MAPPINGS OF CONSERVATIVE DISTANCES IN p-NORMED SPACES $(0<p \leq 1)$

XUJIAN HUANG and DONGNI TAN ${ }^{\boxtimes}$

(Received 18 July 2016; accepted 13 August 2016; first published online 2 November 2016)

Abstract

We show that any mapping between two real p-normed spaces, which preserves the unit distance and the midpoint of segments with distance 2^{p}, is an isometry. Making use of it, we provide an alternative proof of some known results on the Aleksandrov question in normed spaces and also generalise these known results to p-normed spaces.

2010 Mathematics subject classification: primary 46B04; secondary 46B20.
Keywords and phrases: Aleksandrov problem, p-strictly convex, isometry, p-normed space.

1. Introduction

Let X and Y be metric spaces. A mapping $f: X \rightarrow Y$ is called an isometry if it satisfies $d_{Y}(f(x), f(y))=d_{X}(x, y)$ for all $x, y \in X$. For some $r>0$, we say that f preserves distance r if $d_{X}(x, y)=r$ yields $d_{Y}(f(x), f(y))=r$. In particular, we say that f has the distance one preserving property $(D O P P)$ if it preserves unit distance. We say that f is a l-Lipschitz mapping if $d_{Y}(f(x), f(y)) \leq d_{X}(x, y)$ for all $x, y \in X$.

The classical Mazur-Ulam theorem [12] states that every surjective isometry between two real normed spaces is affine. Baker [2] showed that every isometry of a real normed linear space into a strictly convex real normed linear space is affine without the onto assumption. An old question of Aleksandrov [1] asked under what conditions a mapping on a metric space which preserves unit distance must necessarily be an isometry. Beckman and Quarles proved in [3] that any mapping of \mathbb{R}^{n} with $n \geq 2$ preserving unit distance is an affine isometry. As far as we know, this problem is still far from being solved. It was solved only for a few concrete two-dimensional normed spaces (see [7] concerning strictly convex normed spaces and [10] for a nonstrictly convex normed space). For modified versions of the Aleksandrov question, there are two known results. Benz [4] (see also [5]) showed that every mapping of a real normed space into a strictly convex real normed space which preserves two distances with an

[^0]integer ratio is an affine isometry. Rassias and Šemrl [13] proved the following result for mappings having the strong distance one preserving property (SDOPP), that is, for all $x, y \in X$ with $\|x-y\|=1$ it follows that $\|f(x)-f(y)\|=1$ and conversely.

Theorem 1.1 [13]. Let X and Y be two real normed spaces such that one of them has a dimension greater than one, and let $f: X \rightarrow Y$ be a surjective mapping satisfying SDOPP. If f is a Lipschitz mapping with Lipschitz constant $K \leq 1$ or one of X and Y is strictly convex, then f is an affine isometry.

The goal of this paper is to consider the Aleksandrov question in the case of p-normed spaces $(0<p \leq 1)$. We first prove that any mapping which preserves the unit distance and the midpoint of segments with distance 2^{p} is an isometry. This result is applied to show that Benz's theorem and the Rassias-Šemrl theorem hold in p-normed spaces. In fact, we provide an alternative proof of these theorems on the Aleksandrov question in normed spaces. We also show that a collineation between two p-normed spaces preserving unit distance is an affine isometry, and that a mapping between two p-strictly convex spaces from high dimensions to two dimensions, which preserves the unit distance, is an affine isometry. These results are new even in normed spaces.

2. Isometries in \boldsymbol{p}-normed spaces $(0<p \leq 1)$

All vector spaces mentioned in this article are assumed to be real.
Definition 2.1. Let X be a vector space, $0<p \leq 1$ and $\|\cdot\|$ be a real-valued function on X, satisfying the following conditions:
(a) $\|x\| \geq 0$ and $\|x\|=0$ if and only if $x=0$;
(b) $\quad\|\lambda x\|=\left\|\left.\lambda\right|^{p}\right\| x \|$ for all $\lambda \in \mathbb{R}$ and $x \in X$;
(c) $\|x+y\| \leq\|x\|+\|y\|$ for all $x, y \in X$.

