THE CONTRAGREDIENT ISOTYPIC COMPONENT OF THE REGULAR REPRESENTATION OF PSEUDOREFLECTION GROUPS

To Louis Solomon on his 65th birthday

F. DESTREMPES AND A. PIANZOLA

ABSTRACT. For the regular representation of a pseudoreflection group G we characterize the occurrences of the contragredient representation as the gradient spaces of a set of Chevalley generators of the invariants of G.

1. The statements. In what follows V will be a finite dimensional vector space over a field K and $G \subset GL(V)$ will be a group. We shall denote the symmetric algebra of V over K by S and uniquely extend the elements of G to automorphisms of S. We then define the fixed point algebra

$$R := \{ x \in S \mid gx = x \, \forall g \in G \}.$$

We shall view S as an \mathbb{N} -graded algebra and G-module

$$S = \bigoplus_{d \in \mathbb{N}} S^d$$

in the natural way and in what follows, any reference to "graded" or "homogeneous" objects will be with respect to this grading.

We denote by V^* the dual space of V and view this as a *G*-module via the contragredient action. Each $\omega \in V^*$ extends uniquely to a derivation ∂_{ω} of *S*. One easily verifies the following three properties:

- (1) $g\partial_{\omega}(s) = \partial_{g\omega}gs$ for all $g \in G$, $\omega \in V^*$ and $s \in S$.
- (2) If {v₁,...,v_ℓ} is a basis of V and {ω₁,...,ω_ℓ} is the corresponding dual basis of V*, then for s ∈ S^d where d ∈ N we have (Euler's identity)

$$\sum_{i=1}^{\ell} v_i \partial_{\omega_i} s = ds.$$

(3) The map $\omega \mapsto \partial_{\omega}$ is a K-linear map from V^* to the K-space of derivations of S. If $s \in S$ we define its gradient space $\nabla_{\mathbb{K}}(s)$ by

(4)
$$\nabla_{\mathbb{K}}(s) := \{\partial_{\omega}(s) \mid \omega \in V^*\}$$

Both authors acknowledge the help of NSERC Canada.

Received by the editors January 14, 1994.

AMS subject classification: 17B20, 20C.

[©] Canadian Mathematical Society 1995.

It follows from (3) that thus defined $\nabla_{\mathbb{K}}(s)$ is a \mathbb{K} -subspace of S.

Next we assume that G is finite, generated by pseudoreflections (recall that a *pseudoreflection* is a non trivial element of GL(V) which pointwise fixes a hyperplane), and that |G| is invertible in K. (We refer to this as the "Chevalley conditions.") We recall some basic properties of these groups. Our running reference for this will be [Bbk, Chapter 5, number 5]. The ring R is a polynomial ring on a set of homogeneous generators f_1, \ldots, f_ℓ . That is

$$R = \mathbb{K}[f_1, \ldots, f_\ell].$$

If we set $d_i := \deg f_i$ (the degrees), then $|G| = \prod_{i=1}^{\ell} d_i$. The set of degrees is independent of the choice of Chevalley generators f_1, \ldots, f_{ℓ} .

Finally if R_+ denotes the augmentation ideal of R there exist G-stable graded supplements to R_+S in S and any such supplement is isomorphic to the regular representation of G. Fix once and for all such a supplement U. Write

$$(5) S = R_+ S \oplus U$$

and let

$$\bar{}: S \rightarrow U$$

be the corresponding projection.

It is natural to ask where in U do the different irreducible representations of G appear. We give a definite answer to this question as far as the occurrence of the contragredient module V^* is concerned.

THEOREM 1. Let $G \subset GL(V)$ be a group satisfying Chevalley conditions. Assume V is an irreducible G-module. If f_1, \ldots, f_ℓ is a set of Chevalley generators of R and $\tilde{:} S \rightarrow U$ is given by (5) above, then

- (i) Each $\overline{\nabla_{\mathbb{K}}(f_i)}$ is a G-module isomorphic to V^* .
- (ii) The sum $\sum_{i=1}^{\ell} \overline{\nabla_{\mathbb{K}}(f_i)}$ is direct and this G-space is the isotypic component of V^* in U.

For Weyl groups the theorem is due to Solomon ([Slm]). It can also be found in [BL] (where the occurrence of all irreducible representations in U is studied). Note that for Weyl groups $V \simeq V^*$.

2. **The proofs.** Before turning into the main proof we point out a (probably well known) general fact (Proposition 1 below) from which part (i) of the theorem will follow.

