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THE CONTRAGREDIENT ISOTYPIC COMPONENT
OF THE REGULAR REPRESENTATION
OF PSEUDOREFLECTION GROUPS

To Louis Solomon on his 65th birthday

F. DESTREMPES AND A. PIANZOLA

ABSTRACT.  For the regular representation of a pseudoreflection group G we char-
acterize the occurrences of the contragredient representation as the gradient spaces of
a set of Chevalley generators of the invariants of G.

1. Thestatements. Inwhat follows J will be a finite dimensional vector space over
a field K and G C GL(V) will be a group. We shall denote the symmetric algebra of V
over K by S and uniquely extend the elements of G to automorphisms of S. We then
define the fixed point algebra

R:={xeS|gr=xVge G}
We shall view S as an N-graded algebra and G-module
S=P s

deN
in the natural way and in what follows, any reference to “graded” or “homogeneous”
objects will be with respect to this grading.

We denote by V'* the dual space of V' and view this as a G-module via the contragre-
dient action. Each w € V* extends uniquely to a derivation d,, of S. One easily verifies
the following three properties:

(1) g0.(s) = Ogugs forallg € G,w € V*ands € S.

(2) If{vi,...,ve}is abasis of ¥ and {wy,...,w,} is the corresponding dual basis of

V*, then for s € S* where d € N we have (Euler’s identity)

M-

ViO,,S = ds.
i=1

(3) The map w — 9, is a K-linear map from V'* to the K-space of derivations of S.
If s € S we define its gradient space Vi(s) by

@) V() = {0u(s) | w € V).
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It follows from (3) that thus defined V(s) is a K-subspace of S.

Next we assume that G is finite, generated by pseudoreflections (recall that a pseu-
doreflection is a non trivial element of GL(¥) which pointwise fixes a hyperplane), and
that |G| is invertible in K. (We refer to this as the “Chevalley conditions.”) We recall some
basic properties of these groups. Our running reference for this will be [Bbk, Chapter 5,

number 5]. The ring R is a polynomial ring on a set of homogeneous generators f1, . . . , f;.
That is

R=K[h,....fe)

If we set d; := degf; (the degrees), then |G| = 1%, d;. The set of degrees is indepen-
dent of the choice of Chevalley generators fi, . . ., f;.

Finally if R+ denotes the augmentation ideal of R there exist G-stable graded supple-
ments to R.S in S and any such supplement is isomorphic to the regular representation
of G. Fix once and for all such a supplement U. Write

) S=RSOU

and let
S—U
be the corresponding projection.
It is natural to ask where in U do the different irreducible representations of G appear.
We give a definite answer to this question as far as the occurrence of the contragredient
module V* is concerned.

THEOREM 1. Let G C GL(V) be a group satisfying Chevalley conditions. Assume V
is an irreducible G-module. If fi, . . ., f; is a set of Chevalley generators of R and ~: S —
U is given by (5) above, then

(i) Each V(f;) is a G-module isomorphic to V*.
(i) The sum !, V() is direct and this G-space is the isotypic component of V*
in U.

For Weyl groups the theorem is due to Solomon ([SIm]). It can also be found in [BL]
(where the occurrence of all irreducible representations in U is studied). Note that for
Weyl groups V ~ V™.

2. The proofs. Before turning into the main proof we point out a (probably well
known) general fact (Proposition 1 below) from which part (i) of the theorem will follow.

The group G is now allowed to be arbitrary. If H is a subset of S we define its gradient
space by

Vk(H) := 3~ Vk(s)

seH

where Vi (s) is as in (4).
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PROPOSITION 1. Let V be a finite dimensional K-space and let G C GL(V) be a

group. If H C S is a G-module, then Vi (H) C S is a G-module which is a homomorphic
image of the G-module H ®x V*.

PROOF OF PROPOSITION 1. That Vi (H) is a G-module follows from (1). To see that

Vi (H) is a homomorphic image of H ®y V* we consider the unique K-linear surjection
¥ H®g V* — Vi (H) satisfying

Y:h®wr— o,h forallh € Handw € V™.

