtain the global existence of
solution if m < 87 /(ay). Later, Mizoguchi [31] applies (1.14) to get a similar global result for Cauchy
problem (1.1) in R?. Hence, we expect the Moser-Trudinger inequality for vector is valid for our prob-
lem. Shafrir and Wolansky [38] had proved the following Moser—Trudinger inequality for system. For
Y p; € H'(S?) satisfying [, p; =0, i €Z, there exists a constant C > 0 such that

1 1
D (p) = 5 Z Sik / Voi- Vo — ZMi 10g<4— / CXP(Z Si,kpk)) >-C
S2 TT Y

ikel i€ ke
if and only if
ASM) >0, YO#KCT,
{ if A% (M)=0 forsome K, then s;; + A} ,(M) >0, Viek,
where S* C R? is the unit sphere, Z={1,2,--- ,n}, M:= {M,,--- ,M,} € RL)", S := (Sit)nxn iS @

positive definite matrix with s;;, >0, i,k € Z, and A‘fC is given by

AS-(M) =87 ZM,- - Z suMM,, N @#KCT.

ek kel

We will firstly transform the above Moser—Trudinger inequality for system to R? via the stereographic
projection and next use it to show that S is bounded under the assumption (1.10). Then, one invokes
the Moser iterative to obtain the global existence of solutions to (1.5). Finally, we should point out that
such idea has been used to establish the global well-posedness of solutions to initial Neumann boundary
value problem for multi-species and chemicals in a two-dimensional bounded domain [30].

Our second object is to show certain conflict-free parabolic system admits a global solution for any
initial data. More precisely,

Theorem 1'2' Leta = (ai‘f)nme Y= (yi,j)nxmr x = ()\'Lk)nxn and ﬂ = (ﬂj,l)mxm Wlth IBjJ = ﬁjaj,ly ﬁ_] € Rv j» l €
J. Assume that (1.5) is a conflict-free system with initial data (u,, vo) satisfying (1.6). Suppose that there
exist positive constants a,, - - - , a, and a positive definite matrix B = (b;;),,x, such that

By.=—aua;, Viel,

then Cauchy problem (1.5) possesses a unique smooth global solution.

Remark 1. In addition, if ;> 0 for all j € J in Theorem 1.2, then the solution to (1.5) is uniformly
bounded with respect to time.

Remark 2. As mentioned above, the existence of B in Theorem 1.2 can be ensured if D, is negative
definite and R(ot) = m. Hence, one may assert that there exists a unique global smooth solution, provided
that the self-repelling effects are strong enough in the sense that L; <0, i € L, is negative sufficiently
large. Following are two prototypical examples. Consider (1.1) with o <0, y > 0, the local solution
can in fact be extended for all times. As an application of Theorem 1.2 on two-species system (1.11)
witha;; <0,y >0,i=1,2, one would derive the global stability by choosing a; = —1/(c11Y21), Gy =
—1/(@z1y11) and B = (1/(¥1.172.1))1x1-

Compared with the proof of Theorem 1.1, the main difference to prove Theorem 1.2 is to
derive a prior estimates for the modified total entropy S through the following modified free energy
functional

n 1 m m
g[u, v] = ; a; /1; (ui + 1) log(u,» + l)dx + 5 Z Z bj,l /1;2 (VVJ . Vv, + ﬁ]VjV]) dx.

j=1 =1
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This paper is organised as follows. In Section 2, we would like to establish the local existence of
smooth solutions and present some basic inequalities. Theorem 1.1 will be proved in Section 3. The
existence of modified free energy functional F will be shown firstly, then the stepwise bounds on the
total entropy, L* and L norms under the condition (1.10) will end the proof of this theorem. In Section 4,
we will prove Theorem 1.2 by making use of G. In appendix, the proof of Lemma 2.1 will be contained.

We introduce some notations which will be used later. Let |Z| =n > 1 denote the total number of
species, and | 7| = m > 1 represent the total number of chemical substances. |€2| is the Lebesgue measure
of @ C R For &, ij» bij, Tig tij» i, B €R, i,k €L, j€ J, we define

o = max {le;l}, y* = max {ly,l}, b= max {|b,l}, r"=max{lril},

= max {|t;;|}, ¢ =max{|a;|}, B* =max{|B|}, =min{B;} if B; > 0.
max (I}, «* =max{lal), " =max(|). f.=min(p) if £

2. Preliminaries

In this section, we list some lemmas which will be frequently used throughout this paper. Under some
certain assumption on the initial data, we assert that Cauchy problem (1.5) admits a local classical
solution. A number of fundamental properties, such as uniqueness, positivity, and regularity, have also
been obtained in the following lemma.

Lemma 2.1. Suppose that u, € [C°(R*) N L'(R*) N L>*(R*)]" and v, € [W'P(R*) N WEL(R)]™ for some
p > 2. Then, there exists a positive constant Ty, € (0, 00] such that the Cauchy problem (1.5) has a
unique solution (u,v) satisfying
u € [C([0, Trn]: L'(R?) N C*(R? x (0, Ta))]'
. 2.1
v € [C([0, T ]; W (R?) N WH([RY)) N CHH(R X (0, Toar))]” -
Moreover, it holds that
(i) (u,v) solves (1.5) classically in R* x (0, Tpay)s
(ii) If Tpax < 00, then

fim sup (Z - r>||Lm<Rz>) =00;
—Tox \ 'y
(iii) u; > 0in R? x (0, Tpy), i € L;
(iv) Forte (0, T, (-, Dllpwey = llttioll ey =my, i €Z;
(v) Forq>1,T € (0, Tnx), then there exists a constant A, = A,(q, B*, v*, lluoll w2y, Vol awey, T) >0
such that

D I Dl <A, 1€0,T).
j=1

Moreover, A, is independent of T if B; > 0 forall j € J.

Proof. For the case |Z| =|J| =1 to system (1.5) in R" (n > 3), Winkler has proved these properties
in [41, Proposition 1.1]. One can apply similar arguments to obtain the desired results. Please see the
proof in appendix. U

The following inequalities are very important to derive a prior estimates for solutions.

Lemma 2.2. Let n € (0, 1). Then for any non-negative function f € L'(R?) N H'(R?), one has

/2 (f + Dlog(f + 1)dx < n(/zfdx> ( 2}2{0'1 dx) +c/2fdx, 2.2)
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L+n |VfI?
fracie (L) (L) 2
/7f3dx§n</ (f+1)10g(f+1)dx) (/ |Vf|2dx)+c/ fdx, 2.4)

where ¢ = c(n) — oo as n — 0.

