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KALMAN–BUCY FILTERING FOR
LINEAR SYSTEMS DRIVEN BY THE
COX PROCESS WITH SHOT NOISE INTENSITY
AND ITS APPLICATION TO THE PRICING
OF REINSURANCE CONTRACTS
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Abstract

In practical situations, we observe the number of claims to an insurance portfolio but
not the claim intensity. It is therefore of interest to try to solve the ‘filtering problem’;
that is, to obtain the best estimate of the claim intensity on the basis of reported claims.
In order to use the Kalman–Bucy filter, based on the Cox process incorporating a shot
noise process as claim intensity, we need to approximate it by a Gaussian process. We
demonstrate that, if the primary-event arrival rate of the shot noise process is reasonably
large, we can then approximate the intensity, claim arrival, and aggregate loss processes
by a three-dimensional Gaussian process. We establish weak-convergence results. We
then use the Kalman–Bucy filter and we obtain the price of reinsurance contracts involving
high-frequency events.
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1. Introduction

In insurance modelling, the Poisson process has been used as a claim arrival process.
Extensive discussion of the Poisson process, from both applied and theoretical viewpoints,
can be found in Cramér (1930), Cox and Lewis (1966), Bühlmann (1970), Çinlar (1975),
Gerber (1979), and Medhi (1982). However, there is a significant volume of literature that
questions the suitability of the Poisson process in insurance modelling (Seal (1983); Beard et al.
(1984)). From a practical point of view, there is no doubt that the insurance industry needs a
more suitable claim arrival process, with deterministic intensity, than the Poisson process.

As an alternative point process to generate the claim arrivals, we can employ the Cox process
or a doubly stochastic Poisson process (Cox (1955); Bartlett (1963); Haight (1967); Serfozo
(1972); Grandell (1976), (1991), (1997); Brémaud (1981); Consul (1989); Lando (1994)). An
important book on Cox processes is that by Bening and Korolev (2002), in which various limit
theorems as well as applications in both insurance and finance are discussed. The Cox process
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provides us with the flexibility to allow the intensity not only to depend on time but also to be a
stochastic process. In a recent paper (Dassios and Jang (2003)), the authors demonstrated how
the Cox process with shot noise intensity can be used in the pricing of catastrophe reinsurance
and derivatives.

As the claim intensity function within the Cox process is not observable, it can only be
observed on the basis of an observed process of reported claims. Thus, we consider the filtering
problem to obtain the best estimate of the claim intensity on the basis of the observed process
of reported claims or observed accidents (Dassios and Jang (1998)).

We start by defining the quantities of interest; these are the doubly stochastic (with a shot
noise intensity) point process of claim arrivals and the aggregate loss process. In Section 3, we
prove a weak-convergence result for the three-dimensional process consisting of the intensity,
claim arrival, and aggregate loss processes. In Section 4, we obtain the Kalman–Bucy filter
result, which is then used, in Section 5, to price a reinsurance contract.

We employ piecewise-deterministic Markov processes, the theory of which was developed
by Davis (1984), to obtain the original moments of our processes. The piecewise-deterministic
Markov process theory is a powerful mathematical tool for examining nondiffusion models.
For details, we refer the reader to Davis (1984); Dassios (1987); Dassios and Embrechts (1989);
Jang (1998), (2004); Rolski et al. (1999); and Dassios and Jang (2003).

For similar results to the ones derived in this paper, we refer the reader to Gnedenko and
Kolmogorov (1954); Snyder (1975); Kruglov (1976); Davis (1977); Lipster and Shiryayev
(1977), (1978); Ahmed (1998); and Bening and Korolev (2002).

2. The Cox process and the shot noise process

The Cox process (or a doubly stochastic Poisson process) can be viewed as a two-step
randomization procedure. A process λt is used to generate another process Nt by acting as its
intensity. That is, Nt is a Poisson process conditional on λt , which itself is a stochastic process
(if λt is deterministic then Nt is a Poisson process). Many alternative definitions of a doubly
stochastic Poisson process can be given. We will offer the one adopted by Brémaud (1981).

Definition 1. Let (�, F , P) be a probability space with information structure given by F =
{It , t ∈ [0, T ]}. Let Nt be a point process adapted to F . Let λt be a nonnegative process
adapted to F such that

∫ t

0
λs ds < ∞ almost surely (no explosions).

