Bull. Aust. Math. Soc. **95** (2017), 291–298 doi:10.1017/S0004972716000927

MAPPINGS OF CONSERVATIVE DISTANCES IN *p*-NORMED SPACES (0

XUJIAN HUANG and DONGNI TAN[⊠]

(Received 18 July 2016; accepted 13 August 2016; first published online 2 November 2016)

Abstract

We show that any mapping between two real *p*-normed spaces, which preserves the unit distance and the midpoint of segments with distance 2^p , is an isometry. Making use of it, we provide an alternative proof of some known results on the Aleksandrov question in normed spaces and also generalise these known results to *p*-normed spaces.

2010 *Mathematics subject classification*: primary 46B04; secondary 46B20. *Keywords and phrases*: Aleksandrov problem, *p*-strictly convex, isometry, *p*-normed space.

1. Introduction

Let *X* and *Y* be metric spaces. A mapping $f : X \to Y$ is called an isometry if it satisfies $d_Y(f(x), f(y)) = d_X(x, y)$ for all $x, y \in X$. For some r > 0, we say that *f* preserves distance *r* if $d_X(x, y) = r$ yields $d_Y(f(x), f(y)) = r$. In particular, we say that *f* has the distance one preserving property (DOPP) if it preserves unit distance. We say that *f* is a *1*-Lipschitz mapping if $d_Y(f(x), f(y)) \le d_X(x, y)$ for all $x, y \in X$.

The classical Mazur–Ulam theorem [12] states that every surjective isometry between two real normed spaces is affine. Baker [2] showed that every isometry of a real normed linear space into a strictly convex real normed linear space is affine without the onto assumption. An old question of Aleksandrov [1] asked under what conditions a mapping on a metric space which preserves unit distance must necessarily be an isometry. Beckman and Quarles proved in [3] that any mapping of \mathbb{R}^n with $n \ge 2$ preserving unit distance is an affine isometry. As far as we know, this problem is still far from being solved. It was solved only for a few concrete two-dimensional normed spaces (see [7] concerning strictly convex normed spaces and [10] for a nonstrictly convex normed space). For modified versions of the Aleksandrov question, there are two known results. Benz [4] (see also [5]) showed that every mapping of a real normed space into a strictly convex real normed space which preserves two distances with an

The authors are supported by the Natural Science Foundation of China (grant nos. 11201337, 11201338, 11371201 and 11301384).

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

integer ratio is an affine isometry. Rassias and Šemrl [13] proved the following result for mappings having the strong distance one preserving property (SDOPP), that is, for all $x, y \in X$ with ||x - y|| = 1 it follows that ||f(x) - f(y)|| = 1 and conversely.

THEOREM 1.1 [13]. Let X and Y be two real normed spaces such that one of them has a dimension greater than one, and let $f : X \to Y$ be a surjective mapping satisfying SDOPP. If f is a Lipschitz mapping with Lipschitz constant $K \leq 1$ or one of X and Y is strictly convex, then f is an affine isometry.

The goal of this paper is to consider the Aleksandrov question in the case of *p*-normed spaces ($0). We first prove that any mapping which preserves the unit distance and the midpoint of segments with distance <math>2^p$ is an isometry. This result is applied to show that Benz's theorem and the Rassias–Šemrl theorem hold in *p*-normed spaces. In fact, we provide an alternative proof of these theorems on the Aleksandrov question in normed spaces. We also show that a collineation between two *p*-normed spaces preserving unit distance is an affine isometry, and that a mapping between two *p*-strictly convex spaces from high dimensions to two dimensions, which preserves the unit distance, is an affine isometry. These results are new even in normed spaces.

2. Isometries in *p*-normed spaces (0

All vector spaces mentioned in this article are assumed to be real.

DEFINITION 2.1. Let *X* be a vector space, $0 and <math>\|\cdot\|$ be a real-valued function on *X*, satisfying the following conditions:

(a) $||x|| \ge 0$ and ||x|| = 0 if and only if x = 0;

(b) $\|\lambda x\| = \|\lambda\|^p \|x\|$ for all $\lambda \in \mathbb{R}$ and $x \in X$;

(c) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$.