The function $\|\cdot\|$ is called a p-norm on X and the pair $(X,\|\cdot\|)$ is called a p-normed space.

Let X be a p-normed space. Then X equipped with the translation-invariant metric $d(x, y)=\|x-y\|$ for every $x, y \in X$ is a metric linear space. For the case $p=1, X$ is a normed space. The spaces l_{p} and $L_{p}[0,1], 0<p \leq 1$, are p-normed spaces. If $(X,\|\cdot\|)$ is a normed space, we can define a p-norm on X by $\|\cdot\|^{p}$. In this case, we let X_{p} denote the p-normed space $\left(X,\|\cdot\|^{p}\right)$. In fact, every Hausdorff locally bounded topological linear space induces a p-normed space with $0<p \leq 1$ (see [9, page 161]).

Definition 2.2. A p-normed space X is called p-strictly convex if, for each pair x, y of nonzero elements in X such that $\|x+y\|^{1 / p}=\|x\|^{1 / p}+\|y\|^{1 / p}$, it follows that $x=t y$ for some $t>0$.

It follows from [11, Theorem 2.5] that $(X,\|\cdot\|)$ is a strictly convex normed space if and only if $\left(X,\|\cdot\|^{p}\right)$ is a p-strictly convex space. We see that if X is a p-strictly convex space, then the equations $\|x-z\|=\|y-z\|=\|(x-y) / 2\|$ have a unique solution $z=(x+y) / 2$ for every $x, y \in X$.

Definition 2.3. Let X and Y be p-normed spaces. A mapping $f: X \rightarrow Y$ is said to preserve the midpoint of segments with distance r if, for any $x, y \in X$ with $\|x-y\|=r$,

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}
$$

Lemma 2.4. Suppose that X is a p-normed space with $\operatorname{dim} X \geq 2$ and $x, y \in X$ with $c:=\|x-y\|>0$. If $\left|c^{1 / p}-a^{1 / p}\right|^{p} \leq b \leq\left|c^{1 / p}+a^{1 / p}\right|^{p}$ for some $a, b>0$, then there exists a vector z in X such that $\|x-z\|=a$ and $\|y-z\|=b$.

Proof. Let S_{X} be the unit sphere of X. Consider the continuous function given by

$$
\phi: a^{1 / p} S_{X}+x \rightarrow \mathbb{R}, \quad \phi(z)=\|z-y\| .
$$

It is easy to check that

$$
\begin{aligned}
& \left\|\phi\left(x+(a / c)^{1 / p}(y-x)\right)\right\|=\left|c^{1 / p}-a^{1 / p}\right|^{p} \leq b \\
& \left\|\phi\left(x+(a / c)^{1 / p}(x-y)\right)\right\|=\left|c^{1 / p}+a^{1 / p}\right|^{p} \geq b .
\end{aligned}
$$

We thus obtain the existence of a vector $z \in X$ such that $\|x-z\|=a$ and $\|y-z\|=b$.
The following result plays an important role and is used frequently in this paper; we call it the main lemma.

Lemma 2.5 (Main Lemma). Let X and Y be p-normed spaces with $\operatorname{dim} X \geq 2$ and $f: X \rightarrow Y$ a mapping which preserves distance r for some $r>0$. If f preserves the midpoint of segments with distance $2^{p} r$, then f is an isometry.