If, for all 0 ≤ t1 ≤ t2 and u ∈ R,

E(eiu(Nt2 −Nt1 ) | Iλ
t2
) = exp

{
(eiu − 1)

∫ t2

t1

λs ds

}
(1)

then Nt is called an It -doubly stochastic Poisson process with intensity λt , where Iλ
t is the

σ -algebra generated by λ up to time t , i.e. Iλ
t = σ {λs, s ≤ t}.

Equation (1) gives us

P{Nt2 − Nt1 = k | λs, t1 ≤ s ≤ t2} = exp(− ∫ t2
t1

λs ds)(
∫ t2
t1

λs ds)k

k! . (2)
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One of the processes that can be used to measure the impact of primary events is the shot
noise process (Cox and Isham (1980), (1986); Klüppelberg and Mikosch (1995)). The shot
noise process is particularly useful within the claim arrival process, as it measures the frequency
of primary events, their magnitude, and the time period needed to determine their effects. As
time passes, the shot noise process decreases as more and more claims are settled. This decrease
continues until another event occurs, which results in a positive jump in the shot noise process.
Therefore, the shot noise process can be used as the parameter of a doubly stochastic Poisson
process to measure the number of claims due to primary events, i.e. we will use it as a claim
intensity function to generate the Cox process. We will adopt the shot noise process used by
Cox and Isham (1980), given by

λt = λ0e−δt +
Mt∑
i=1

Yie
−δ(t−Si),

where

• λ0 is the initial value of λt ;

• {Yi}i=1,2,... is a sequence of independent and identically distributed random variables
with distribution function G(y), y > 0, and E(Yi) = µ1;

• {Si}i=1,2,... is the sequence representing the event times of a Poisson process Mt with
constant intensity ρ;

• δ is the rate of exponential decay.

We also define the aggregate loss process

Ct =
Nt∑
i=1

ℵi ,

where Nt is as defined above and {ℵi}i=1,2,... is a sequence of independent and identically
distributed random variables representing the claim sizes, with distribution function H(u),
u > 0, and m1 = ∫ ∞

0 u dH(u). We assume that the Poisson process Mt and the sequences
{Yi}i=1,2,... and {ℵi}i=1,2,... are independent of each other.

As λt is a Markov process, the action of the generator A of the process (λt , t) on a function
f (λ, t) belonging to its domain is given by

Af (λ, t) = ∂f

∂t
− δλ

∂f

∂λ
+ ρ

{∫ ∞

0
f (λ + y, t) dG(y) − f (λ, t)

}
. (3)

For f (λ, t) to belong to the domain of the generator A, it is sufficient that f (λ, t) is differentiable
with respect to λ and t for all λ and t and that | ∫ ∞

0 f (λ + y, t) dG(y) − f (λ, t)| < ∞.
Now let us derive the mean and variance of λt , assuming that λ0 is given.

Theorem 1. The expectation of the claim intensity process λt , assuming that we know λ0, is
given by

E(λt | λ0) = µ1ρ

δ
+

(
λ0 − µ1ρ

δ

)
e−δt . (4)
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Proof. Set f (λ, t) = λ in (3). Then,

Aλ = −δλ + µ1ρ.

From E(λt | λ0) − λ0 = E(
∫ t

0 {Af (λs) | λ0} ds),

E(λt | λ0) = λ0 − δ

∫ t

0
E(λs | λ0) ds +

∫ t

0
µ1ρ ds.

Differentiating with respect to t gives

d E(λt | λ0)

dt
= −δ E(λt | λ0) +

∫ t

0
µ1ρ ds.

Solving this differential equation, we have

E(λt | λ0) = µ1ρ

δ
+

(
λ0 − µ1ρ

δ

)
e−δt .

Lemma 1. The second moment of the claim intensity process λt is given by

E(λ2
t | λ0) = λ2

0e−2δt + 2µ1ρ

δ

(
λ0 − µ1ρ

δ

)
(e−δt − e−2δt ) +

(
µ2

1ρ
2

δ2 + µ2ρ

δ

)
(1 − e−2δt ),

where µ2 = ∫ ∞
0 y2 dG(y).

Proof. Set f (λ, t) = λ2 in (3). Then, from the proof of the previous theorem, the result
follows immediately.

Corollary 1. The variance of the claim intensity process λt is given by

var(λt | λ0) = (1 − e−2δt )µ2ρ/2δ. (5)

Proof. From var(λt | λ0) = E(λ2
t | λ0) − {E(λt | λ0)}2, the result follows immediately.

