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Abstract

We show that any mapping between two real p-normed spaces, which preserves the unit distance and the
midpoint of segments with distance 2p, is an isometry. Making use of it, we provide an alternative proof
of some known results on the Aleksandrov question in normed spaces and also generalise these known
results to p-normed spaces.

2010 Mathematics subject classification: primary 46B04; secondary 46B20.

Keywords and phrases: Aleksandrov problem, p-strictly convex, isometry, p-normed space.

1. Introduction

Let X and Y be metric spaces. A mapping f : X→ Y is called an isometry if it satisfies
dY ( f (x), f (y)) = dX(x, y) for all x, y ∈ X. For some r > 0, we say that f preserves
distance r if dX(x, y) = r yields dY ( f (x), f (y)) = r. In particular, we say that f has the
distance one preserving property (DOPP) if it preserves unit distance. We say that f
is a 1-Lipschitz mapping if dY ( f (x), f (y)) ≤ dX(x, y) for all x, y ∈ X.

The classical Mazur–Ulam theorem [12] states that every surjective isometry
between two real normed spaces is affine. Baker [2] showed that every isometry of
a real normed linear space into a strictly convex real normed linear space is affine
without the onto assumption. An old question of Aleksandrov [1] asked under what
conditions a mapping on a metric space which preserves unit distance must necessarily
be an isometry. Beckman and Quarles proved in [3] that any mapping of Rn with n ≥ 2
preserving unit distance is an affine isometry. As far as we know, this problem is still
far from being solved. It was solved only for a few concrete two-dimensional normed
spaces (see [7] concerning strictly convex normed spaces and [10] for a nonstrictly
convex normed space). For modified versions of the Aleksandrov question, there are
two known results. Benz [4] (see also [5]) showed that every mapping of a real normed
space into a strictly convex real normed space which preserves two distances with an
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integer ratio is an affine isometry. Rassias and Šemrl [13] proved the following result
for mappings having the strong distance one preserving property (SDOPP), that is, for
all x, y ∈ X with ‖x − y‖ = 1 it follows that ‖ f (x) − f (y)‖ = 1 and conversely.

Theorem 1.1 [13]. Let X and Y be two real normed spaces such that one of them has
a dimension greater than one, and let f : X → Y be a surjective mapping satisfying
SDOPP. If f is a Lipschitz mapping with Lipschitz constant K ≤ 1 or one of X and Y
is strictly convex, then f is an affine isometry.

The goal of this paper is to consider the Aleksandrov question in the case of
p-normed spaces (0 < p ≤ 1). We first prove that any mapping which preserves the unit
distance and the midpoint of segments with distance 2p is an isometry. This result is
applied to show that Benz’s theorem and the Rassias–Šemrl theorem hold in p-normed
spaces. In fact, we provide an alternative proof of these theorems on the Aleksandrov
question in normed spaces. We also show that a collineation between two p-normed
spaces preserving unit distance is an affine isometry, and that a mapping between two
p-strictly convex spaces from high dimensions to two dimensions, which preserves the
unit distance, is an affine isometry. These results are new even in normed spaces.

2. Isometries in p-normed spaces (0 < p ≤ 1)

All vector spaces mentioned in this article are assumed to be real.

Definition 2.1. Let X be a vector space, 0 < p ≤ 1 and ‖ · ‖ be a real-valued function
on X, satisfying the following conditions:

(a) ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0;
(b) ‖λx‖ = ‖λ|p‖x‖ for all λ ∈ R and x ∈ X;
(c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.

The function ‖ · ‖ is called a p-norm on X and the pair (X, ‖ · ‖) is called a p-normed
space.

Let X be a p-normed space. Then X equipped with the translation-invariant metric
d(x, y) = ‖x − y‖ for every x, y ∈ X is a metric linear space. For the case p = 1, X
is a normed space. The spaces lp and Lp[0, 1], 0 < p ≤ 1, are p-normed spaces. If
(X, ‖ · ‖) is a normed space, we can define a p-norm on X by ‖ · ‖p. In this case, we
let Xp denote the p-normed space (X, ‖ · ‖p). In fact, every Hausdorff locally bounded
topological linear space induces a p-normed space with 0 < p ≤ 1 (see [9, page 161]).