The function $\|\cdot\|$ is called a *p*-norm on X and the pair $(X, \|\cdot\|)$ is called a *p*-normed space.

Let *X* be a *p*-normed space. Then *X* equipped with the translation-invariant metric d(x, y) = ||x - y|| for every $x, y \in X$ is a metric linear space. For the case p = 1, X is a normed space. The spaces l_p and $L_p[0, 1], 0 , are$ *p* $-normed spaces. If <math>(X, || \cdot ||)$ is a normed space, we can define a *p*-norm on *X* by $|| \cdot ||^p$. In this case, we let X_p denote the *p*-normed space $(X, || \cdot ||^p)$. In fact, every Hausdorff locally bounded topological linear space induces a *p*-normed space with 0 (see [9, page 161]).

DEFINITION 2.2. A *p*-normed space *X* is called *p*-strictly convex if, for each pair *x*, *y* of nonzero elements in *X* such that $||x + y||^{1/p} = ||x||^{1/p} + ||y||^{1/p}$, it follows that x = ty for some t > 0.

It follows from [11, Theorem 2.5] that $(X, \|\cdot\|)$ is a strictly convex normed space if and only if $(X, \|\cdot\|^p)$ is a *p*-strictly convex space. We see that if *X* is a *p*-strictly convex space, then the equations ||x - z|| = ||y - z|| = ||(x - y)/2|| have a unique solution z = (x + y)/2 for every $x, y \in X$.

292

DEFINITION 2.3. Let X and Y be *p*-normed spaces. A mapping $f : X \to Y$ is said to *preserve the midpoint of segments with distance r* if, for any $x, y \in X$ with ||x - y|| = r,

$$f\left(\frac{x+y}{2}\right) = \frac{f(x)+f(y)}{2}.$$

LEMMA 2.4. Suppose that X is a p-normed space with dim $X \ge 2$ and $x, y \in X$ with c := ||x - y|| > 0. If $|c^{1/p} - a^{1/p}|^p \le b \le |c^{1/p} + a^{1/p}|^p$ for some a, b > 0, then there exists a vector z in X such that ||x - z|| = a and ||y - z|| = b.

PROOF. Let S_X be the unit sphere of X. Consider the continuous function given by

$$\phi: a^{1/p}S_X + x \to \mathbb{R}, \quad \phi(z) = ||z - y||.$$

It is easy to check that

$$\begin{aligned} \|\phi(x+(a/c)^{1/p}(y-x))\| &= |c^{1/p}-a^{1/p}|^p \le b, \\ \|\phi(x+(a/c)^{1/p}(x-y))\| &= |c^{1/p}+a^{1/p}|^p \ge b. \end{aligned}$$

We thus obtain the existence of a vector $z \in X$ such that ||x - z|| = a and ||y - z|| = b. \Box

The following result plays an important role and is used frequently in this paper; we call it the main lemma.

LEMMA 2.5 (Main Lemma). Let X and Y be p-normed spaces with dim $X \ge 2$ and $f: X \to Y$ a mapping which preserves distance r for some r > 0. If f preserves the midpoint of segments with distance $2^{p}r$, then f is an isometry.

PROOF. (a) We first prove that f preserves distance $n^p r$ for every positive integer n. Let x and y be vectors in X such that $||x - y|| = n^p r$. Set $z_i := x + (i/n)(y - x)$ for each $i \in \mathbb{N} \cup \{0\}$. Then $z_0 = x$, $z_n = y$ and $||z_{i-1} - z_{i+1}|| = 2^p r$ for all $i \in \mathbb{N}$. Since f preserves the midpoint of segments with distance $2^p r$, we have $f(z_{i+1}) - f(z_i) = f(z_i) - f(z_{i-1})$ for all $i \in \mathbb{N}$. This implies that $f(y) - f(x) = f(z_n) - f(z_0) = n(f(z_1) - f(z_0))$ and

$$||f(y) - f(x)|| = n^p ||f(z_1) - f(z_0)|| = n^p ||z_1 - z_0|| = n^p r.$$

(b) Next, we prove that *f* preserves distance r/k^p for every positive integer *k*. Let $x, y \in X$ with $||x - y|| = r/k^p$. By Lemma 2.4, we can find a vector $z \in X$ such that