Similarly, the asymptotic (stationary) mean and variance of λt can be obtained from
Theorem 1 and Corollary 1.

Corollary 2. If λt is stationary, that is, if λ0 has the stationary distribution, then

E(λt ) = µ1ρ

δ

and
var(λt ) = µ2ρ

2δ
.

Proof. Let t → ∞ in (4) and (5). Then, the results follow immediately.

From (2), we have

E(Nt ) = E

(∫ t

0
λs ds

)
= E(Xt ),

where Xt = ∫ t

0 λs ds (the aggregated process). Hence, assuming that λt is stationary, the
expectation of the claim number process Nt is given by

E(Nt ) = µ1ρ

δ
t. (6)
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Similarly, assuming that we know λ0, we can also obtain the variance of the aggregated
process Xt ,

var

(∫ t

0
λs ds | λ0

)
= var(Xt | λ0) =

{
µ2

δ2 t − 2µ2

δ3 (1 − e−δt ) + µ2

2δ3 (1 − e−2δt )

}
ρ, (7)

and, assuming that λt is stationary, we have

var

(∫ t

0
λs ds

)
= var(Xt ) =

(
µ2

δ2 t − µ2

δ3 e−δt − µ2

δ3

)
ρ. (8)

The reason for our explicit derivation of the variance of Xt will become apparent later, when
we transform and approximate the Cox and shot noise processes.

In the case of small ρ, the rate of primary-event arrival, Dassios and Jang (2003) used
the shot noise process as an intensity function for catastrophic events. However, if the rate
of primary-event arrival is large, primary events are no longer considered to be catastrophes.
Therefore, we can consider it to be an intensity function to generate the number of claims due
to common events of high frequency, such as car accidents or accidents from a large collective
insurance portfolio, rather than catastrophic events.

3. Convergence results

We start by introducing the following linear transformations of the processes λt , Nt , and Ct :

Z
(ρ)
t = λt − µ1ρ/δ√

µ2ρ/2δ
⇔ λt = µ1ρ

δ
+ Z

(ρ)
t

√
µ2ρ

2δ
,

W
(ρ)
t = Nt − (µ1ρ/δ)t√

µ2ρ/2δ
⇔ Nt = µ1ρ

δ
t + W

(ρ)
t

√
µ2ρ

2δ
,

U
(ρ)
t = Ct − m1(µ1ρ/δ)t√

µ2ρ/2δ
⇔ Ct = m1

µ1ρ

δ
t + U

(ρ)
t

√
µ2ρ

2δ
.

Let us continue with a proposition by Ethier and Kurtz (1986).

Proposition 1. For n = 1, 2, . . . , let {In
t } be a filtration and let Mn be an {In

t }-local martingale
with sample paths in DRd [0, ∞) and Mn(0) = 0, where R is the set of real numbers and
DRd [0, ∞) is the space of right-continuous functions from R

d to R with left limits. Let
An = ((A

ij
n )) be symmetric (d × d)-matrix-valued processes such that A

ij
n has sample paths

in DRd [0, ∞) and An(t) − An(s) is nonnegative definite for 0 ≤ s < t . Assume that

lim
n→∞ E

(
sup
t≤T

|Aij
n (t) − A

ij
n (t−)|

)
= 0, (9)

lim
n→∞ E

(
sup
t≤T

|Mn(t) − Mn(t−)|2
)

= 0, (10)

and, for i, j = 1, 2, . . . , d, that

Mi
n(t)M

j
n (t) − A

ij
n (t)

is an {In
t }-local martingale. If, for each t ≥ 0 and i, j = 1, 2, . . . , d,

A
ij
n (t)

p−→ cij (t),
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where ‘
p−→’ denotes convergence in probability and C = ((cij )) is a continuous, symmetric,

(d × d)-matrix-valued function, defined on [0, ∞), satisfying C(0) = 0 and∑
i=1,...,d
j=1,...,d

(cij (t) − cij (s))ξiξj ≥ 0, ξ ∈ R
d ,

then
Mn ⇒ X

in law, where X is a process with independent Gaussian increments such that XiXj − cij are
(local) martingales with respect to {In

t }.
Let us now define

V
(ρ)
t = Jt − µ1ρt√

µ2ρ/2δ
, L

(ρ)
t = Nt − ∫ t

0 λs ds√
µ2ρ/2δ

= Nt − Xt√
µ2ρ/2δ

, and Q
(ρ)
t = Ct − m1Nt√

µ2ρ/2δ
,

where Jt = ∑Mt

i=1 Yi .