The group G is now allowed to be arbitrary. If H is a subset of S we define its *gradient space* by

$$abla_{\mathbb{K}}(H) := \sum_{s \in H}
abla_{\mathbb{K}}(s)$$

where $\nabla_{\mathbb{K}}(s)$ is as in (4).

PROPOSITION 1. Let V be a finite dimensional K-space and let $G \subset GL(V)$ be a group. If $H \subset S$ is a G-module, then $\nabla_{K}(H) \subset S$ is a G-module which is a homomorphic image of the G-module $H \otimes_{K} V^*$.

PROOF OF PROPOSITION 1. That $\nabla_{\mathbb{K}}(H)$ is a *G*-module follows from (1). To see that $\nabla_{\mathbb{K}}(H)$ is a homomorphic image of $H \otimes_{\mathbb{K}} V^*$ we consider the unique \mathbb{K} -linear surjection $\psi: H \otimes_{\mathbb{K}} V^* \to \nabla_{\mathbb{K}}(H)$ satisfying

$$\psi$$
: $h \otimes \omega \mapsto \partial_{\omega} h$ for all $h \in H$ and $\omega \in V^*$.

If we denote by the action of G on $H \otimes_{\mathbb{K}} V^*$, then for all $g \in G$, $h \in H$, and $\omega \in V^*$ we have

$$\psiig(g\cdot(h\otimes\omega)ig):=\psi(gh\otimes g\omega):=\partial_{g\omega}(gh)=g\partial_{\omega}(h)=g\psi(h\otimes\omega)$$

(this penultimate equality by (1)) showing that ψ is a G-module homomorphism.

REMARK 1. Let $r \in R \setminus \{0\}$. Then $\mathbb{K}r$ is a trivial one dimensional *G*-module. Proposition 1 shows that $\nabla_{\mathbb{K}}(r)$ is a homomorphic image of V^* .

REMARK 2. Let $r \in \mathbb{R}^d := \mathbb{R} \cap S^d$ be nonzero and assume that d is invertible in \mathbb{K} . Euler's identity (2) shows that $\nabla_{\mathbb{K}}(r) \neq (0)$.

REMARK 3. Having fixed a basis $\{v_1, \ldots, v_\ell\}$ of V we can for each $g \in G$ write

$$gv_j = \sum_{k=1}^{\ell} a_{kj}(g)v_k$$

where $a_{ki}(g) \in \mathbb{K}$.

Let $d \in \mathbb{N}$ and assume a copy of V^* appears in S^{d-1} . One can ask if this is of the form $\nabla_{\mathbf{k}}(r)$ for some $r \in \mathbb{R}^d$. Though the answer in this generality is no, one can still perform the following suggestive calculation. Let h_1, \ldots, h_ℓ be a basis of such copy of V^* chosen so that

$$gh_i = \sum_{k=1}^{\ell} a_{ik}(g^{-1})h_k.$$

Let

$$r:=\sum_{i=1}^{\ell}v_ih_i.$$

A straightforward calculation shows that gr = r so that r is invariant. However we do not know if r = 0 or, even if $r \neq 0$, whether $\nabla_{\mathbb{K}}(r) \neq (0)$. If $\{\omega_1, \ldots, \omega_\ell\} \subset V^*$ is the basis dual to $\{v_1, \ldots, v_\ell\}$, then h_i need not be a multiple of $\partial_{\omega_i} r$ in general but, remarkably enough, this is the case for irreducible pseudoreflection groups. (See the proof of Theorem 1(ii) below.)

PROOF OF THEOREM 1. Since $\prod_{i=1}^{\ell} d_i = |G|$ it follows that each d_i is invertible in \mathbb{K} . Remarks 1 and 2 above, together with the assumption that V (hence V^*) is irreducible, gives

(6)
$$\nabla_{\mathbb{K}}(f_i) \simeq V^*.$$

Thus if $\overline{\nabla_{\mathbb{K}}(f_i)}$ is not isomorphic to V^* , then $\overline{\nabla_{\mathbb{K}}(f_i)} = (0)$. Now if $\overline{\nabla_{\mathbb{K}}(f_i)} = (0)$, then for any fixed basis $\{\omega_1, \ldots, \omega_\ell\}$ of V^* we have $\partial_{\omega_j} f_i \in R_+S$ for all $1 \le j \le \ell$. We show this is not possible.