$$||x - z|| = ||y - z|| = r.$$

Set $u_k := z + k(x - z)$ and $v_k := z + k(y - z)$. Obviously, we have $||u_k - v_k|| = r$ and $||u_k - z|| = ||v_k - z|| = k^p r$. By a similar method as in the proof of (a),

$$f(u_k) - f(x) = (k - 1)(f(x) - f(z)),$$

$$f(v_k) - f(y) = (k - 1)(f(y) - f(z))$$

and it follows that

$$\|f(x) - f(y)\| = \left\|\frac{1}{k}(f(u_k) - f(v_k))\right\| = \frac{1}{k^p}\|u_k - v_k\| = \frac{r}{k^p}$$

X. Huang and D. Tan

(c) Finally, we show that f is an isometry. Let $x, y \in X$ be two arbitrary different vectors and set c := ||x - y||. For every ε with $0 < \varepsilon < c/3$, choose $a, b \in \mathbb{Q}$ such that $0 < a^p r < \varepsilon$ and

$$0 < (c^{1/p} - ar^{1/p})^p < b^p r < (c^{1/p} + ar^{1/p})^p.$$
(2.1)

By Lemma 2.4, there exists a vector $z \in X$ such that $||x - z|| = a^p r$ and $||y - z|| = b^p r$. By the above (a) and (b), f preserves the two distances $a^p r$ and $b^p r$. It follows that $||f(x) - f(z)|| = a^p r$ and $||f(y) - f(z)|| = b^p r$. By the triangle inequality and (2.1),

$$c - 2\varepsilon < b^p r - a^p r \le ||f(x) - f(y)|| \le b^p r + a^p r < c + 2\varepsilon.$$

Since this holds for every ε with $0 < \varepsilon < c/3$, we conclude that ||f(x) - f(y)|| = ||x - y||. This completes the proof.

The following theorems are simple applications of Lemma 2.5. We shall prove that Benz's theorem and the Rassias–Šemrl theorem hold in p-strictly convex spaces.

THEOREM 2.6. Let X and Y be p-normed spaces with dim $X \ge 2$ and Y p-strictly convex. If $f : X \to Y$ preserves two distances r and $N^p r$ for some r > 0 and some integer N > 1, then f is an affine isometry.

PROOF. Let x and y be vectors in X such that $||x - y|| = 2^p r$. Set z := (x + y)/2 and $z_i := x + i(z - x)$ for i = 0, 1, ..., N. Then, clearly, $||z_N - z_0|| = N^p r$ and $||z_i - z_{i-1}|| = r$ for i = 1, 2, ..., N. Since f preserves the two distances r and $N^p r$,

$$Nr^{1/p} = \|f(z_N) - f(z_0)\|^{1/p} \le \|f(z_N) - f(y)\|^{1/p} + \|f(y) - f(x)\|^{1/p}$$

$$\le \sum_{i=3}^N \|f(z_i) - f(z_{i-1})\|^{1/p} + \|f(y) - f(z)\|^{1/p} + \|f(z) - f(x)\|^{1/p} = Nr^{1/p}.$$

Thus,

$$||f(y) - f(x)||^{1/p} = ||f(y) - f(z)||^{1/p} + ||f(z) - f(x)||^{1/p}.$$

Since $(Y, \|\cdot\|^{1/p})$ is a strictly convex normed space, f(z) = (f(x) + f(y))/2. This implies that *f* preserves the midpoint of segments with distance $2^{p}r$. By Lemma 2.5, we see that *f* is an isometry. Thus, *f* preserves the midpoint of segments with any distance. Since continuity is implied by isometry, the mapping *f* is affine.

THEOREM 2.7. Let X and Y be p-normed spaces with dim $X \ge 2$ and X p-strictly convex. If $f : X \rightarrow Y$ is a surjective mapping satisfying SDOPP, then f is an affine isometry.