Lemma 2. Assuming that ρ → ∞,⎡
⎢⎣V

(ρ)
t

L
(ρ)
t

Q
(ρ)
t

⎤
⎥⎦ ⇒

⎡
⎢⎣

√
2δB

(1)
t√

2µ1/µ2B
(2)
t√

k2(2µ1/µ2)B
(3)
t

⎤
⎥⎦

in law, where B
(1)
t , B

(2)
t , and B

(3)
t are three independent standard Brownian motions and

k2 = ∫ ∞
0 u2 dH(u) − (

∫ ∞
0 u dH(u))2 (the variance of claim sizes).

Proof. The generator A of the process V
(ρ)
t acting on a function f (v) is given by

Af (v) = − µ1ρ√
µ2ρ/2δ

∂f

∂v
+ ρ

{∫ ∞

0
f

(
v + y√

µ2ρ/2δ

)
dG(y) − f (v)

}
. (11)

Setting f (v) = v2 in (11) gives
Av2 = 2δ.

The generator of the process (Xt , Nt , Ct , λt , Jt , t) acting on a function f (x, n, c, λ, j, t) is
given by

Af (x, n, c, λ, j, t)

= ∂f

∂t
+ λ

∂f

∂x
+ λ

{∫ ∞

0
f (x, n + 1, c + u, λ, j, t) dH(u) − f (x, n, c, λ, j, t)

}

− δλ
∂f

∂λ
+ ρ

{∫ ∞

0
f (x, n, c, λ + y, j + y, t) dG(y) − f (x, n, c, λ, j, t)

}
. (12)

Clearly, for f (x, n, c, λ, j, t) to belong to the domain of the generator A, it is essential that
f (x, n, c, λ, j, t) is differentiable with respect to x, c, λ, and t for all x, n, c, λ, j , and t , and
that ∣∣∣∣

∫ ∞

0
f (·, ·, ·, λ + y, ·, ·) dG(y) − f (·, ·, ·, λ, ·, ·)

∣∣∣∣ < ∞,∣∣∣∣
∫ ∞

0
f (·, ·, c + u, ·, ·, ·) dH(u) − f (·, ·, c, ·, ·, ·)

∣∣∣∣ < ∞.
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Setting

f (x, n, c, λ, j, t) =
(

n − x√
µ2ρ/2δ

)2

and f (x, n, c, λ, j, t) =
(

c − m1n√
µ2ρ/2δ

)2

in (12) gives

A

(
n − x√
µ2ρ/2δ

)2

= 2δ

µ2

λ

ρ
and A

(
c − m1n√
µ2ρ/2δ

)2

= k2
2δ

µ2

λ

ρ
,

where m2 = ∫ ∞
0 u2 dH(u) and, so, k2 = m2 − m2

1.
Now, f (Xt )−∫ t

0 Af (Xs) ds is a martingale; therefore, Af is the solution to the ‘martingale
problem’. Hence, from Proposition 1,

{V (ρ)
t }2 − 2δt, {L(ρ)

t }2 −
∫ t

0

2δ

µ2

λs

ρ
ds, and {Q(ρ)

t }2 −
∫ t

0
k2

2δ

µ2

λs

ρ
ds

are martingales.
It is trivial to check condition (9), since

2δt,

∫ t

0

2δ

µ2

λs

ρ
ds, and

∫ t

0
k2

2δ

µ2

λs

ρ
ds

are continuous (they are proportional to either t or
∫ t

0 λs ds). To check condition (10), we have
to look at the jumps of the processes V

(ρ)
t , L

(ρ)
t , and Q

(ρ)
t . Firstly, L

(ρ)
t satisfies the condition

rather trivially, since its jumps are the jumps of Nt(µ2ρ/2δ)−1/2 and they are always of size
(µ2ρ/2δ)−1/2 and, so, converge to 0 as ρ → ∞. For V

(ρ)
t and Q

(ρ)
t , we have to check the

jumps of J 2
t (µ2ρ/2δ)−1/2 and C2

t (µ2ρ/2δ)−1/2. The jumps have finite expectation, since we
have assumed that they have second moments. We must prove, for a sequence of nonnegative,
independent, and identically distributed random variables Z1, Z2, . . . with finite mean, that

lim
n→∞

E(Un)

n
= 0,

where Un = max(Z1, Z2, . . . , Zn). In fact, we can prove that Un/n → 0. Let F be the
distribution function of Zi . Then, for any ε > 0,