Proof. (a) We first prove that f preserves distance $n^{p} r$ for every positive integer n. Let x and y be vectors in X such that $\|x-y\|=n^{p} r$. Set $z_{i}:=x+(i / n)(y-x)$ for each $i \in \mathbb{N} \cup\{0\}$. Then $z_{0}=x, z_{n}=y$ and $\left\|z_{i-1}-z_{i+1}\right\|=2^{p} r$ for all $i \in \mathbb{N}$. Since f preserves the midpoint of segments with distance $2^{p} r$, we have $f\left(z_{i+1}\right)-f\left(z_{i}\right)=f\left(z_{i}\right)-f\left(z_{i-1}\right)$ for all $i \in \mathbb{N}$. This implies that $f(y)-f(x)=f\left(z_{n}\right)-f\left(z_{0}\right)=n\left(f\left(z_{1}\right)-f\left(z_{0}\right)\right)$ and

$$
\|f(y)-f(x)\|=n^{p}\left\|f\left(z_{1}\right)-f\left(z_{0}\right)\right\|=n^{p}\left\|z_{1}-z_{0}\right\|=n^{p} r .
$$

(b) Next, we prove that f preserves distance r / k^{p} for every positive integer k. Let $x, y \in X$ with $\|x-y\|=r / k^{p}$. By Lemma 2.4, we can find a vector $z \in X$ such that

$$
\|x-z\|=\|y-z\|=r
$$

Set $u_{k}:=z+k(x-z)$ and $v_{k}:=z+k(y-z)$. Obviously, we have $\left\|u_{k}-v_{k}\right\|=r$ and $\left\|u_{k}-z\right\|=\left\|v_{k}-z\right\|=k^{p} r$. By a similar method as in the proof of (a),

$$
\begin{aligned}
& f\left(u_{k}\right)-f(x)=(k-1)(f(x)-f(z)) \\
& f\left(v_{k}\right)-f(y)=(k-1)(f(y)-f(z))
\end{aligned}
$$

and it follows that

$$
\|f(x)-f(y)\|=\left\|\frac{1}{k}\left(f\left(u_{k}\right)-f\left(v_{k}\right)\right)\right\|=\frac{1}{k^{p}}\left\|u_{k}-v_{k}\right\|=\frac{r}{k^{p}} .
$$

(c) Finally, we show that f is an isometry. Let $x, y \in X$ be two arbitrary different vectors and set $c:=\|x-y\|$. For every ε with $0<\varepsilon<c / 3$, choose $a, b \in \mathbb{Q}$ such that $0<a^{p} r<\varepsilon$ and

$$
\begin{equation*}
0<\left(c^{1 / p}-a r^{1 / p}\right)^{p}<b^{p} r<\left(c^{1 / p}+a r^{1 / p}\right)^{p} . \tag{2.1}
\end{equation*}
$$

By Lemma 2.4, there exists a vector $z \in X$ such that $\|x-z\|=a^{p} r$ and $\|y-z\|=b^{p} r$. By the above (a) and (b), f preserves the two distances $a^{p} r$ and $b^{p} r$. It follows that $\|f(x)-f(z)\|=a^{p} r$ and $\|f(y)-f(z)\|=b^{p} r$. By the triangle inequality and (2.1),

$$
c-2 \varepsilon<b^{p} r-a^{p} r \leq\|f(x)-f(y)\| \leq b^{p} r+a^{p} r<c+2 \varepsilon .
$$

Since this holds for every ε with $0<\varepsilon<c / 3$, we conclude that $\|f(x)-f(y)\|=\|x-y\|$. This completes the proof.

The following theorems are simple applications of Lemma 2.5. We shall prove that Benz's theorem and the Rassias-Šemrl theorem hold in p-strictly convex spaces.

Theorem 2.6. Let X and Y be p-normed spaces with $\operatorname{dim} X \geq 2$ and Y p-strictly convex. If $f: X \rightarrow Y$ preserves two distances r and $N^{p} r$ for some $r>0$ and some integer $N>1$, then f is an affine isometry.