If we denote by - the action of G on H ®k V*, then forallg € G, h € H,andw € V* we
have

Y(g - (h @ w)) = P(gh @ gw) := Bu(gh) = gou(h) = g(h ® w)
(this penultimate equality by (1)) showing that ¢ is a G-module homomorphism. ]

REMARK 1. Letr € R\ {0}. Then Kr is a trivial one dimensional G-module. Propo-
sition 1 shows that Vi () is a homomorphic image of V*.

REMARK 2. Letr € RY := RN $ be nonzero and assume that d is invertible in K.
Euler’s identity (2) shows that Vi (r) # (0).

REMARK 3. Having fixed a basis {v,...,v,} of V we can for each g € G write

14
gvi = 3 k(@i
k=1

where a;(g) € K.
Letd € N and assume a copy of V"* appears in $~!. One can ask if this is of the form
Vi (r) for some » € R. Though the answer in this generality is no, one can still perform

the following suggestive calculation. Let 4y, . . ., h; be a basis of such copy of V* chosen

so that
¢

ghi =" aulg .
k=1

Let ,
r = Z V,‘h,‘.
i=1

A straightforward calculation shows that gr = r so that r is invariant. However we do
not know if r = 0 or, even if r # 0, whether Vi (r) # (0). If {w),...,w,} C V*
is the basis dual to {v,...,v}, then A; need not be a multiple of 0,7 in general but,
remarkably enough, this is the case for irreducible pseudoreflection groups. (See the
proof of Theorem 1(ii) below.)

PROOF OF THEOREM 1. Since [T, d; = |G| it follows that each d; is invertible in K.
Remarks | and 2 above, together with the assumption that ¥ (hence V*) is irreducible,
gives

6) V(i) ~ V*.
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Thus if Vi (f}) is not isomorphic to V*, then m = (0). Now if Vi (f;) = (0), then for
any fixed basis {wi, ..., w,} of V* we have 0,,f; € R:S forall 1 < < £. We show this
is not possible. .

Recall that a nonzero element z € S is called antiinvariant if

gz = (detg) 'z
An example of such an element is the Jacobian
J=det(0,f), 1<ij<L
Furthermore any antiinvariant is of the form rJ for some r € R. Now if 0,,/i € R4S
forall 1 <j < ¢, thenJ € RS and therefore all nonzero antiinvariants would belong
to R.S. This however cannot be the case, for U contains a copy of the one dimensional
G-module affording the character det™'; and hence nonzero antiinvariant elements. The
proof of (i) is now complete.
As for (ii) it will suffice to show that the sum

(
O] Z:l Vk(fi)

is direct (the statement about the isotypic component then follows from (i)).
To simplify the notation we will write M; instead of Vi (f;). If the sum (7) is not direct
after rearranging the f;’s if necessary, we canfind 1 < p < g < {so thatd, = d,+1 =

-+ =d, and
q
®) thesum ) M, is direct
k=p+1
q
) M, D M # (0).
k=p+l
From (9) it follows that M, C @Z:pﬂ M) := M and we can therefore for each 1 <
i < f write

aw;fp = Vip+l + ... 4 Vig
where v;; € M.
We claim that for eachp <k <g¢g

(10) there exists x, € K such that v;;, = x40,/ forall 1 <i < /.

Indeed for p < k < g let Y: M — M, be the projection map. By irreducibility
Ui(My) = (0) or Y(My) = M. Iy (M,) = (0) we simply set xi = 0. Iy (M,) = M,
consider the unique linear map ¢;: My — M, satistying ¢y: 0,,/x — O..fp- By explicitly
looking at the proof of part (i) of the theorem we conclude that ¢y is a G-module isomor-
phism. Thus 1 o ¢ is an automorphism of M, and hence a homothety (Schur’s lemma).
But vy o wk(m) = v and hence there exists a x, € K> so that v;; = xx0,,f; for all
1 <i < £.Now (10) is established.

Finally considerf := f, — Xp+1fp+1 — - - — Xofg- It is clearthat fi, ..., fo_1,f, for1,- - -, f
is a set of Chevalley generators and hence that, as we have already proved, Vi (f) ~ V*.
By (10) howeverm = 0forall 1 <i < /. This contradiction finishes the proof of (ii). m
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