Definition 2.2. A p-normed space X is called p-strictly convex if, for each pair x, y of
nonzero elements in X such that ‖x + y‖1/p = ‖x‖1/p + ‖y‖1/p, it follows that x = ty for
some t > 0.

It follows from [11, Theorem 2.5] that (X, ‖ · ‖) is a strictly convex normed space
if and only if (X, ‖ · ‖p) is a p-strictly convex space. We see that if X is a p-strictly
convex space, then the equations ‖x − z‖ = ‖y − z‖ = ‖(x − y)/2‖ have a unique solution
z = (x + y)/2 for every x, y ∈ X.
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Definition 2.3. Let X and Y be p-normed spaces. A mapping f : X → Y is said to
preserve the midpoint of segments with distance r if, for any x, y ∈ X with ‖x − y‖ = r,

f
( x + y

2

)
=

f (x) + f (y)
2

.

Lemma 2.4. Suppose that X is a p-normed space with dim X ≥ 2 and x, y ∈ X with
c := ‖x − y‖ > 0. If |c1/p − a1/p|p ≤ b ≤ |c1/p + a1/p|p for some a, b > 0, then there exists
a vector z in X such that ‖x − z‖ = a and ‖y − z‖ = b.

Proof. Let S X be the unit sphere of X. Consider the continuous function given by

φ : a1/pS X + x→ R, φ(z) = ‖z − y‖.

It is easy to check that

‖φ(x + (a/c)1/p(y − x))‖ = |c1/p − a1/p|p ≤ b,
‖φ(x + (a/c)1/p(x − y))‖ = |c1/p + a1/p|p ≥ b.

We thus obtain the existence of a vector z ∈ X such that ‖x − z‖ = a and ‖y − z‖ = b. �

The following result plays an important role and is used frequently in this paper;
we call it the main lemma.

Lemma 2.5 (Main Lemma). Let X and Y be p-normed spaces with dim X ≥ 2 and
f : X → Y a mapping which preserves distance r for some r > 0. If f preserves the
midpoint of segments with distance 2pr, then f is an isometry.

Proof. (a) We first prove that f preserves distance npr for every positive integer n.
Let x and y be vectors in X such that ‖x − y‖ = npr. Set zi := x + (i/n)(y − x) for each
i ∈ N ∪ {0}. Then z0 = x, zn = y and ‖zi−1 − zi+1‖ = 2pr for all i ∈ N. Since f preserves
the midpoint of segments with distance 2pr, we have f (zi+1) − f (zi) = f (zi) − f (zi−1)
for all i ∈ N. This implies that f (y) − f (x) = f (zn) − f (z0) = n( f (z1) − f (z0)) and

‖ f (y) − f (x)‖ = np‖ f (z1) − f (z0)‖ = np‖z1 − z0‖ = npr.

(b) Next, we prove that f preserves distance r/kp for every positive integer k. Let
x, y ∈ X with ‖x − y‖ = r/kp. By Lemma 2.4, we can find a vector z ∈ X such that

‖x − z‖ = ‖y − z‖ = r.

Set uk := z + k(x − z) and vk := z + k(y − z). Obviously, we have ‖uk − vk‖ = r and
‖uk − z‖ = ‖vk − z‖ = kpr. By a similar method as in the proof of (a),

f (uk) − f (x) = (k − 1)( f (x) − f (z)),
f (vk) − f (y) = (k − 1)( f (y) − f (z))

and it follows that

‖ f (x) − f (y)‖ =

∥∥∥∥∥1
k

( f (uk) − f (vk))
∥∥∥∥∥ =

1
kp ‖uk − vk‖ =

r
kp .
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(c) Finally, we show that f is an isometry. Let x, y ∈ X be two arbitrary different
vectors and set c := ‖x − y‖. For every ε with 0 < ε < c/3, choose a, b ∈ Q such that
0 < apr < ε and