Proof. Let x and y be vectors in X such that $\|x-y\|=2^{p}$. Set $z:=(x+y) / 2$ and $z_{i}:=x+i(z-x)$ for $i=0,1, \ldots, N$. Then, clearly, $\left\|z_{N}-z_{0}\right\|=N^{p} r$ and $\left\|z_{i}-z_{i-1}\right\|=r$ for $i=1,2, \ldots, N$. Since f preserves the two distances r and $N^{p} r$,

$$
\begin{aligned}
N r^{1 / p} & =\left\|f\left(z_{N}\right)-f\left(z_{0}\right)\right\|^{1 / p} \leq\left\|f\left(z_{N}\right)-f(y)\right\|^{1 / p}+\|f(y)-f(x)\|^{1 / p} \\
& \leq \sum_{i=3}^{N}\left\|f\left(z_{i}\right)-f\left(z_{i-1}\right)\right\|^{1 / p}+\|f(y)-f(z)\|^{1 / p}+\|f(z)-f(x)\|^{1 / p}=N r^{1 / p} .
\end{aligned}
$$

Thus,

$$
\|f(y)-f(x)\|^{1 / p}=\|f(y)-f(z)\|^{1 / p}+\|f(z)-f(x)\|^{1 / p} .
$$

Since $\left(Y,\|\cdot\|^{1 / p}\right)$ is a strictly convex normed space, $f(z)=(f(x)+f(y)) / 2$. This implies that f preserves the midpoint of segments with distance $2^{p} r$. By Lemma 2.5, we see that f is an isometry. Thus, f preserves the midpoint of segments with any distance. Since continuity is implied by isometry, the mapping f is affine.

Theorem 2.7. Let X and Y be p-normed spaces with $\operatorname{dim} X \geq 2$ and X p-strictly convex. If $f: X \rightarrow Y$ is a surjective mapping satisfying SDOPP, then f is an affine isometry.

Proof. We first prove that f is injective. Suppose on the contrary that there are $x, y \in X, x \neq y$ such that $f(x)=f(y)$. Choose $z \in X$ such that $\|z-x\|=1$ and $\|z-y\| \neq 1$. Then, clearly, $\|f(z)-f(x)\|=\|f(z)-f(y)\|=1$. This implies that $\|z-y\|=1$, which is a contradiction.

We will show that f preserves the midpoint of segments with distance 2^{p}. This implies that f is an isometry, and therefore affine by Theorem 2.6. Take $x, y \in X$ such

Figure 1. An r-probe.
that $\|x-y\|=2^{p}$ and set $z:=(x+y) / 2$. We claim that $f(x), f(y), f(z)$ are collinear. Otherwise, we can find $w \in X$ with $w \neq z$ such that

$$
\|f(w)-f(x)\|=\|f(w)-f(y)\|=1 .
$$

This means that $\|w-x\|=\|w-y\|=1$. As X is p-strictly convex, we have $w=z$, which is a contradiction. Consequently, there exists a real number t such that

$$
f(y)-f(z)=t(f(x)-f(z)) .
$$

It is clear that

$$
\|f(x)-f(z)\|=\|f(y)-f(z)\|=1
$$

Hence, $t=-1$, and so

$$
f\left(\frac{x+y}{2}\right)=f(z)=\frac{f(x)+f(y)}{2} .
$$

For the next main result, we need some new notation. Let X be a p-normed space. We call the 3-tuple $(x, y, z) \in X^{3}$ an r-equilateral triangle if

$$
r=\|x-y\|=\|x-z\|=\|y-z\| .
$$

We call the 7 -tuple $\left(x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right) \in X^{7}$ an r-probe if $\left\{x_{3}, y_{1}, y_{2}, y_{3}\right\} \subset$ $\operatorname{aff}\left(x_{0}, x_{1}, x_{2}\right)$ and

$$
\begin{aligned}
r & =\left\|x_{0}-x_{1}\right\| \\
& =\left\|x_{0}-x_{2}\right\|=\left\|x_{1}-x_{2}\right\|=\left\|x_{1}-x_{3}\right\|=\left\|x_{2}-x_{3}\right\| \\
y_{1} \| & =\left\|x_{0}-y_{2}\right\|=\left\|y_{1}-y_{2}\right\|=\left\|y_{1}-y_{3}\right\|=\left\|y_{2}-y_{3}\right\|=\left\|x_{3}-y_{3}\right\|
\end{aligned}
$$

(see [7, 8]; see also Figure 1). It is known [14] that a real normed linear space X is strictly convex if and only if any two-dimensional subspace of X has the following property.