P

(
Un

n
> ε

)
= P(Un > nε) = 1 − (F (nε))n = 1 − (1 − F̄ (nε))n,

where F̄ is the tail of the distribution of Zi . However, since the random variables have a
finite expectation, nF̄ (nε) → 0; hence, (1 − F̄ (nε))n → 1. Now, secondly, for C2

t /(µ2ρ/2δ),
consider the number of jumps M(ρ) of the Poisson process Mt in the interval [0, T ]. From above,
C2

t /M(ρ) → 0 and, since M(ρ)/ρ → T , condition (10) is satisfied. Finally, for J 2
t /(µ2ρ/2δ),

consider the number of jumps N(ρ) of the process Nt . Clearly, J 2
t /N(ρ) → 0 from above and

N(ρ)/ρ → (µ1/δ)T .
As can be seen from (7) (see also (8)), var(

∫ t

0 λs ds) = K(t)ρ. Therefore, by Chebyshev’s
inequality, as ρ → ∞,

P

{∣∣∣∣
∫ t

0

2δ

µ2

λs

ρ
ds − 2µ1

µ2
t

∣∣∣∣ > ε

}
≤ (2δ/µ2)

2 var(
∫ t

0 λs ds)

ρ2ε2 = (2δ/µ2)
2K(t)ρ

ρ2ε2 → 0 (13)
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and

P

{∣∣∣∣k2

∫ t

0

2δ

µ2

λs

ρ
ds −k2

2µ1

µ2
t

∣∣∣∣ > ε

}
≤ k2

2(2δ/µ2)
2 var(

∫ t

0 λs ds)

ρ2ε2 = k2
2(2δ/µ2)

2K(t)ρ

ρ2ε2 → 0.

(14)
Therefore, from (13) and (14), ∫ t

0

2δ

µ2

λs

ρ
ds

p−→ 2µ1

µ2
t

and ∫ t

0
k2

2δ

µ2

λs

ρ
ds

p−→ k2
2µ1

µ2
t.

Set

f (x, n, c, λ, j, t) =
(

n − x√
µ2ρ/2δ

)(
j − µ1ρt√

µ2ρ/2δ

)
,

f (x, n, c, λ, j, t) =
(

c − m1n√
µ2ρ/2δ

)(
j − µ1ρt√

µ2ρ/2δ

)
,

and

f (x, n, c, λ, j, t) =
(

c − m1n√
µ2ρ/2δ

)(
n − x√
µ2ρ/2δ

)

in turn in (12). Then,

A

(
n − x√
µ2ρ/2δ

)(
j − µ1ρt√

µ2ρ/2δ

)
= 0,

A

(
c − m1n√
µ2ρ/2δ

)(
j − µ1ρt√

µ2ρ/2δ

)
= 0,

A

(
c − m1n√
µ2ρ/2δ

)(
n − x√
µ2ρ/2δ

)
= 0.

Therefore, from Proposition 1,

V
(ρ)
t = Jt − µ1ρt√

µ2ρ/2δ
⇒ √

2δB
(1)
t ,

L
(ρ)
t = Nt − ∫ t

0 λs ds√
µ2ρ/2δ

⇒
√

2µ1

µ2
B

(2)
t ,

and

Q
(ρ)
t = Ct − m1Nt√

µ2ρ/2δ
⇒

√
k2

2µ1

µ2
B

(3)
t

in law, where B
(1)
t , B(2)

t , and B
(3)
t are three independent standard Brownian motions, as required.
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Let us now state and prove the main result of this section.

Theorem 2. Assume that ρ → ∞ and that λ0 is a random variable, independent of everything
else, such that (λ0 − (µ1ρ/δ))(µ2ρ/2δ)−1 converges in distribution to Z0. Then, Z

(ρ)
t , W

(ρ)
t ,

and U
(ρ)
t converge in law to Zt , Wt , and Ut , where

dZt = −δZt dt + √
2δ dB

(1)
t , dWt = Zt dt +

√
2µ1

µ2
dB

(2)
t ,

dUt = m1 dWt +
√

k2
2µ1

µ2
dB

(3)
t = m1Zt dt +

√
m2

2µ1

µ2
dB

(4)
t . (15)

Here, B
(1)
t , B

(2)
t , and B

(3)
t are three independent standard Brownian motions, and

B
(4)
t = m1

√
2µ1/µ2B

(2)
t + √

k22µ1/µ2B
(3)
t√

(m2
1 + k2)2µ1/µ2

(also a standard Brownian motion).