Proof. Inequality (2.2) has been shown in [43, Lemma 2.3], and (2.3)—(2.4) have been proved in [37,
Lemmas 2.3-2.4]. O

Now, the Gagliardo—Nirenberg inequality will be given as follows.
Lemma 2.3. Let 1 <p<o0o, 1 <gq,r <ocoand?¥@ € [0, 1] such that

1 1 1 1
—=0|l-—=)+0-0)-.
p ro 2 q

Then for any u(x) € W' (R*) N LY(R?), there exists a constant ¢ = c(p, q, r) > 0 such that
ulliey < el 1700

Proof. The proof of this lemma has been given in [14, Theorem 6.1.1]. O

3. Proof of Theorem 1.1

In this section, the proof of Theorem 1.1 will be divided into several steps.
Now we would like to give an equality for the modified free energy functional F. Notice that the
equality for one-single variable can be found in [34, Proposition 4.1].

Lemma3.1. Leta;;, B, v, €R i€l je J and T > 0. Let (u, v) be a local solution of (1.5) with initial
data (uy,v,). Assume that there exist positive constants a,, - - - ,a, and a positive definite matrix B =
(D )mxm Such that

By, =aa;, VYiel. 3.D
Then,

2

d n
E]—'[u,v] + /Rz @y)" B (8,v) dx + ;ai /D;{z {ui

\Y (1og(u,- +D-) o m)

j=1

2
}dx (3.2)

. 2
j=1
forte(0,T), where F is given by

Flu,v] = /(u +l)log(u+l)dx—ZZaa,J/ u;v;dx
R2

i=1 j=I

4+ = Z Z b,[ / VV, VV[ =+ ,BIVIV/)

,111

1 m
\Y (log(ui +1)— 3 ]:Zl ot,-m-)

dx

Z—ZZ ,,3,/ vjav, v,8v,

j=1 =1
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Moreover, there exists a constant ¢ > 0 such that

d 1
Ef[u,v] +5 /Rz @) B(3y) dx

+ Xn:ai/ {Mi
i=1 R?

1 m

J=1

m 2
v (Z aid’"j)
j=1

Proof. Multiplying both sides of i-th equation in (1.5) by a;log(u; + 1), integrating by parts and
summing them with respect to i, we have

2

\Y (log(u,- +1)— Z a,-J-v])
j=1

2
}dx (3.3)

dx+c, te(0,7).

di[z a; / (u; + 1) log(u; + l)dx:|
t ) R2

Vu Vv,dx. (3.4)

- |Vui|?
:—Za Rzu—bf—ld +ZZaa,J/
1

i= =1 j=1

By the symmetry of B, it is clear that

S

[%XM:Z ﬂ/ (Vv - Vv + Byvi) d }

Z Z / 8 vj) Vv + Vy; - V(a,v,)] dx

j=1 =1

l\)l'—‘

+ = ZZb,,m/ (vidv; +v,0v,) dx

j=1 =1

_ZZb,,/ (8,v)) - Vvidx + = ZZb,,ﬂI/ (vidv; +v,8,v,) dx

j=1 =1 j=1 =1

__ZZb/I/ (8,v;) (Av; — Bv)) dx

j=1 =1

+ = ZZb,,ﬂ;/ V,8 v, — v,8,v_,) dx,

j=1 I=1
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and then using (3.1) and the j-th equation in (1.5), it implies that

[ ZZ / Vi - Vv + v dx]

j=1 =1

:—Zij,/ Bvavldx—kZZZbﬂy, /}Rzuia,vjdx

j=1 1=l i=1 j=1 I=1

+ = Z Z 1B / v; 8,v, — v,8,vj) dx

,111

/(Bv)TB(av)dx—i—ZZaoz,J/ 1u;0,v;dx
R2

i=1 j=1

+ = Z Z 1B / \7 8,v, — Vlat\’_;) dx.

,111

Since

d noom noom
7 <— Z Z a0 /]RZ u,-vjdx) =— Z Z a;o;; /Rz v;0,u;dx

=1 j=1 i=1 j=1

_ZZaaw /RZ u;0,v;dx

i=1 j=1

and

_ i i a;o; / v;0u;dx = Z Z a;o; / (Au,- — 2’”: o, V- (u,Vv,)) v;dx
R2 I=1

i=1 j=1 i=1 j=1

—ZZaa,J/ Vu; - Vv;dx
i=1 j=1
m 2
V(Z“a%)
j=1

_iai/ U;
|: ZZ / Vv Vv,—l—,B,vv, dx ZZaoz,‘,/ u,»vjdx:|

j=1 1=l i=1 j=1

dx,

one can obtain

/(BV)TB(Bv)dx—G-ZZaa,,/ Vu,; - Vvdx
=1 j=1
—Z /

{5

+ = ZZZ),,,B,/ v,a v, — v,a,vj) dx,

j=1 =1
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which together with (3.4) yields that

2

%f[u,v] /(3V)TB(3V)dx Z / LV-LSl
+Z /2u,+1w V(Z oy )dx—z /

4z ZZ ,ﬂl/ (v;9v; — vid,v;) dx

,—1 I=1

——/ (8,v)TB(8,v)dx—Za,»/ u
R2 i—1 R2

dx

()

2

dx

\Y (log(lxi, + 1) — Z Ol,-‘,»vj)
J=1

2

dx

a;

1 m
\% <log(u,- +1)— 2 ; oz,-xiv_,)

Hence, we have proved (3.2).

By means of the positivity of B, there exists a constant ¢; > 0 such that

o) Z Z b, ./Rz 0,v;0,v,dx > Z /RZ |8,vj|2 dx,
=1

j=1 =1

dx+ — ZZZJ,;,BI/ V;0,v; — vla,vj) dx.

j=1 =1

then we have

— Z Z b, I:BI / Vi 0, WV — V]B,Vj) dx

]111

<p ZZ| l|/ |8,v,| [vildx

j=1 =1

m

1 & 2 (b B TI» 2
<2—CIZ/RZ|8,VJ-| dx+—2 Z'ézvjdx
Jj=1 Jj=1
l & c(b*B*| TN - 2
< 3 Z Zb” /2 0,v;0,v,dx + — s 21: /Rz vjdx
- =

due to Young’s inequality. Employing (3.2) and the boundedness of v; in L* space, we can obtain a
constant ¢ > 0 such that (3.3) holds for all € (0, T). ]
Remark 3. Let us define

Elu,vl= Z /u,logudx—ZZaa,J/ u;v;dx
R2

i=1 j=1

+ — ZZ / Vy; - Vv,+,3,vvl)

j=1 =1

Then, d€[u,v]/dt <0 for t € (0, T) if one has (3.1) and BDg is symmetric.
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We list the Moser—Trudinger inequality for system on the two-dimensional unit sphere [38, Theorem
2 (ii)].
Lemma 3.2. LetS* C R be the unit sphere. Assume S = (;1)nxn IS a positive definite matrix with s;;. > 0,
i,k€Z, and M € (R.)". Then for p; € H'(S?) satisfying [, p;=0, i€,
AS(M)>0, V@P+KCI, 35)
if AS.(M)=0 for some K, then s;; + Afc\m(M) >0, Viek, '

is the necessary and sufficient condition for the existence of a constant B > 0 such that

1 1
P(p) =75 su / Vo Vo= M, log(E / exp(Z si,kpk)) =-B.  (3.6)
§? s?

i.keT ieT ke

Now we use the stereographic projection S to transform the inequality for system in Lemma 3.2 to
R2. In fact, we associate with each p; : S* — R? a function p; : R> — S? via the transformation

IB;'<_> pi:ﬁios’
(3.7)
pi< pi=poSt, iel

By a simple calculation, we have
Lemma 3.3. Let S = (5i4),xn be a positive definite matrix with s;;, > 0, i,k € L. Then for p; € H'(R?),

i € Z, condition (3.5) is the necessary and sufficient condition for the existence of a constant B > 0 such
that

1 _ 1 ~
3 Zs,-,k /Rz Vi Vpidx — ZM,- log<a /Rz exp(z s,-,kpk> H(x)dx)

i.keT i€ ke

1 ~
b Y M / PHOd = B, (3.8)

ikeT R
where H(x) =4/(1 + |x|2)2.