Figure 2. Diagram for the proof of Theorem 2.8.
(*) For any $a \neq b$ on the line L and any c, d on the same side of L, if $\|a-c\|=\|a-d\|$ and $\|b-c\|=\|b-d\|$, then $c=d$.

By this property and [7, Lemma 4], any r-equilateral triangle can be extended to an r-probe in strictly convex spaces. Obviously, this result holds in p-strictly convex spaces.

Theorem 2.8. Let X and Y be p-strictly convex spaces with $\operatorname{dim} X \geq \operatorname{dim} Y=2$, and $f: X \rightarrow Y$ a mapping which preserves distance r for some $r>0$. Then f is an affine isometry.

Proof. It is sufficient to prove that f preserves the midpoint of segments with distance $2^{p} r$. Let x_{0}, x_{4} be in X such that $\left\|x_{0}-x_{4}\right\|=2^{p} r$. Using the notation of Figure 2,

$$
x_{2}:=\frac{x_{0}+x_{4}}{2}, \quad\left\|x_{1}-x_{0}\right\|=\left\|x_{1}-x_{2}\right\|=\left\|x_{0}-x_{2}\right\|=r, \quad x_{3}:=x_{1}+\left(x_{2}-x_{0}\right)
$$

Since Y is p-strictly convex and $\left\|f\left(x_{3}\right)-f\left(x_{1}\right)\right\|=\left\|f\left(x_{3}\right)-f\left(x_{2}\right)\right\|=r$, by the property (*) we see that

$$
f\left(x_{3}\right) \in\left\{f\left(x_{0}\right), f\left(x_{1}\right)+f\left(x_{2}\right)-f\left(x_{0}\right)\right\} .
$$

We shall prove that $f\left(x_{3}\right) \neq f\left(x_{0}\right)$. Suppose, on the contrary, that $f\left(x_{3}\right)=f\left(x_{0}\right)$. Now consider the r-probe $\left(x_{0}, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right) \in X^{7}$ (see Figure 1). Then the 7-tuple $\left(f\left(x_{0}\right), f\left(x_{1}\right), f\left(x_{2}\right), f\left(x_{3}\right), f\left(y_{1}\right), f\left(y_{2}\right), f\left(y_{3}\right)\right) \in Y^{7}$ is also an r-probe and the four points $f\left(x_{0}\right), f\left(y_{1}\right), f\left(y_{2}\right), f\left(y_{3}\right)$ have distance r from each other. Two of the points are on the same side of the line passing through the other two points. According to the property $(*)$, this is impossible. It follows that $f\left(x_{3}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)-f\left(x_{0}\right)$, and similarly $f\left(x_{4}\right)=f\left(x_{2}\right)+f\left(x_{3}\right)-f\left(x_{1}\right)$. Hence,

$$
f\left(\frac{x_{0}+x_{4}}{2}\right)=f\left(x_{2}\right)=\frac{f\left(x_{0}\right)+f\left(x_{4}\right)}{2} .
$$

Next, we return to the Aleksandrov question on general p-normed spaces. For a real vector space X, we denote the line joining two different points $x, y \in X$ by $\overline{x y}$ and the affine subspace generated by $M \subset X$ by $\operatorname{Aff}(M)$. Let X and Y be real vector spaces. A mapping $f: X \rightarrow Y$ is called a collineation if it maps any three collinear points into collinear points. It is straightforward to check that if f is a collineation, then we have $f(\operatorname{Aff}(x, y, z)) \subset \operatorname{Aff}(f(x), f(y), f(z))$ for any $x, y, z \in X$.