Proof. Z
(ρ)
t , W

(ρ)
t , and U

(ρ)
t can be written as follows:

Z
(ρ)
t = λt − µ1ρ/δ√

µ2ρ/2δ

= λ0 − µ1ρ/δ√
µ2ρ/2δ

e−δt − µ1ρ/δ√
µ2ρ/2δ

(1 − e−δt ) + Jt√
µ2ρ/2δ

− δ

∫ t

0
e−δ(t−u) Ju√

µ2ρ/2δ
du

= λ0 − µ1ρ/δ√
µ2ρ/2δ

e−δt + Jt − µ1ρt√
µ2ρ/2δ

− δ

∫ t

0
e−δ(t−u) Ju − µ1ρu√

µ2ρ/2δ
du, (16)

since δ
∫ t

0 ue−δ(t−u) du = t − (1 − e−δt )/δ;

W
(ρ)
t = Nt − (µ1ρ/δ)t√

µ2ρ/2δ
= Nt − ∫ t

0 λs ds√
µ2ρ/2δ

+
∫ t

0

λs − µ1ρ/δ√
µ2ρ/2δ

ds; (17)

and

U
(ρ)
t = Ct − m1(µ1ρ/δ)t√

µ2ρ/2δ
= Ct − m1Nt√

µ2ρ/2δ
+ m1

(
Nt − (µ1ρ/δ)t√

µ2ρ/2δ

)
. (18)

Therefore, by the continuous mapping theorem (Billingsley (1968)) and Lemma 2, (16), (17),
and (18) converge to

Zt = Z0e−δt + √
2δ

(
B

(1)
t −

∫ t

0
e−δ(t−s)B(1)

s ds

)

= Z0e−δt + √
2δ

∫ t

0
e−δ(t−s) dB(1)

s , (19)

Wt =
∫ t

0
Zs ds +

√
2µ1

µ2
B

(2)
t , (20)
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and

Ut = m1Wt +
√

k2
2µ1

µ2
B

(3)
t , (21)

respectively.
From (20) and (21), we have

dUt = m1 dWt +
√

k2
2µ1

µ2
B

(3)
t = m1Zt dt + m1

√
2µ1

µ2
dB

(2)
t +

√
k2

2µ1

µ2
dB

(3)
t .

Since the sum of two independent standard Brownian motions is also a standard Brownian
motion, this completes the proof of the theorem.

Theorem 2 implies that Zt , Wt , and Ut are normally distributed. Therefore, we can define
λ̃t , Ñt , and C̃t as Gaussian approximations of λt , Nt , and Ct , as follows:

λ̃t = µ1ρ

δ
+ Zt

√
µ2ρ

2δ
⇔ Zt = λ̃t − µ1ρ/δ√

µ2ρ/2δ
,

Ñt = µ1ρ

δ
+ Wt

√
µ2ρ

2δ
⇔ Wt = Ñ1 − (µ1ρ/δ)t√

µ2ρ/2δ
, (22)

C̃t = m1
µ1ρ

δ
+ Ut

√
µ2ρ

2δ
⇔ Ut = C̃t − m1(µ1ρ/δ)t√

µ2ρ/2δ
. (23)

4. The Kalman–Bucy filter and the distribution of Zt

Let us derive the conditional distribution of Zt , given {Ws, 0 ≤ s ≤ t}, using the Kalman–
Bucy filter, where

dZt = −δZt dt + √
2δ dB

(1)
t (24)

and

dWt = Zt dt +
√

2µ1

µ2
dB

(2)
t . (25)

To do so, we begin with a proposition from Theorem 6.10, Chapter IV, of Øksendal (1992).