PROOF. We first prove that f is injective. Suppose on the contrary that there are $x, y \in X, x \neq y$ such that f(x) = f(y). Choose $z \in X$ such that ||z - x|| = 1 and $||z - y|| \neq 1$. Then, clearly, ||f(z) - f(x)|| = ||f(z) - f(y)|| = 1. This implies that ||z - y|| = 1, which is a contradiction.

We will show that *f* preserves the midpoint of segments with distance 2^p . This implies that *f* is an isometry, and therefore affine by Theorem 2.6. Take $x, y \in X$ such

FIGURE 1. An r-probe.

that $||x - y|| = 2^p$ and set z := (x + y)/2. We claim that f(x), f(y), f(z) are collinear. Otherwise, we can find $w \in X$ with $w \neq z$ such that

$$||f(w) - f(x)|| = ||f(w) - f(y)|| = 1.$$

This means that ||w - x|| = ||w - y|| = 1. As *X* is *p*-strictly convex, we have w = z, which is a contradiction. Consequently, there exists a real number *t* such that

$$f(y) - f(z) = t(f(x) - f(z)).$$

It is clear that

$$||f(x) - f(z)|| = ||f(y) - f(z)|| = 1.$$

Hence, t = -1, and so

$$f\left(\frac{x+y}{2}\right) = f(z) = \frac{f(x) + f(y)}{2}.$$

For the next main result, we need some new notation. Let *X* be a *p*-normed space. We call the 3-tuple $(x, y, z) \in X^3$ an *r*-equilateral triangle if

$$r = ||x - y|| = ||x - z|| = ||y - z||.$$

We call the 7-tuple $(x_0, x_1, x_2, x_3, y_1, y_2, y_3) \in X^7$ an *r*-probe if $\{x_3, y_1, y_2, y_3\} \subset aff(x_0, x_1, x_2)$ and

$$r = ||x_0 - x_1|| = ||x_0 - x_2|| = ||x_1 - x_2|| = ||x_1 - x_3|| = ||x_2 - x_3||$$

= ||x_0 - y_1|| = ||x_0 - y_2|| = ||y_1 - y_2|| = ||y_1 - y_3|| = ||y_2 - y_3|| = ||x_3 - y_3||

(see [7, 8]; see also Figure 1). It is known [14] that a real normed linear space X is strictly convex if and only if any two-dimensional subspace of X has the following property.

FIGURE 2. Diagram for the proof of Theorem 2.8.

(*) For any $a \neq b$ on the line *L* and any *c*, *d* on the same side of *L*, if ||a - c|| = ||a - d||and ||b - c|| = ||b - d||, then c = d.

By this property and [7, Lemma 4], any *r*-equilateral triangle can be extended to an *r*-probe in strictly convex spaces. Obviously, this result holds in *p*-strictly convex spaces.

THEOREM 2.8. Let X and Y be p-strictly convex spaces with dim $X \ge \dim Y = 2$, and $f: X \to Y$ a mapping which preserves distance r for some r > 0. Then f is an affine isometry.

PROOF. It is sufficient to prove that *f* preserves the midpoint of segments with distance $2^{p}r$. Let x_{0}, x_{4} be in *X* such that $||x_{0} - x_{4}|| = 2^{p}r$. Using the notation of Figure 2,

$$x_2 := \frac{x_0 + x_4}{2}, \quad ||x_1 - x_0|| = ||x_1 - x_2|| = ||x_0 - x_2|| = r, \quad x_3 := x_1 + (x_2 - x_0).$$

Since *Y* is *p*-strictly convex and $||f(x_3) - f(x_1)|| = ||f(x_3) - f(x_2)|| = r$, by the property (*) we see that

$$f(x_3) \in \{f(x_0), f(x_1) + f(x_2) - f(x_0)\}.$$

We shall prove that $f(x_3) \neq f(x_0)$. Suppose, on the contrary, that $f(x_3) = f(x_0)$. Now consider the *r*-probe $(x_0, x_1, x_2, x_3, y_1, y_2, y_3) \in X^7$ (see Figure 1). Then the 7-tuple $(f(x_0), f(x_1), f(x_2), f(x_3), f(y_1), f(y_2), f(y_3)) \in Y^7$ is also an *r*-probe and the four points $f(x_0), f(y_1), f(y_2), f(y_3)$ have distance *r* from each other. Two of the points are on the same side of the line passing through the other two points. According to the property (*), this is impossible. It follows that $f(x_3) = f(x_1) + f(x_2) - f(x_0)$, and similarly $f(x_4) = f(x_2) + f(x_3) - f(x_1)$. Hence,