Theorem 2.9. Let X and Y be p-normed spaces with $\operatorname{dim} X \geq 2$, and $f: X \rightarrow Y$ be a collineation satisfying DOPP. Then f is an affine isometry.
Proof. Let $x, y \in X$ with $\|x-y\|=2^{p}$ and set $z:=\frac{1}{2}(x+y)$. We first prove that $f(x) \neq f(y)$. Assume on the contrary that $f(x)=f(y)$. Choose $w \in X$ such that

$$
\|w-x\|=\|w-z\|=1
$$

Then, clearly, $\|f(x)-f(z)\|=\|f(w)-f(x)\|=\|f(w)-f(z)\|=1$. This implies that $f(x), f(z), f(w)$ are not collinear. However,

$$
f(z) \in f(\operatorname{Aff}(x, y, w)) \subset \overline{f(x) f(w)}
$$

which is a contradiction. It is trivial to check that

$$
\|f(x)-f(z)\|=\|f(y)-f(z)\|=1
$$

Since $f(x), f(y), f(z)$ are collinear, there exists a real number t such that

$$
f(y)-f(z)=t(f(x)-f(z))
$$

We conclude that $t=-1$, and thus

$$
f\left(\frac{x+y}{2}\right)=f(z)=\frac{f(x)+f(y)}{2} .
$$

We have proved that f preserves the midpoint of segments with distance 2^{p} and this means that f is an isometry by Lemma 2.5. The same reasoning as in Theorem 2.6 proves that f is affine.

To begin the discussion of the next main result, we introduce some more notation. Let X be a real p-normed space. For any $x, y \in X$, set

$$
\begin{aligned}
& H_{1}(x, y)=\left\{u \in X:\|x-u\|=\|y-u\|=\left\|\frac{x-y}{2}\right\|\right\}, \\
& H_{n}(x, y)=\left\{u \in H_{n-1}(x, y):\|u-v\| \leq \frac{\delta\left(H_{n-1}(x, y)\right)}{2^{p}}, v \in H_{n-1}(x, y)\right\}, \quad n=2,3, \ldots
\end{aligned}
$$

Here $\delta\left(H_{n}(x, y)\right)$ denotes the diameter of $H_{n}(x, y)$, which is the supremum of distances between pairs of its elements. Clearly, $\delta\left(H_{n}(x, y)\right) \leq 2\left(1 / 2^{p}\right)^{n}\|x-y\|$. It follows from the proof of [6, Lemma 1.3.1] that the intersection of these sets $H_{n}(x, y)$ consists of a single point $(x+y) / 2$ called the metric centre of x and y. If $x \in X$ is a vector in X, we denote by $B(x, 1)$ the set of vectors $u \in X$ such that $\|u-x\| \leq 1$.

Theorem 2.10. Let X and Y_{p} be p-normed spaces with $\operatorname{dim} X \geq 2$, where Y is a normed space. Suppose that $f: X \rightarrow Y_{p}$ is a l-Lipschitz mapping from $B(x, 1)$ onto $B(f(x), 1)$ for all $x \in X$. If f satisfies DOPP, then f is an affine isometry of X onto Y_{p}.
Proof. Let $x, y \in X$ with $0<\|x-y\| \leq 1$ and set $z:=x+(y-x) /\|y-x\|^{1 / p}$. Then, clearly, $\|z-x\|=1$ and $\|z-y\|=\left(1-\|x-y\|^{1 / p}\right)^{p}$. Note that $(Y,\|\cdot\|)$ is a normed space and $f: X \rightarrow Y_{p}$ is a 1-Lipschitz mapping. It follows that

$$
1=\|f(z)-f(x)\| \leq\|f(z)-f(y)\|+\|f(y)-f(x)\| \leq\|z-y\|^{1 / p}+\|y-x\|^{1 / p}=1 .
$$

This implies that $\|f(x)-f(y)\|^{p}=\|x-y\|$ for all $x, y \in X$ with $\|x-y\| \leq 1$.