Proof. Let p; € H'(S?), i € I. Then, we take
1
(A i i S I3
p 47T SZ p

for p; in (3.6), and obtain that

1 1
5 Z Sik /; Vi Vo — Z M; 10g<E /2 eXP(Z si,kpk))
s S

ke i€ keT

1
+ E ZMiSi,k /2 px=—B (3.9

ikeT s

with some constant B > 0 if and only if (3.5) is valid. Using the transformation (3.7), one derives that
Jio o = [ BH(x)dx, and

/ Voi- Vo= f Vi - Vdx,
s? R2

/ exXp (Z Si,kPk) = / eXp (Z Si,kﬁk) H(x)dx.
s? R2

ke kel

Hence, we obtain (3.8) from (3.9). O

as well as
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Under the condition (1.10), utilising the above Moser—Trudinger inequality for system in the whole
space, we can give an estimate on the interaction term consisting of u; and v; in F at the first step. The
idea is mainly combined with some of the work in [5] and [31] and has been applied to one-species or
two-species chemotaxis system with two chemicals [19, 35].

Lemma 3.4. Suppose ot = (tt;;),xm With R(e) =m, B, €R, j€ T, ¥ = (Vij)uxm and T > 0. Assume that
(u,v) is a local solution of Cauchy problem (1.5) with initial data (u,,v,). Suppose that there exist
positive constants ay, - -+ ,a, and a positive definite matrix R = (ri;),x, with 1;;, >0, i,k €L, such

that
o'R'ay, =auw;, Viel.
Then for any
8 Z am; > Z aiqrygmny, Y B#KCI, (3.10)
ek ikek

there exist a small € > 0 and a constant ¢ > 0 such that

ZZaa,,/ qux_Z(l—l—e)ZZb/l/ Vv; - Vvdx

=1 j=1 =1 I=1

1 n
T ;ai /Rz (u; 4 1) log(u; + 1)dx

1+€ Z / u,(x) log H(x)dx + c,

where B = (b; ) xm = o'R'a and H(x) = 4/(1 + |x|2)2.

Proof. From our assumption, B is a positive definite matrix satisfying By, = a,at;,, Vi€ Z. Define T :=
(t;)wxm = R™'a. Then it is easy to find that

n

o= E Tkl

k=1

and
n n
17_,',122 E Lighiatia-
i=1 k=1

Moreover, one can pick a positive definite matrix S = (5;4),x, With s;x =(1 4+ €)r;;, >0, i,k € Z, such
that

Z Sty = (1 + €)a;

k=1

and

Z Z Sictiy = (1 +€)b;,.

i=1 k=1

Note that Lemma 2.1 (v) will help us to find a constant A; > 0 such that

> v Dllue <A, for 1€ (0, 7).

j=1
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Chosen € > 0 small enough, (3.10) implies

Za,«m,« |:871 - +e)22akri,kmk:| >0, VO£KcCLTI. (3.11)
ek kekC
Let
pi() = (Z a,vi(t) — s Z ri,k) N AGES <Z 1 vi(t) — S) , 1€l
j=1 k=1 + J=1 +
Qi) := {x eR?: Z o;vi(t) > s Z r,»,k} s S~2,-(t) = {x eR%: Z 1v;(t) > s} , 1€X,
j=1 k=1 Jj=1
and

Q= o, m):= / wdx <m;, i€T.
i=1 Qi(1)
We claim some facts in the following. First, since 0;(¢) € H(‘)(fz,»(t)) and V(1) = >_ ,;Vv,(¢) in Q(¢), then
j=1
p:i(t) € Hy(2(1)) for all i € Z. Second, the Lebesgue measure of 2(¢), denoted by |(#)], is finite. This is
because

m
Z Ly, 1) =

J=1

s QI <s ) 12O
i=1

i=1

LI(R2)
implies that |Q(r)| < ¢, /s. Third, |Q;(¢)| < ¢, /s holds out due to
QO cCcQ), Viel.

Finally, without loss of generality, we assume |2(f)| > 1 and |Q,(r)| > 0 for all i € Z. If |Q,(r)| = 0 for
some i € Z, classical techniques are sufficient to analyse this case.
Fixing i € Z, it is obvious that

m m m
a; E o / Midex =da,; / U; E o; Vi dx + a; / U; E Q;V; dx
= R? Qi) = R2\Q;(1) =
n
<aq / u;p,dx + sa;m; E Tik

Qi(1) k=1

<aq; u;p,dx + sa;m; rie ] -
<o [ up (z )

k=1

Denote u} =m; exp (1 + €)p,(x, D)H(x) ([, exp (1 4 €)p,(x, t))H(x)dx)_l. Then, |luf|l; =m; and a
classical entropy minimisation in [5, Lemma 2.1] implies that the function

Euy )= / (u:(x) log u;(x) — u,(x)¥ (x))dx  with any exp () € L' (R?),
]RZ
satisfies

E(u; 1+ €)p; +log H) > E(u; (1 + €)p, + log H)

1
=m; logm;, —m; 10g(4— / exp (1 +€)p,(x, t))H(x)dx) — m; log(4m).
TT R2
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Combining the aforementioned findings, we arrive at the following

(1+e)a,-za,,-/ u,-v_,-dx—a,-/ (u; + 1) log(u; + 1)dx
i R2 R2

<1+ e€)q; / u;p,dx — a; / u;log u;dx + (1 + €)sa;m; <Z r,-.k)
R?2 R? k=1
1
<am; log{— / exp[(1 + €)p;(x, 1)] H(x)dx} —a / u;(x) log H(x)dx
47 R2 R2