0 < (c1/p − ar1/p)p < bpr < (c1/p + ar1/p)p. (2.1)

By Lemma 2.4, there exists a vector z ∈ X such that ‖x − z‖ = apr and ‖y − z‖ = bpr.
By the above (a) and (b), f preserves the two distances apr and bpr. It follows that
‖ f (x) − f (z)‖ = apr and ‖ f (y) − f (z)‖ = bpr. By the triangle inequality and (2.1),

c − 2ε < bpr − apr ≤ ‖ f (x) − f (y)‖ ≤ bpr + apr < c + 2ε.

Since this holds for every εwith 0 < ε < c/3, we conclude that ‖ f (x) − f (y)‖ = ‖x − y‖.
This completes the proof. �

The following theorems are simple applications of Lemma 2.5. We shall prove that
Benz’s theorem and the Rassias–Šemrl theorem hold in p-strictly convex spaces.

Theorem 2.6. Let X and Y be p-normed spaces with dim X ≥ 2 and Y p-strictly convex.
If f : X→ Y preserves two distances r and N pr for some r > 0 and some integer N > 1,
then f is an affine isometry.

Proof. Let x and y be vectors in X such that ‖x − y‖ = 2pr. Set z := (x + y)/2 and
zi := x + i(z − x) for i = 0, 1, . . . ,N. Then, clearly, ‖zN − z0‖ = N pr and ‖zi − zi−1‖ = r
for i = 1, 2, . . . ,N. Since f preserves the two distances r and N pr,

Nr1/p = ‖ f (zN) − f (z0)‖1/p ≤ ‖ f (zN) − f (y)‖1/p + ‖ f (y) − f (x)‖1/p

≤

N∑
i=3

‖ f (zi) − f (zi−1)‖1/p + ‖ f (y) − f (z)‖1/p + ‖ f (z) − f (x)‖1/p = Nr1/p.

Thus,
‖ f (y) − f (x)‖1/p = ‖ f (y) − f (z)‖1/p + ‖ f (z) − f (x)‖1/p.

Since (Y, ‖ · ‖1/p) is a strictly convex normed space, f (z) = ( f (x) + f (y))/2. This implies
that f preserves the midpoint of segments with distance 2pr. By Lemma 2.5, we see
that f is an isometry. Thus, f preserves the midpoint of segments with any distance.
Since continuity is implied by isometry, the mapping f is affine. �

Theorem 2.7. Let X and Y be p-normed spaces with dim X ≥ 2 and X p-strictly convex.
If f : X → Y is a surjective mapping satisfying SDOPP, then f is an affine isometry.

Proof. We first prove that f is injective. Suppose on the contrary that there are
x, y ∈ X, x , y such that f (x) = f (y). Choose z ∈ X such that ‖z − x‖ = 1 and ‖z − y‖ , 1.
Then, clearly, ‖ f (z) − f (x)‖ = ‖ f (z) − f (y)‖ = 1. This implies that ‖z − y‖ = 1, which
is a contradiction.

We will show that f preserves the midpoint of segments with distance 2p. This
implies that f is an isometry, and therefore affine by Theorem 2.6. Take x, y ∈ X such
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Figure 1. An r-probe.

that ‖x − y‖ = 2p and set z := (x + y)/2. We claim that f (x), f (y), f (z) are collinear.
Otherwise, we can find w ∈ X with w , z such that

‖ f (w) − f (x)‖ = ‖ f (w) − f (y)‖ = 1.

This means that ‖w − x‖ = ‖w − y‖ = 1. As X is p-strictly convex, we have w = z, which
is a contradiction. Consequently, there exists a real number t such that

f (y) − f (z) = t( f (x) − f (z)).

It is clear that
‖ f (x) − f (z)‖ = ‖ f (y) − f (z)‖ = 1.

Hence, t = −1, and so

f
( x + y

2

)
= f (z) =

f (x) + f (y)
2

. �

For the next main result, we need some new notation. Let X be a p-normed space.
We call the 3-tuple (x, y, z) ∈ X3 an r-equilateral triangle if

r = ‖x − y‖ = ‖x − z‖ = ‖y − z‖.