Recall that a nonzero element $z \in S$ is called *antiinvariant* if

$$gz = (\det g)^{-1}z$$

An example of such an element is the Jacobian

$$J = \det(\partial_{\omega_i} f_i), \quad 1 \le i, j \le \ell.$$

Furthermore any antiinvariant is of the form rJ for some $r \in R$. Now if $\partial_{\omega_j} f_i \in R_+S$ for all $1 \le j \le \ell$, then $J \in R_+S$ and therefore *all* nonzero antiinvariants would belong to R_+S . This however cannot be the case, for U contains a copy of the one dimensional *G*-module affording the character det⁻¹; and hence nonzero antiinvariant elements. The proof of (i) is now complete.

As for (ii) it will suffice to show that the sum

(7)
$$\sum_{i=1}^{\ell} \overline{\nabla_{\mathsf{K}}(f_i)}$$

is direct (the statement about the isotypic component then follows from (i)).

To simplify the notation we will write M_i instead of $\nabla_{\mathbb{K}}(f_i)$. If the sum (7) is not direct after rearranging the f_i 's if necessary, we can find $1 \le p < q \le \ell$ so that $d_p = d_{p+1} = \cdots = d_q$ and

(8) the sum
$$\sum_{k=p+1}^{q} M_k$$
 is direct
(9) $M_p \cap \bigoplus_{k=p+1}^{q} M_k \neq (0).$

From (9) it follows that $M_p \subset \bigoplus_{k=p+1}^q M_k := M$ and we can therefore for each $1 \leq i \leq \ell$ write

$$\overline{\partial_{\omega_i} f_p} = v_{i,p+1} + \dots + v_{i,q}$$

where $v_{i,k} \in M_k$.

We claim that for each $p < k \le q$

(10) there exists $\chi_k \in \mathbb{K}$ such that $v_{i,k} = \chi_k \overline{\partial_{\omega_i} f_k}$ for all $1 \le i \le \ell$.

Indeed for $p < k \leq q$ let $\psi_k \colon M \to M_k$ be the projection map. By irreducibility $\psi_k(M_p) = (0)$ or $\psi_k(M_p) = M_k$. If $\psi_k(M_p) = (0)$ we simply set $\chi_k = 0$. If $\psi_k(M_p) = M_k$ consider the unique linear map $\varphi_k \colon M_k \to M_p$ satisfying $\varphi_k \colon \overline{\partial_{\omega_i} f_k} \to \overline{\partial_{\omega_i} f_p}$. By explicitly looking at the proof of part (i) of the theorem we conclude that φ_k is a *G*-module isomorphism. Thus $\psi_k \circ \varphi_k$ is an automorphism of M_k and hence a homothety (Schur's lemma). But $\psi_k \circ \varphi_k(\overline{\partial_{\omega_i} f_k}) = v_{i,k}$ and hence there exists a $\chi_k \in \mathbb{K}^{\times}$ so that $v_{i,k} = \chi_k \overline{\partial_{\omega_i} f_k}$ for all $1 \leq i \leq \ell$. Now (10) is established.

Finally consider $f := f_p - \chi_{p+1}f_{p+1} - \cdots - \chi_q f_q$. It is clear that $f_1, \ldots, f_{p-1}, f, f_{p+1}, \ldots, f_\ell$ is a set of Chevalley generators and hence that, as we have already proved, $\overline{\nabla_{\mathbb{K}}(f)} \simeq V^*$. By (10) however $\overline{\partial_{\omega_i} f} = 0$ for all $1 \le i \le \ell$. This contradiction finishes the proof of (ii).

F. DESTREMPES AND A. PIANZOLA

References

[Bbk] N. Bourbaki, Groupes et algèbres de Lie, Chapters 4, 5 et 6, Hermann, Paris, 1968.

[BL] W. M. Beynon and G. Lusztig, Some numerical results on the characters of exceptional Weyl groups, Math. Proc. Cambridge Philos. Soc. 84(1978), 417–426.

[Chv] C. Chevalley, *Invariants of finite groups generated by reflections*, Amer. J. Math. **77**(1955), 778–782. [Slm] L. Solomon, *Invariants of euclidean reflection groups*, Trans. Amer. Math. Soc. (2) **113**(1964), 274–286.

Department of Mathematics University of Toronto Toronto, Ontario M5S 1A1

Department of Mathematical Sciences University of Alberta Edmonton, Alberta T6G 2G1

186