. 4
+ (1 + €)sam; w | +aim;log —
( )sa,m (Z V,k) a;m; log -

k=1 i

k=1

1
<a;m;log P f exp| (1 +¢€) (Z a;vi(t) —s Z r,-,k> H(x)dx
T Jr2
4

- 47
—a; / u;(x)log H(x)dx + (1 + €)sam; Z rix | +am;log —,
R? m;

k=1
where the choice of matrix § allows one to conclude that

(1+€)a; ZaiJ/ u;v;dx — a,-/ (u; + 1) log(u; + dx
i R2 R2

1 n m
< a,m;log —/ exp Zs,;k Ztk,/v,- —s H(x)dx
47[ R2 k=1 ]_:1 N

—a; / u;(x) log H(x)dx + c;
R2

1 n -
= am; log {E f exp (Z sfﬁkpk) H(x)dx] —a / w0 log Hdx +
R: R:

k=1

where ¢,; = (1 + €)sa;m; (Z
k=1
i=1toi=n, we get

iiaiaw«/ uvabc<— Zam log|: / exp(i si,kﬁk> H(x)dx:|
=1 j=1 R? R? =1

1 - 1 -
1+6;a/R2u(x) og H(x) x+1+6;c2

Choose
M, =am(1+¢), iel.
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Since (3.11) implies that

ASM)=87 Y M =Y suMM;

ek ikelC
=(1+¢) |:87r Z am; — (1 +€)? Z aiakr,-.km,-mk:|
ek ikelC

then the Moser—Trudinger inequality for system in Lemma 3.3 helps us to get that

n 1 n N
;M,- log|:g /Rz exp (Z s,-,k,ok> H(x)dxi|

k=1

n 1 n

=1+ a,-ml-logL— / exp(§ si,k5k> H(x)dx}
- T JRr2
i=1 k=1

1 n n - ~ 1 B
= E Z Zs’?k /mz Vi Vpdx + E ZMisi,k /ﬂ; oH(x)dx + B

i=1 k=1 ikeT

1 m m
<50+ >3 by /Rz Vv; - Vvdx + c3,

j=1 =1

where we have used the bound of [|v;]|;1r2), j € J, and fRz H(x)dx = 4m. This together with (3.12) and
the positivity of B implies that

n

m | m o m
Z Za,-oz,,- /R2 u;v;dx < S Z Z b, LZ Vv; - Vvdx

i=1 j=1 j=1 =1

l n
+ — a; u; + 1) log(u; + 1)dx
1+€; /( ) log(u; + 1)

n

1 - 1 C3
1+6;aszu(x) og H(x) x+1+62c2+(1+6)2

i=1

Therefore, we have finished the proof of this lemma. O
As a consequence of Lemma 3.4, the bound on modified total entropy S could be obtained.

Lemma 3.5. Let T > 0. Under the same assumptions in Lemma 3.4, there exists a constant c = ¢(T) > 0
such that

> / (ui(x, 1) + 1) log(u;(x, ) + Ddx < ¢ (3.13)
=1 VR
and
Z// |9vy|” dxdr < ¢ (3.14)
=1 J0 JR?

hold out for t € (0, T).
Proof. Notice that positive definite matrix B = (b;)),ixm = "R '« satisfies

By, =aa; VYiel
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Then thanks to Lemma 3.1, there exists a modified free energy functional F given by

Flu,v] = Z /(u+1)10g(u+l)dx—ZZaa,J/ uvdx

i=1 j=1
1 m m
+5 Y > b / v, - Vv + Bjv) dx (3.15)
j=1 I=1
satisfying

2

—J—'[u,v]+l/ (3,v)TB(3,v)dx+Zgi/ {u,—
2 Jre — R2

2
}dx

dx + ¢ (3.16)

\Y <10g(u,- +1)— Z aiij>
j=1

1 m
\Y% (log(ui +1)— 3 Z (Xiij>

j=1

m 2
V(Z “iJ"./)
j=1
- WZ/ V[ d+ ¢,
4 =1 R2

with some constant ¢; > 0. Moreover, Lemma 3.4 implies the existence of small € > 0 such that

m m

Zzaa"’/RMde_2(l+e)ZZ /ij.Vv,dx

i=1 j=I =1 I=I

LY [t niostu + 1a (3.17)
— i i ogly; .
1+€,-:1a ]Rzu g(u X

1+6;a/wu(x) og H(x)dx + ¢,

is true with some ¢, > 0. On the one hand, one has

uv]>_z /(u+1)log(u+l)dx+2(l+ )ZZ / - Vv

=1 =1

+= ZZb,,,B,/I; v,vldx+—2a,/ (%) log H(x)dx — ¢, (3.18)

j=1 =1

from (3.15) and (3.17). On the other hand, we have

1 m m n
3 >3 by /R Vv, - Vvidx = Flu,v] — ; a; /R (u; 4+ 1) log(u; + 1)dx

j=1 I=1

_ % Z Z b;.B / vvidx + Z Z ao; / u;vdx,
R2

j=1 I=1 i=1 j=1
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which together with (3.17) ensures that

1 m m
7 Z Zbﬂ/‘ Vv; - Vvdx <—]-"[u v]

a,/ (u; + 1) log(u; + 1)dx
j=1 =1

Z Z b;,B /Rz vividx

j=1 I=1

1+e€

_Z Za,/ u;(x) logH(x)dx—i—( +6)CZ

Further, using the positivity of B and the bound on the ||v;||;2r2) by Lemma 2.1 (v), there exists a constant
¢3 > 0 such that

m 1 1 n
Zf (v, e < LS (]—“[u,v]—rZai/ u,-(x)logH(x)dx—I—l).
j:l R2 € € ) R2

Applying above inequalities and from (3.16), it follows that

m 2
_]-"[u v / 0v)" B(3,y) dx—l—Za, / <1og(u,-+ 1)— Za,.,,-v,) dx
j=1
(1 4+ €)cza*a*|Z)| T | 1 "
< " (f[u 1- T ; a; /R () log H(x)dx + 1) +¢ (3.19)

for t € (0, T). To estimate the second term on the right side of (3.19), we first observe that

1 n 2 n
- i i 1 H d:_ i i 1 1 2d
1+e;“/Rz”(x) og H(x)dx 1+e§"fRz”(x) og(1+ [x|?)dx

210g2

I+e Zam

i=1

_1+ Z /u(x)log1+|x|)

where we take the derivative of the right term to see that

d 2 )
= (1 s ;ai /Rz u;(x) log(l =+ |x| )dx)

2 < m
e ;ai /n;zz M,-V|:10g(ui+ 1)_j=21ai’jvj:| 'Vlog(l + |)C|2)dx
1+6 Z

(1+ |x*)dx

]R’
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2

dx

1
Siizz;ai‘/Rzui

v (log(u, + ]) — Z O(u‘Vj)

Jj=1

2

n 5 )
tare ;a,.fRz |V 1og(1 + [x?) | dx

2 < )
+ T1e ;ai /n;a? log(u; + 1A log(l + x| )dx

2

dx+10) " am; for te(0,7),

i=1

1
SE;aiAZMi

by Young’s inequality, since

v (log(u,- +D=-) o ij>
j=1

_ 4
(1+ 1x2)’

2x

<4,
L+ [xf? B

|V Iog(1 + [x*)| = '

<1, |Alog(1+xP)|=

and log(s 4+ 1) < for all s > 0. Thereby, denoting
y(t) := Flu,v]+ L i a; / u;(x) log(l + |x|2)dx for t€(0,T),
1 + € i—1 R2

one derives that

(1 +e)csa*a”|Z]|T|
4e

V() + % / @v)" B(y) dx < oW+ 1)+c, forte(0,7),
R2

with ¢, =10 )" a;m; + ¢, where the Gronwall argument means that

i=1

(l+€)l3a*a*|I|IJ\ T
de

y(t)+% / / @) B(8,y) dxdt < (y(0)+ 1) e +¢, for1e(0, 7).
0 JR2

Hence, we have proved (3.13)—(3.14) due to (3.18), the choices of positive a;, i € Z, the positivity of B
and the bound on the ||v;|l;2@2), j € J. O

A straightforward argument [36, Lemma 3.6] could be indeed used to obtain L? estimates for the
solutions by the bound on S.