$$f\left(\frac{x_0 + x_4}{2}\right) = f(x_2) = \frac{f(x_0) + f(x_4)}{2}.$$

Next, we return to the Aleksandrov question on general *p*-normed spaces. For a real vector space *X*, we denote the line joining two different points $x, y \in X$ by \overline{xy} and the affine subspace generated by $M \subset X$ by Aff(*M*). Let *X* and *Y* be real vector spaces. A mapping $f : X \to Y$ is called a *collineation* if it maps any three collinear points into collinear points. It is straightforward to check that if *f* is a collineation, then we have $f(Aff(x, y, z)) \subset Aff(f(x), f(y), f(z))$ for any $x, y, z \in X$.

THEOREM 2.9. Let X and Y be p-normed spaces with dim $X \ge 2$, and $f : X \to Y$ be a collineation satisfying DOPP. Then f is an affine isometry.

PROOF. Let $x, y \in X$ with $||x - y|| = 2^p$ and set $z := \frac{1}{2}(x + y)$. We first prove that $f(x) \neq f(y)$. Assume on the contrary that f(x) = f(y). Choose $w \in X$ such that

$$||w - x|| = ||w - z|| = 1$$

Then, clearly, ||f(x) - f(z)|| = ||f(w) - f(x)|| = ||f(w) - f(z)|| = 1. This implies that f(x), f(z), f(w) are not collinear. However,

$$f(z) \in f(\operatorname{Aff}(x, y, w)) \subset f(x)f(w),$$

which is a contradiction. It is trivial to check that

$$||f(x) - f(z)|| = ||f(y) - f(z)|| = 1.$$

Since f(x), f(y), f(z) are collinear, there exists a real number t such that

$$f(y) - f(z) = t(f(x) - f(z)).$$

We conclude that t = -1, and thus

$$f\left(\frac{x+y}{2}\right) = f(z) = \frac{f(x)+f(y)}{2}.$$

We have proved that f preserves the midpoint of segments with distance 2^p and this means that f is an isometry by Lemma 2.5. The same reasoning as in Theorem 2.6 proves that f is affine.

To begin the discussion of the next main result, we introduce some more notation. Let *X* be a real *p*-normed space. For any $x, y \in X$, set

$$H_1(x, y) = \left\{ u \in X : ||x - u|| = ||y - u|| = \left\| \frac{x - y}{2} \right\| \right\},\$$

$$H_n(x, y) = \left\{ u \in H_{n-1}(x, y) : ||u - v|| \le \frac{\delta(H_{n-1}(x, y))}{2^p}, v \in H_{n-1}(x, y) \right\}, \quad n = 2, 3, \dots.$$

Here $\delta(H_n(x, y))$ denotes the diameter of $H_n(x, y)$, which is the supremum of distances between pairs of its elements. Clearly, $\delta(H_n(x, y)) \le 2(1/2^p)^n ||x - y||$. It follows from the proof of [6, Lemma 1.3.1] that the intersection of these sets $H_n(x, y)$ consists of a single point (x + y)/2 called the *metric centre* of x and y. If $x \in X$ is a vector in X, we denote by B(x, 1) the set of vectors $u \in X$ such that $||u - x|| \le 1$.

THEOREM 2.10. Let X and Y_p be p-normed spaces with dim $X \ge 2$, where Y is a normed space. Suppose that $f : X \to Y_p$ is a 1-Lipschitz mapping from B(x, 1) onto B(f(x), 1) for all $x \in X$. If f satisfies DOPP, then f is an affine isometry of X onto Y_p .