Let $x, y \in X$ be two points with $\|x-y\|=1$ and set $z:=(x+y) / 2$. By induction, $f\left(H_{n}(x, y)\right)=H_{n}(f(x), f(y))$ for every positive integer n (see [6, Lemma 1.3.2]). It follows that $f(z)$ is the unique element of $f\left(\bigcap_{n=1}^{\infty} H_{n}(x, y)\right)=\bigcap_{n=1}^{\infty} H_{n}(f(x), f(y))$, which is $\frac{1}{2}(f(x)+f(y))$. By Lemma 2.5, the mapping f is indeed an isometry. By the same reasoning as before, f maps the midpoint of the line segment joining x and y onto the midpoint of the line segment joining $f(x)$ and $f(y)$ for all x and y in X. Since isometries are continuous, f is affine. This completes the proof.
Remark 2.11. Let X and Y be real normed spaces with $\operatorname{dim} X \geq 2$ and $f: X \rightarrow Y$ a surjective mapping satisfying SDOPP. Rassias and Šemrl [13, Theorem 1] showed that f is a mapping from $B(x, n)$ onto $B(f(x), n)$ and preserves distance n in both directions for any positive integer n. But we do not know whether these results hold in p-normed space. However, by applying Theorem 2.10, we have an alternative proof of the Rassias-Šemrl theorem on real normed space.

References

[1] A. D. Aleksandrov, 'Mappings of families of sets', Soviet Math. Dokl. 11 (1970), 116-120.
[2] J. A. Baker, 'Isometries in normed spaces', Amer. Math. Monthly 78 (1971), 655-658.
[3] F. S. Beckman and D. A. Quarles, 'On isometries of Euclidean spaces', Proc. Amer. Math. Soc. 4 (1953), 810-815.
[4] W. Benz, 'Isometrien in normierten Räumen', Aequationes Math. 29 (1985), 204-209.
[5] W. Benz and H. Berens, 'A contribution to a theorem of Ulam and Mazur', Aequationes Math. 34 (1987), 61-63.
[6] R. J. Fleming and J. E. Jameson, Isometries on Banach Spaces: Function Spaces (Chapman and Hall/CRC, Boca Raton, FL, 2003).
[7] G. P. Gehér, 'A contribution to the Aleksandrov conservative distance problem in two dimensions', Linear Algebra Appl. 481 (2015), 280-287.
[8] R. Juhász, 'Another proof of the Beckman-Quarles theorem', Adv. Geom. 15(4) (2015), 519-521.
[9] G. Köthe, Topological Vector Spaces I (Springer, Berlin, 1969).
[10] J. M. Ling, 'A normed space with the Beckman-Quarles property', Contrib. Algebra Geom. 48(1) (2007), 131-139.
[11] Y. Ma, 'The Aleksandrov problem for unit distance preserving mapping', Acta Math. Sci. 20 (2000), 359-364.
[12] S. Mazur and S. Ulam, 'Sur les transformations isométriques d'espaces vectoriels normés', C. R. Math. Acad. Sci. Paris 194 (1932), 946-948.
[13] Th. M. Rassias and P. Šemrl, 'On the Mazur-Ulam problem and the Aleksandrov problem for unit distance preserving mappings', Proc. Amer. Math. Soc. 118 (1993), 919-925.
[14] J. E. Valentine, 'Some implications of Euclid's Proposition 7', Math. Japon. 28 (1983), 421-425.

XUJIAN HUANG, Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China e-mail: huangxujian86@sina.cn

DONGNI TAN, Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China e-mail: tandongni0608@sina.cn

[^0]: The authors are supported by the Natural Science Foundation of China (grant nos. 11201337, 11201338, 11371201 and 11301384).
 (C) 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