Proposition 2. The solution Ẑt = E(Zt | Ws, 0 ≤ s ≤ t) of the one-dimensional linear
filtering problem

dZt = F(t)Zt dt + C(t) dB
(1)
t , F (t), C(t) ∈ R,

dWt = G(t)Zt dt + D(t) dB
(2)
t , G(t), D(t) ∈ R,

satisfies the stochastic differential equation

dẐt =
{
F(t) − G2(t)S(t)

D2(t)

}
Ẑt dt + G(t)S(t)

D2(t)
dWt, Ẑ0 = E(Z0), (26)

where S(t) = E((Zt − Ẑt )
2) satisfies the Riccati equation:

dS

dt
= 2F(t)S(t) − G2(t)

D2(t)
S2(t) + C2(t), S(0) = E({Z0 − E(Z0)}2) = var(Z0). (27)
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Theorem 3. Let (Zt , Wt ) be a two-dimensional normal process satisfying the system of equa-
tions given by (24) and (25). Then, the estimate of Zt based on the observations {Ws, 0 ≤ s ≤ t}
is

Ẑt = E(Zt | Ws, 0 ≤ s ≤ t) = exp

{∫ t

0
	(s) ds

}
Ẑ0 + µ2

2µ1

∫ t

0
exp

{∫ t

s

	(u) du

}
S(s) dWs,

(28)
where

S(s) = ξ(1 + η(s))

η(s) − 1
− 2δ

µ1

µ2

and

	(s) = − ξ(1 + η(s))

(2µ1/µ2)(η(s) − 1)
,

with

ξ =
√

2µ1

µ2

√
δ

(
2δµ1

µ2
+ 2

)
,

η(s) = a2 + 2δµ1/µ2 + √
2µ1/µ2

√
δ(2δµ1/µ2 + 2)

a2 + 2δµ1/µ2 − √
2µ1/µ2

√
δ(2δµ1/µ2 + 2)

× exp

{√
2µ1/µ2

√
δ(2δµ1/µ2 + 2)

µ1/µ2
s

}
,

and S(0) = a2.

Proof. Let S(0) = a2. Then, the Riccati equation (27) has the solution

S(t) = ξ(1 + ϕ)

ϕ − 1
− 2δ

µ1

µ2
, (29)

where ξ is as given above and ϕ = η(t). Therefore, from (26), (29) offers a solution for Ẑt of
the form

Ẑt = E(Zt | Ws, 0 ≤ s ≤ t) = exp

{∫ t

0
	(s) ds

}
Ẑ0 + µ2

2µ1

∫ t

0
exp

{∫ t

s

	(u) du

}
S(s) dWs,

where

	(s) = − ξ(1 + η(s))

(2µ1/µ2)(η(s) − 1)
,

as required.

Now we can easily obtain the conditional distribution of Zt , given {Ws, 0 ≤ s ≤ t}, as we
have obtained E(Zt | Ws, 0 ≤ s ≤ t) = Ẑt .

Corollary 3. Let Zt , Wt , Ẑt , and S(t) be as defined above. Then, the conditional distribution
of Zt , given {Ws, 0 ≤ s ≤ t}, is given by

E(e−γZt | Ws, 0 ≤ s ≤ t) = exp{−γ Ẑt + 1
2γ 2S(t)}.

Proof. From Theorem 3 and the facts that var(Zt | Ws, 0 ≤ s ≤ t) = S(t) and Zt is
normally distributed, the result follows immediately.
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It will be interesting to examine the filtering problem for the Cox process with shot noise
intensity when the rate of primary-event arrival, ρ, is small. It should be necessary for us to
remove the linearity and derive a nonlinear filter to obtain premiums for primary events of low
frequency, using numerical techniques.

5. Pricing of a reinsurance contract using the Kalman–Bucy filter

We have transformed and approximated λt and Nt as normal variables Zt and Wt , from
which we have obtained the conditional distribution of Zt , given {Ws, 0 ≤ s ≤ t}. Now, let us
derive the pricing model for a stop-loss reinsurance contract using the normal variables Zt and
Wt . As mentioned earlier, as we have assumed that ρ → ∞, this approach can be used for the
pricing of common events of high frequency, such as car accidents or accidents from a large
collective insurance portfolio.

Let ℵi , i = 1, 2, . . . , be the claim amounts, which are assumed to be independent and
identically distributed with distribution function H(u). The actuarial stop-loss reinsurance
premium at time t is

E

((NT −Nt∑
i=1

ℵi − b

)+ ∣∣∣∣ Ns, 0 ≤ s ≤ t

)
, (30)

where b is a suitably large retention limit. In particular, we define β such that

b =
√

µ2ρ

2δ
β + m1

µ1ρ

δ
(T − t).