We call the 7-tuple (x0, x1, x2, x3, y1, y2, y3) ∈ X7 an r-probe if {x3, y1, y2, y3} ⊂

aff(x0, x1, x2) and

r = ‖x0 − x1‖ = ‖x0 − x2‖ = ‖x1 − x2‖ = ‖x1 − x3‖ = ‖x2 − x3‖

= ‖x0 − y1‖ = ‖x0 − y2‖ = ‖y1 − y2‖ = ‖y1 − y3‖ = ‖y2 − y3‖ = ‖x3 − y3‖

(see [7, 8]; see also Figure 1). It is known [14] that a real normed linear space X is
strictly convex if and only if any two-dimensional subspace of X has the following
property.
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Figure 2. Diagram for the proof of Theorem 2.8.

(∗) For any a , b on the line L and any c,d on the same side of L, if ‖a − c‖ = ‖a − d‖
and ‖b − c‖ = ‖b − d‖, then c = d.

By this property and [7, Lemma 4], any r-equilateral triangle can be extended to an
r-probe in strictly convex spaces. Obviously, this result holds in p-strictly convex
spaces.

Theorem 2.8. Let X and Y be p-strictly convex spaces with dim X ≥ dim Y = 2, and
f : X → Y a mapping which preserves distance r for some r > 0. Then f is an affine
isometry.

Proof. It is sufficient to prove that f preserves the midpoint of segments with distance
2pr. Let x0, x4 be in X such that ‖x0 − x4‖ = 2pr. Using the notation of Figure 2,

x2 :=
x0 + x4

2
, ‖x1 − x0‖ = ‖x1 − x2‖ = ‖x0 − x2‖ = r, x3 := x1 + (x2 − x0).

Since Y is p-strictly convex and ‖ f (x3) − f (x1)‖ = ‖ f (x3) − f (x2)‖ = r, by the property
(∗) we see that

f (x3) ∈ { f (x0), f (x1) + f (x2) − f (x0)}.

We shall prove that f (x3) , f (x0). Suppose, on the contrary, that f (x3) = f (x0).
Now consider the r-probe (x0, x1, x2, x3, y1, y2, y3) ∈ X7 (see Figure 1). Then the
7-tuple ( f (x0), f (x1), f (x2), f (x3), f (y1), f (y2), f (y3)) ∈ Y7 is also an r-probe and the
four points f (x0), f (y1), f (y2), f (y3) have distance r from each other. Two of the points
are on the same side of the line passing through the other two points. According to
the property (∗), this is impossible. It follows that f (x3) = f (x1) + f (x2) − f (x0), and
similarly f (x4) = f (x2) + f (x3) − f (x1). Hence,

f
( x0 + x4

2

)
= f (x2) =

f (x0) + f (x4)
2

. �

Next, we return to the Aleksandrov question on general p-normed spaces. For a
real vector space X, we denote the line joining two different points x, y ∈ X by xy and
the affine subspace generated by M ⊂ X by Aff(M). Let X and Y be real vector spaces.
A mapping f : X → Y is called a collineation if it maps any three collinear points into
collinear points. It is straightforward to check that if f is a collineation, then we have
f (Aff(x, y, z)) ⊂ Aff( f (x), f (y), f (z)) for any x, y, z ∈ X.
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Theorem 2.9. Let X and Y be p-normed spaces with dim X ≥ 2, and f : X → Y be a
collineation satisfying DOPP. Then f is an affine isometry.

Proof. Let x, y ∈ X with ‖x − y‖ = 2p and set z := 1
2 (x + y). We first prove that

f (x) , f (y). Assume on the contrary that f (x) = f (y). Choose w ∈ X such that

‖w − x‖ = ‖w − z‖ = 1.