Lemma 3.6. For T > 0, there exists a constant ¢ = ¢(T) > 0 such that

D ol Dllzee < ¢ for t€(0,T).

i=1

Proof. From Lemma 3.5, there exists a constant ¢, = ¢;(T") > 0 such that

Z/ (u; + 1) log(u; + Ddx < ¢,
=1 Y

and
m T )
Z/ /2 |8,v,|” dxdr <ei. (3.20)
=1 Jo JR
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We multiply the i-the equation in (1.5) by u; and integrate them over R? to have

ld ! n 1 n m
Sa (; /11;2 u?dx) =—;/}R2 |Vu;|*d —EZZ(X,-J/RZ ul Avdx

i=1 j=1

=_Z/Rz |Vui|2dx—%ZZoz,-J/.
i=1

2
=1 j=1 R

u? <8,v/- + By, — Z y,w»uk) dx
k=1

_ Z ,/]1;7 |V, | dx + % Z Z Zauy,{‘/ /ﬂ;{o ufukdx
i=1 3 :

i=1 k=1 j=I
1 n m , ] n m 2
3 ; ;amﬁj /Rz u;v;dx — > ; jzzlaiJ /R2 u; 9,v;dx 3.21)
for ¢ € (0, T). It is clear that

% Z Z Z i Ve /]RZ 1 udx — % Z Z%Jﬂ_/ /2 ;v,dx

=l k=l j=1 =1 j=1 R

1 " " m 1 n m
SEZZZWQHVM/;@ (u?-l—ui)dx—i—zZZWw”ﬂﬂ/W (M?—i-vf)dx

i=1 k=1 j=1 =1 j=1

a* (B + 2y I |T| — f 5 oa*B*TIA]
< E 3d — P =3
= 2 2 )., u;dx + >

< ca (B +2y*Z)) | T| Zni/ |Vu,-|2dx
2 i=1 E2

o (B +2y71ID 1T § o BHIZIAS
+ B Z Coilh; + 73,

i=1

where we have used Young’s inequality and the following facts Y ||v;|| s@2) < A; hold due to Lemma 2.1
j=1

(v), and for any n; € (0, 1), i € Z,

/ wdx <n; (/ (u; + 1) log(u; + l)dx) (/ |Vu,-|2dx) + CQ,-/ u;dx
R2 Rr2 R2 R2

fclmf |Vu,*dx + cym;, i€l
R2

exists with ¢y = ¢,:(n;) > 0 from (2.4). As for the rightmost integral of (3.21), we first use Holder’s
inequality to find that

1 n m 1 n m
2 2
3 2N a [ wondrs3 30 Y el 103,
R

=1 j=I i=1 j=1
Applying the Gagliardo—Nirenberg inequality with ¢; > 0 to have

2
luillfae) < eI VUil 2 1| 2 w2y
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and it infers that

——ZZ ,J/ u?d,v;dx

i=1 j=I

n m
C3
SE Z Z loi TVl 2wy | il 22y 1005 2 m2y

i=1 j=1

30| T | ¢ ) ot [ 1 s " ,
< S ol Vuilae, + —— | D0 =il | - { D 18515
2 i=1 8 i j=1

i=1

by Young’s inequality. Hence, (3.21) gives us that

d (< n
i=1 UF i=1 R
ot [ 1 m
S 34 (Z ;HMIHIZ}(RZ)) (Z ”81‘)./"'12‘2(]1{2))
i =

i=1

ot (B 42y 1IN 1T Y cumi+ " BITIA]  for 1€ (0, 7).

i=1

Because
il F2gey < Call Vitill 2 1|2y = camil| Vit 2 g2

2 cam;
=< ”Vui”LZ(]RZ) + T

21

(3.22)

is right for some ¢, > 0, we take 1, = 1/{a* [c; (8" + 2y*IZ|) + ¢3] |T|} > 0, i € Z, small enough in

(3.22) to arrive at

s(a*)? 274 ZD) + | 1T [
YO+ |:1 GG [c1(B 4)/ IZ) + c;] 1T (Z ||3r"j||i2<mz2>>i| y(@)
=1

n C2 n
<& (B2 TN IT| Y camit L Y mp + o BITIAY
i=1 i=1

for r € (0, T), where y(t) := Z fnaa? u?dx. Together with (3.20), the L? estimates for the solutions can be

obtained by solving this ODE

O

Proof of Theorem 1.1.Let 0 < T < co. Once one has L? estimates on u;, i € Z, then L”-L? estimates for

the heat semigroup in Lemma 5.1 ensure that for r € (1, 00), we have

D IVCDlley <c for te(0,T)

Jj=1

with some ¢ > 0. Consequently, applying the Moser iteration technique [1] with (3.23), it means that

D i, Dl <00 for 1€ (0,T).

i=1

(3.23)

Therefore, the global result in Theorem 1.1 is an immediate consequence of the extensibility criterion

in Lemma 2.1.
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4. Proof of Theorem 1.2

Under strong self-repelling effect, the global existence of the Cauchy problem (1.5) with arbitrary initial
data will be established in this section. As with the above treatment of the proof of Theorem 1.1, the
main approach is to give a bound on the modified total entropy S. For this purpose, we would like to
create a differential inequality for G.

Lemma 4.1. Assume that there exist positive constants a,, - - - , a, and a positive definite matrix B =
(b )mxm such that

By,

i

=—ao;, VYiel. 4.1)
Let
D§'E<EBE<DE'E, VE=(§, - ,§) R,

with some D,,D, > 0. Then, there exist a constant ¢, = c,(a*, b*,a*, 8*, Ay, Dy, Dy, |to|| 11 w2, | Z1,
| T ) > 0 such that

d 1 |V, |?
ZwII+ 5D ja | —dvser for 1€(O.T),

2 2 U+ 1
i=1 B2 M

where G is given by

Glu,v] = Z /(u—i—l)log(u—i—l)dx—i— ZZ / v, - Vi + By dx

j=1 =1

Moreover, if B; > 0 for all j € J, then there exist a constant ¢, > 0 independent of T such that

%Q[u,v]—i—g—;ﬂ*g[u,v]fcz for te(0,7).