Let CT − Ct be the total number of claims between times T and t . Then, from (30), the
stop-loss reinsurance premium at time t becomes

E({(CT − Ct) − b}+ | Ns, 0 ≤ s ≤ t). (31)

Since we have obtained C̃t and Ñt (see (22) and (23)), which are the Gaussian approximations
of Ct and Nt , we will employ them here. Substituting (23) into (31) gives

E({(C̃T − C̃t ) − b}+ | Ñs, 0 ≤ s ≤ t) =
√

µ2ρ

2δ
E({UT − Ut − β}+ | Ws, 0 ≤ s ≤ t). (32)

Let us derive the expectation and variance of UT − Ut , as they need to be determined in
order to obtain the stop-loss reinsurance premium based on (32).

Lemma 3. The expectation of UT − Ut is given by

ϒ = E(UT − Ut | Ws, 0 ≤ s ≤ t) = m1
1 − e−δ(T −t)

δ
Ẑt (33)

and the variance of UT − Ut is given by

� = var(UT − Ut | Ws, 0 ≤ s ≤ t)

= 2

(
m2

1

δ
+ m2µ1

µ2

)
(T − t)

+
(

m1

δ

)2

[{1 − e−δ(T −t)}2S(t) − e−2δ(T −t) + 4e−δ(T −t) − 3]. (34)
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Proof. From (15),

UT − Ut = m1

∫ T

t

Zs ds +
√

m2
2µ1

µ2

∫ T

t

dB(4)
s . (35)

Substituting (19) into (35) then gives

UT − Ut = m1
1 − e−δ(T −t)

δ
Zt + m1

√
2δ

∫ T

t

1 − e−δ(T −u)

δ
dB(1)

u +
√

m2
2µ1

µ2

∫ T

t

dB(4)
s .

(36)
Taking the expectation of (36) results immediately in (33). Also, from

var(Zt | Ws, 0 ≤ s ≤ t) = S(t),

we recover (34).

We can now easily find the stop-loss reinsurance premium at time t based on the observations
{Ws, 0 ≤ s ≤ t}.
Theorem 4. The stop-loss reinsurance premium at time t based on the observations {Ws,

0 ≤ s ≤ t} is given by

E({(C̃T − C̃t ) − b}+ | Ws, 0 ≤ s ≤ t) =
√

µ2ρ�

4δπ
e−L2/2 +

√
µ2ρ

2δ
(ϒ − β)�(−L), (37)

where L = (β − ϒ)�−1/2 and �(·) is the cumulative normal distribution function.

Proof. From (32), we have

E((UT − Ut − β)+ | Ws, 0 ≤ s ≤ t) =
∫ ∞

β

(υ − β)
1√

2π�
e−(υ−ϒ)2/2� dυ. (38)

Setting y = (υ − ϒ)�−1/2 in (38) and multiplying both sides by (µ2ρ/2δ)1/2 gives (37).

The following example illustrates the calculation of premiums for a stop-loss reinsurance
contract for high-frequency events, using the pricing model derived above.

Example. The numerical values used to simulate the claim arrival process are δ = 0.5,
λ0 = 200. We will assume that ρ = 100, i.e. that the interarrival time between jumps is
exponential with mean 0.01 and that the jump size is exponentially distributed with mean 1, i.e.
Yi ∼ Exp(1). S-PLUS® was used to generate random values and to simulate the claim arrival
process. The numerical values used to calculate (28) and (37) are

Ẑ0 = 0, S(0) = 0,

µ1 = 1, µ2 = 2,

m1 = 1, m2 = 3,

t = 1, T = 2,

b = 0, 180, 190, 200, 210, 220, θ = 0.1,
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Table 1: Stop-loss reinsurance premiums.

Net reinsurance premium Risk reinsurance premium
Retention level b (θ = 0) (θ = 0.1)

0 206.21 226.83
180 26.58 29.24
190 18.06 19.87
200 11.00 12.10
210 5.77 6.35
220 2.41 2.66

where (1+θ) is a security loading factor by which risk premium can be calculated by multiplying
it by net premium (37), and where

E(CT − Ct) = E(NT − Nt) E(ℵi ) = µ1ρ

δ
m1 = 200.

The stop-loss reinsurance premiums for high-frequency events at each retention level b – with
and without a relative security loading factor θ – were calculated by computing (28) and (37)
using MAPLE® and S-PLUS (with Ẑ1 = 0.557 9152) and are shown in Table 1.
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