Then, clearly, ‖ f (x) − f (z)‖ = ‖ f (w) − f (x)‖ = ‖ f (w) − f (z)‖ = 1. This implies that
f (x), f (z), f (w) are not collinear. However,

f (z) ∈ f (Aff(x, y,w)) ⊂ f (x) f (w),

which is a contradiction. It is trivial to check that

‖ f (x) − f (z)‖ = ‖ f (y) − f (z)‖ = 1.

Since f (x), f (y), f (z) are collinear, there exists a real number t such that

f (y) − f (z) = t( f (x) − f (z)).

We conclude that t = −1, and thus

f
( x + y

2

)
= f (z) =

f (x) + f (y)
2

.

We have proved that f preserves the midpoint of segments with distance 2p and this
means that f is an isometry by Lemma 2.5. The same reasoning as in Theorem 2.6
proves that f is affine. �

To begin the discussion of the next main result, we introduce some more notation.
Let X be a real p-normed space. For any x, y ∈ X, set

H1(x, y) =

{
u ∈ X : ‖x − u‖ = ‖y − u‖ =

∥∥∥∥∥ x − y
2

∥∥∥∥∥},
Hn(x, y) =

{
u ∈ Hn−1(x, y) : ‖u − v‖ ≤

δ(Hn−1(x, y))
2p , v ∈ Hn−1(x, y)

}
, n = 2, 3, . . . .

Here δ(Hn(x, y)) denotes the diameter of Hn(x, y), which is the supremum of distances
between pairs of its elements. Clearly, δ(Hn(x, y)) ≤ 2(1/2p)n‖x − y‖. It follows from
the proof of [6, Lemma 1.3.1] that the intersection of these sets Hn(x, y) consists of a
single point (x + y)/2 called the metric centre of x and y. If x ∈ X is a vector in X, we
denote by B(x, 1) the set of vectors u ∈ X such that ‖u − x‖ ≤ 1.

Theorem 2.10. Let X and Yp be p-normed spaces with dim X ≥ 2, where Y is a normed
space. Suppose that f : X → Yp is a 1-Lipschitz mapping from B(x, 1) onto B( f (x), 1)
for all x ∈ X. If f satisfies DOPP, then f is an affine isometry of X onto Yp.

Proof. Let x, y ∈ X with 0 < ‖x − y‖ ≤ 1 and set z := x + (y − x)/‖y − x‖1/p. Then,
clearly, ‖z − x‖ = 1 and ‖z − y‖ = (1 − ‖x − y‖1/p)p. Note that (Y, ‖ · ‖) is a normed
space and f : X → Yp is a 1-Lipschitz mapping. It follows that

1 = ‖ f (z) − f (x)‖ ≤ ‖ f (z) − f (y)‖ + ‖ f (y) − f (x)‖ ≤ ‖z − y‖1/p + ‖y − x‖1/p = 1.

This implies that ‖ f (x) − f (y)‖p = ‖x − y‖ for all x, y ∈ X with ‖x − y‖ ≤ 1.
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Let x, y ∈ X be two points with ‖x − y‖ = 1 and set z := (x + y)/2. By induction,
f (Hn(x, y)) = Hn( f (x), f (y)) for every positive integer n (see [6, Lemma 1.3.2]). It
follows that f (z) is the unique element of f (

⋂∞
n=1 Hn(x, y)) =

⋂∞
n=1 Hn( f (x), f (y)),

which is 1
2 ( f (x) + f (y)). By Lemma 2.5, the mapping f is indeed an isometry. By

the same reasoning as before, f maps the midpoint of the line segment joining x and y
onto the midpoint of the line segment joining f (x) and f (y) for all x and y in X. Since
isometries are continuous, f is affine. This completes the proof. �

Remark 2.11. Let X and Y be real normed spaces with dim X ≥ 2 and f : X → Y a
surjective mapping satisfying SDOPP. Rassias and Šemrl [13, Theorem 1] showed
that f is a mapping from B(x, n) onto B( f (x), n) and preserves distance n in both
directions for any positive integer n. But we do not know whether these results hold
in p-normed space. However, by applying Theorem 2.10, we have an alternative proof
of the Rassias–Šemrl theorem on real normed space.
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