Proof. Given qg; > 0, testing the i-th equation in (1.5) by a; log(u; + 1) and summing the results with
respect to i, we get

[ / (u; + 1) log(u; + l)dX] +Z /2 LV-T-|1
=Y > aa [

i=1 j=1

Vu, Vv;dx

=>"> aa, / Vu; - Vvdx + Z Z @ / Av;log(u; + 1)dx for 1€ (0,T). 4.2)

i=1 j=1 =1 j=1
Moreover, we observe that

M[ZZ /Vv Vv1+,31vv,):|dx

j=1 I=1

- Z Z / (Av, — Bv)dvdx + = Z Z B / (V;3,v, — vid,v;)dx
R2

j=1 I=1 j_l =1
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=" Z Z / Av; — ,3_/“’./) (Av, — Bv) dx

j=1 =1

+Zzzbj,l)’w/ Vu; - Vvldx+zzzb/1%gﬁl/ u;v,dx

i=1 j=1 I=I i=1 j=1 I=1

+ = ZZZ),,,B,/ (v;0,v; —vdv)dx for 1€(0,T)

j=1 =1

and that

Dli/ |Av, — B, |dx<ZZ / (Av; — Bv,) (Av, — Bw) dx

j=1 =1

fDZZ/ |Av; — Bv| dx.
=t R

Then employing Y b;,v;; = —a;a;; by (4.1), it is obvious that

Jj=1

—Q[u V]+Za,/

dx—i—DlZ/ ’Av, ,B,V‘ dx
<ZZaaw/ Av; log(u; +1)dx—ZZaa,Jﬂ,f u;v;dx

i=1 j=1 i=1 j=1

1 m m
+3 DO bup /R Dy —vidw)dx for 1€ (0,T)

j=1 =1

due to (4.2) and (4.3). Since log(y; + 1) < ﬁi, let; || 1 2y = my, i € Z, and

m
Z Vil 2m2) < Az
=1

hold out, an application of Young’s inequality gives that

Z Zaaw /2 Av;log(u; 4+ 1)dx

i=1 j=I

_ZZaaw/ (Av; — Bv,) log(u; +1)dx+ZZaal,ﬂ,/ v; log(u; 4 1)dx
R2

i=1 j=1 i=1 j=1

<ZZa|a,J|/ |Av; — ﬂjv|fdx+ZlZa|a,J||ﬂj|/ |v;|/1ticlx

i=1 j=1 i=1 j=1

D m *a* V| T n n
D R e MR
=1 i=1 i=1

23

(4.3)

(4.4)

(4.5)

(4.6)

Note that A, is uniformly bounded with respect to time variable if 8, > 0 for all j € J. However,

Lemma 2.2 tells us

) 1 |Viu;|?
u;dx < — u;dx dx ) +2 u;dx.
R2 27{ R2 R2 I/ll‘ + l R2
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Then, one has

_ZZaa,,ﬁ,/Ruvdx<Z / Wdx +(“*ﬂ 1171 (11 )(Z/ 2dx>

i=1 j=1

1< |V, |? (@ B*A2| T )
Szgai/ﬂ;z ui+1d +7TZ +T(Zdimi> “@.7

i=1

and

—ZZ ,ﬂlf (v;0,v; — v,0,v;)dx

j=1 1=l

m m

B D b 1I/ Iv,118,v,1dx

j=1 I=1

m

623 bul [l = vl + 5 22|b,,|f o

=1 j=1 =1

(4.8)

E ;Ui

1< |Vui|2 D, . / 2
<- a; dx+ — Av; — Bv;| dx
4 = g2 Ui+ 1 4 ; R2| = F ]|

RGN Z Z L O BALTIY

f te (0, 7).
2 a; D, or 1€(0.7)

i=1

Putting (4.5)—(4.8) together, then there exists a constant ¢, > 0 such that G satisfies

d 1 |V, Dl
Eg[u,v]JrE;ai/RzuH Z/ |Av; — B, |dx<c1 for te(0,T7).

Now if g; > 0 for all j € J, combining (2.2) with (4.4) yields that

Z/ AV, — B, |dx>—ZZ ,f (Av; — Bv))(Av, — Bvy)dx

j=1 =1

> 2D2 Z Z / ;- Vv + ,B,Vjvl) dx

j=1 =1

Dlﬂ* DI,B* . /
= Glu,v] — a; | (u + 1)log(u; + 1)dx
li)Z l:)z ;%é;: R? gg

D, B. D, B, . / |V1/ii|2 -
> ——Glu,v] — im;1); dx — ¢, it
- Glu,v] D, ,-E=1 amn it x — ?:1 a;m

2

where n; € (0, 1), i € Z and ¢, > 0 are constants. Taking n; = i€, we collect the above two

inequalities to obtain

2D1 m/ﬂ*

/3

for re(0,7).

i=1
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Proof of Theorem 1.2. Thanks to Lemma 4.1, we conclude that G is bounded. Therefore, there exists a
constant ¢ > 0 such that

Z [I(u(-, 1) + 1) log(u(-, t) + Dllpwy <c for te(0,7),

i=1

D IV Dllegy <c for 1e(0,T).

j=1

Similar to the proof of Theorem 1.1, the global result can be obtained through a classic and standard
method.
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Appendix

In this section, we will prove Lemma 2.1. The following lemma collects some basic facts on the
asymptotics of the heat semigroup (¢'*),-0, given by

(2P)(x) = /

R

Gx—y,0p(y)dy, xeR’ t>0,
2

where ¢ € C°(R*) N L>°(R?) and the Gaussian heat kernel is denoted by G(z, 1) := (4nt)"e’% ,z€R?,
t>0.

Lemma 5.1. Let (¢'®),-, be the heat semigroup in R*. Then, the following properties are true.
(i) Let w € Nj. Then

D¢ =e"D?¢ forall t>0

is valid for all ¢ € C'/(R*) N W*l>°(R?),
@) If 1 <r <r, <00 and w € Ny, then there exist a constant c(r,, 1>, |w|) > 0 such that

lo|

ol _ 11
D2 Pl < c(risra )t 2 T 2 @lln@e, forall t>0
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holds for all ¢ € L' (R?). In particular, c(ry, 1, |w|) =1 if |o| =0 and r, = r,.
Proof. Please see [41, Lemma 2.1] and [14] for details. O]

Proof of Lemma 2.1. The proof of Lemma 2.1 will be divided into several steps.
First Step: local existence. The contraction mapping theorem will be used to prove the local existence
of mild solutions. Let

n

m
R:= Z (||Mio||L°°(R2> + ”ui0||L1(RZ)) + Z (||Vj0||L‘(R2) + IVvollpee) + ”VV_/O”LI(IRZ)) +1,

i=1 J=1
and let T be a fixed positive number below. Set
X:= C° ([0, T]; (C°R) N L' R NL*R?Y))" x (W"@R) N W" (R»))")

equipped with the norm

n

el = max { 37 [l Dllmise) + e Dl ]

i=1

m

+ Z [||Vj('7 D) + IV Dl + 11V, f)||L1(1R<2)] }

J=1

for t € [0, T]. Moreover, define
E:= {(u,V) GX‘(u,V)(-,O)Z(uo,vO) and ||(u,v)llx SR} .