PROOF. Let $x, y \in X$ with $0 < ||x - y|| \le 1$ and set $z := x + (y - x)/||y - x||^{1/p}$. Then, clearly, ||z - x|| = 1 and $||z - y|| = (1 - ||x - y||^{1/p})^p$. Note that $(Y, || \cdot ||)$ is a normed space and $f : X \to Y_p$ is a 1-Lipschitz mapping. It follows that

$$1 = ||f(z) - f(x)|| \le ||f(z) - f(y)|| + ||f(y) - f(x)|| \le ||z - y||^{1/p} + ||y - x||^{1/p} = 1.$$

This implies that $||f(x) - f(y)||^p = ||x - y||$ for all $x, y \in X$ with $||x - y|| \le 1$.

Let $x, y \in X$ be two points with ||x - y|| = 1 and set z := (x + y)/2. By induction, $f(H_n(x, y)) = H_n(f(x), f(y))$ for every positive integer n (see [6, Lemma 1.3.2]). It follows that f(z) is the unique element of $f(\bigcap_{n=1}^{\infty} H_n(x, y)) = \bigcap_{n=1}^{\infty} H_n(f(x), f(y))$, which is $\frac{1}{2}(f(x) + f(y))$. By Lemma 2.5, the mapping f is indeed an isometry. By the same reasoning as before, f maps the midpoint of the line segment joining x and y onto the midpoint of the line segment joining f(x) and f(y) for all x and y in X. Since isometries are continuous, f is affine. This completes the proof.

REMARK 2.11. Let X and Y be real normed spaces with dim $X \ge 2$ and $f: X \to Y$ a surjective mapping satisfying SDOPP. Rassias and Šemrl [13, Theorem 1] showed that f is a mapping from B(x, n) onto B(f(x), n) and preserves distance n in both directions for any positive integer n. But we do not know whether these results hold in p-normed space. However, by applying Theorem 2.10, we have an alternative proof of the Rassias–Šemrl theorem on real normed space.

References

- [1] A. D. Aleksandrov, 'Mappings of families of sets', Soviet Math. Dokl. 11 (1970), 116–120.
- [2] J. A. Baker, 'Isometries in normed spaces', Amer. Math. Monthly 78 (1971), 655–658.
- [3] F. S. Beckman and D. A. Quarles, 'On isometries of Euclidean spaces', Proc. Amer. Math. Soc. 4 (1953), 810–815.
- [4] W. Benz, 'Isometrien in normierten Räumen', Aequationes Math. 29 (1985), 204–209.
- [5] W. Benz and H. Berens, 'A contribution to a theorem of Ulam and Mazur', *Aequationes Math.* 34 (1987), 61–63.
- [6] R. J. Fleming and J. E. Jameson, *Isometries on Banach Spaces: Function Spaces* (Chapman and Hall/CRC, Boca Raton, FL, 2003).
- [7] G. P. Gehér, 'A contribution to the Aleksandrov conservative distance problem in two dimensions', *Linear Algebra Appl.* 481 (2015), 280–287.
- [8] R. Juhász, 'Another proof of the Beckman–Quarles theorem', Adv. Geom. 15(4) (2015), 519–521.
- [9] G. Köthe, Topological Vector Spaces I (Springer, Berlin, 1969).
- [10] J. M. Ling, 'A normed space with the Beckman–Quarles property', *Contrib. Algebra Geom.* 48(1) (2007), 131–139.
- [11] Y. Ma, 'The Aleksandrov problem for unit distance preserving mapping', Acta Math. Sci. 20 (2000), 359–364.
- [12] S. Mazur and S. Ulam, 'Sur les transformations isométriques d'espaces vectoriels normés', C. R. Math. Acad. Sci. Paris 194 (1932), 946–948.
- [13] Th. M. Rassias and P. Šemrl, 'On the Mazur–Ulam problem and the Aleksandrov problem for unit distance preserving mappings', *Proc. Amer. Math. Soc.* **118** (1993), 919–925.
- [14] J. E. Valentine, 'Some implications of Euclid's Proposition 7', Math. Japon. 28 (1983), 421–425.

XUJIAN HUANG, Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China e-mail: huangxujian86@sina.cn

DONGNI TAN, Department of Mathematics, Tianjin University of Technology, 300384 Tianjin, China e-mail: tandongni0608@sina.cn

298