Then, it is easy to see that E is a closed convex subset of X. Consider a nonlinear mapping I1: E+— X
such that for any (@, ) € E,

(u,v)=T1u,”),

where u = (u,,--- ,u,)andv = (v, - -- ,v,,) satisfy

m t
u(-, 1) = e uyp — Z O / V. elos [2t:(-, S)V;j('s lds, i€, tel0,T], (A1)
j=1 0
and
n t
v =P+ "y / I s, jeJ, tel0,T), (A2)
0

i=1
respectively. By the estimates for the heat semigroup in Lemma 5.1 (ii) to (A1), there exists a constant
¢; = ¢,(p) > 0 such that

n

n n m '

IR
E [, (-, Dl Lom2y < E ||€ZAM1'0||L3°(R2)+01 E § |Olig|/ (t—s) 277 ||Mi("S)VT’}(':S)HLP(R?)dS,
i1 i=1 0

i=1 j=1

n ‘ n
_1_1 ~
S Z ||u,-()||Loo(]R2) —+ Cl(x* / ([ — S) 27 p <Z ||M,-(-, S)”LOO(RZ))
i=1 0 i=1
m
. (Z VVi(., S)||u>(R2>> ds

j=1

o=
= -

. 2c,pa*R* |
=3 Mol + = =5 THE, 1 [0.7)

i=1
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Similarly, one also has

n n 1 n
_1 ~
D MG Dl < Y ol +6206*/ (t—9)2 (Z ”“i("s)”LWRZ))
i=1 i=1 0 i=1
: (Z ||W,~<~,s>||L1<Rz>> ds

j=1
S Z ||ui0||Ll(R2) + 2026(*R2T%, re [07 T]7
i=1
with some ¢, > 0. Moreover, one can apply Lemma 5.1 (ii) to find constants cs, ¢, > 0 such that

m n m
Z V(s Dl ey < Z Mviollpee + v Z el /
J=1 j=1 j=1

n

> U, s)

i=1

ds

t
0
LY(R2)

m

<3 Il + v TRITIT.  1€[0.T],

=1

m m n m '
, . 1

Z IV, Dl p@ey < Z e‘ﬁ/‘t”VVjOHU(RZ) +c Z Z |Vij|e|ﬂ/|1 / t =) 2w (-, )|l @2 ds

j=1 =1 0

=1 j=1

m n t
* * _1
<7 Y vl + e @171 Y [ a-9
i=1 Y0

J=1

p=1 1
: ||ui(" s)”Lc’),O(RZ) ||M,'(', S)”ZI(RZ)dS

<Y I Vvllwa + 267" TRITITE,  1€[0,T], (A3)
j=1
D IV Dlloe < €T IVl +2cy* e TRITIT?, 10, T]. (A4)
j=1 j=1

Hence, IT maps E into E if we choose T small enough.
We now show that the mapping is a contraction. Indeed, for (&, ¥) € E, (iZ,V) € E, we have

M@, ») — T@, V)llx = max {1(5) + L) + L) + L0 + 1)},

where I;,,i=1,2,---,5 is introduced as follows,

[ v —acs Yo, 7.9)

m

FEC Y a,,,-(vv,(-, ) —7(, s))]ds

n

L=

i=1

Jj=1 Lo°(R2)
n t m
Sl ~ _
<ay. / (t =) 27 UG, ) = Tl e, | D @ VG 9)| ds
i=1 Y0 j=1 E)
n t m
Sl _ ~
+ ¢ Z/ t—9)7277 (-, )l oo mey Zaijv(Vj(',S)_Vj(',S)) ds
i=1 0 j=1 D@

- 4cipa*R

= ”(ﬁ’ v) - (’IZ’;‘)”Xs te [0» T]7
p—2
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n

Ln=7)

i=1

/0 Ve @5~ 9)( > eV 9)

+ (-, ) 2’”: Oh-‘f(w.f(" $) =V S)>]ds

J=1

LY(R2)

Z a;;Vvi(-, s) ds
=1

L1(R2)

n t
J ~
<oy / (0= 5} [T ) = T ) e
i=1 Y0

ds

L (R2)

ve ) [ a9t e | 2w (560 -T.0)
i=1 Y0 j=1

<4c,a*RT?||@, %) — @My, 1€[0,TI,

m

L=>)

/ e(l—.?)(A—ﬁj) (Z Vij (ﬁi(.7 S) — Iii(., s))) ds
0 i=1

J=1 LY(R2)
< )/*e‘ﬁ*‘quﬂ Z / %, ) — (-, Iz g2y ds
i=1 YO0
<y " TITI@,%) — @My, tel0,TI,
m t n
Lo=3 |V [ / eI (Z Vig @ (. 5) = T - s)))}
J=1 0 i=1 LP(R2)
<26,y T\ TIRT @, %) — G Py, 1€10,T],
m t n
KW= |V [ / e=IE=h) (Z Vi @ 8) — (-, s)))}
=1 0 i=1 LI(R?)

<2¢,ye" T\ T |RT? |@,7) — @, M|y, t€l0,T).

29

So IT is a contraction if T is sufficiently small. Thus from Banach’s fixed point theorem, IT has a fixed
point in the sense that (#, v) = I1(u, v). Since the choice of above T depends only on R, «*, 8*, y*, p and

|Z1, |J|, a standard argument implies that (u, v) can be extended up to some 7., and

lim sup {Z [”uz(, D@y + llui(-, f)”L‘(R?)]

1= Tmax i=1

+ > [IC Dl + 196 Dllwe + 1V, r)||L1(R2)]} =00

j=1

holds if T« < 00.

(AS5)

Second Step: Regularity. Since ¢'® and V- commute on C'(R?; R?) N L'(R?*; R?), a straightforward
regularity argument in [17, Lemma 3.3] which includes standard semigroup techniques and bootstrap

procedure, and the parabolic Schauder estimates [26] imply that (u,v) € [C*'(R? x (0, Tmax))]mﬂ. In

fact, abbreviating F;(x, 1) =) a;;u:(x, £)Vv;(x, t) for some i € Z and from the regularity for the mild

J=1
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solution, we rewritten (1.5); as
ou; =Au; — V-F; in R*x(0,7) (A6)

with continuous and bounded F; in R? x [0, T]. Then the Step 2 in [17, Lemma 3.3] tells that ; is a very

weak solution to (A6), i.e.
T T
[ o~ [ woco=[" [ wao
0 R2 R2 0 R2

T
+/ /F,..Vqs for all ¢ € C*(R* x [0, 7).
0 R2

Moreover, one can improve the regularity of very weak solution by introducing another solution #; to
the following initial boundary problem

a,ﬁ,vZAﬁ;—V~F,-, XEBR, tE('C,T),
Uilop, =i, te(r,T),

ﬁ('x’ T) = l/l(,x, T)9 X e BR’

where 0 <t < T, R > 0. Then a similar way in the Step 3 in [17, Lemma 3.3] makes sure that Vu; €

L} (R*> x (t,T)) and
- / [ ui¢r - / Mi(" T)(P(', ‘C) = f / VMi : V¢
t JR? R2  JRr2

loc
T
+/ /F,~V¢ for all ¢ € C*(R* x [7,T)).
T R2

Hence, V - F; eLIZOC(R2 x [, T]), which together with parabolic regularity theory [25] asserts that
u; € LA((t, T);WEA(R?) and u; € L7((t, T); W, (R?)) for all p € (1, 00) by the embedding theorem. Then
invoking parabolic Schauder theory, we have u; € C,z,,ty’l+%(R2 X (t,T)) with some y € (0, 1), and u;
solves the i-th equation in (1.5) classically in R? x (z, T). The proof is complete due to the arbitrary
choice of 7.

Third Step: Uniqueness, positivity and mass conservation. Construct a non-increasing cut-off func-
tion h(x) € C*(R) to fulfil A(x)=1 in (—o0,0] and A(x) =0 in [1, 00). And for K > 0, set &x(x) :=
h(|x| — K), x € R%. Under the help of cut-off function &, one can utilise localisation arguments to prove
uniqueness, positivity and mass conservation of solutions to (1.5). Let us point out that such results
were already obtained by Winkler in single-species case. We just describe the following main steps of
the proof and refer to [41, Lemmas 2.4-2.7] for more details.

Now we prove the uniqueness. Proceeding as in [41, Lemma 2.4], given T > 0 and two solutions
(w,v) and (&,¥) in R? x (0, T), we let w=u — % and z =¥ — ¥ and obtain by applying straightforward
procedure to (1.5) that

dw;=Awi— > VWV — Y a,;V-G@Vy), i€, te[0,T],
j=1

Jj= j=1

311./=AZ./—:3/Z./+ZVuWn jeJ, te€[0,T]

i=1
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With the help of cut-off function & and Young’s inequality, we have

2d¢/ £ 2dx<——f £2|Vw, |2dx+4/ |V Pwldx

+ (e )ZIJI/ (Z ) |2) dx
+ (@)1 T| /Rz Ex(u;)? (i IVz/|2> dx
+2 Xm; o /R 2 EW'VE - Vidx
+2 Xm; a;j /1; 2 Exlw; VEK - Vzdx

pm

1d
——/ E,fIVZjIZdXS/ |V$K|2||sz|2dx+(/3*+(V*)2)/ E¢IVz [ dx
2dt Jpe R2 R2

'I' & (Z Vw; |2> dx.

By Holder’s, Young’s and the Gagliardo—Nirenberg inequalities,
COaM f Eew (Z IVl ) dx 5@ 1T el 2,
2(g—2)

<C5C6(Ol*)2|j| || V(“;:KW )||L2(R2) ||‘§Kwi||L2:R2)

®?)

<3 SKIVW,I dx+ 2 /IVEKIz fdx

/ E2wdx, (A7)
@)1 T| / E0i)? (ZWZ,-P) dx <ci(’ |1 / £2Vz P dx,
R2 j=1 =1 YR

n
and c¢s =sup, oz 2 lUll~@2). By the finiteness

i=1

||(VV,,VZI)”L(4(]RZ) for]ej ||(~,,w)||Loo<Rz for ieZ and supp & C (—K, K), we find that yg(¢) :=
i Z S EeWidx + 5 Z Jeo £21Vz*dx satisfies

where we set c5_sup,e(OT)ZIIVV( ] e
=1

ﬂ n
V() <coyk(t) + ¢o Z ||w,»||Lf’(BR+]\BR) + 6 Z IWill L Bgs o)

i=1 i=1

=2 2

+ ¢y Z IVzll ! LI(BR+1\BR) for t€(0,7),

where due to yg(0) =0 and (2.1), an integration over (0, T) shows that yx(f) — 0 as K — oo. Hence
u=uandv=vinR? x (0, T).
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To prove the positivity of u;, i € Z, it is sufficient to make sure that u; is non-negative in R? x (0, T)
for each T € (0, Ty,.x) by the strong maximum principle and (1.6). Denote u; = max{—u;, 0}. A direct
computation shows that

1d [, VoL . e 2
EE/RzéK(u,»)dxs—E/RzéKIVui | dx+(a)|‘7|/RzEK|”f| ;W"jl dx

+4 / lu; P |VEdx +2) f Ex(u; P VEg - Vvdnx.
R2 X R2
Jj=1

Since Vv, € L>((0, T); L*(R?)) with p > 2, using a similar approach in (A7) shows the existence of ¢}y >
0 such that

(a*)2|5|/ Elu; ? (ZWv,-P) dx
R2 =1

<cs@) T NExw; |1
L4-2 (R2)

1 219,,- |2 l 20 -2 2/ -\2
< §xlVu; [dx + IVE|"(u; ) dx+cio | &x(u; ) dx.
2 Jr2 2 Jre R2

On the other hand, we follow a procedure in proving uniqueness and conclude that g (¢) := fRz & ,%(ui‘)zdx
fulfils gx(r) — 0 as K — oo. Hence non-negativity of u;, i € Z, has been proved.

Fourth Step: LY estimates for v;, j € J. Integrating j-th equation in (1.5) over R? x (0, T) directly, it
results in

n
IVioll L1 mzy + ¢ Z [Viillwoll gy, if B =0,
V(- Dl @) < =l n
1
e P violle) + 7 |1 - e_ﬁ"t} 2o villuollpe, if B #0.
' i=1

For g > 1, applying Lemma 5.1 to (A2) we infer that

n t
. . 4l ~
1v;(-, Ol am2) Se‘ﬂj‘t”‘)j()“L‘l(RZ) + et Z [V / (t =" |[w(, 112, ds
i=1 0

n
% * 1 .
Seﬁ T”Vj()”Lq(RZ) + qy*eﬁ TTq Z ”uiOllLl(Rz)’ ] S \_7, te [0, T].

i=1
Hence, we have obtained L? estimates for v;, j € 7, and found that the upper bound is independent of
time variable if 8, >0,V je J.
Fifth Step: Criterion. If T,,,, < oo and there exists a constant ¢;; > 0 such that

n
Z lut; (-, Dl o2y < C1i-

i=1
Then from the mass conservation ||u;(-, £)|| 112 = ||t || 11 @2), ¢ € Z, and the boundedness of L' estimate
for vi(-, 1), j€ J, for all t € (0, T},) and the following fact

m

D IV Dllwe + IV G Dllne) <cn, 1€ O, T,

Jj=1

is right with some ¢, > 0 because of (A3)—-(A4), we claim that (A5) implies T,,,, cannot be finite.
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