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Proposition 1.1.2. The statement is false as written. For a counterexample, fix a prime p, take
V to be of dimension p, and take G to be the semidirect product of the trace-zero torus Gp−1

m =
ker(× : Gp

m → Gm) by the group Z/pZ acting via the standard permutation representation on the
ambient torus Gp

m. There is a unique ascending filtration H0, H1, . . . on the group (Qp/Zp)p−1 ∼=
(µp∞)p−1 ⊆ Gp−1

m characterized by the properties that Hn(p−1) = (p−nZp/Zp)p−1 and the groups
Hn(p−1)+i/Hn/(p−1) for i = 0, . . . , p−1 form a unipotent flag for the action of Z/pZ; put Gr = Hn

for n = max{0, b−rc}.
For a variant of this counterexample, take G as before, but define Gr as follows: for r > 0

take Gr = Hn for n = max{0, b1/rc}, and for r 6 0 take Gr = G.
The error in the proof occurs in the second paragraph, where it is asserted that ‘By applying

(d) finitely many times . . .we can split X as a direct sum of G-stable summands, each of which is
Gr+-isotypical’. This fails in the given examples because the action of Z/pZ on Zp−1p is unipotent
mod p.

To correct the statement, we add two additional conditions. The first of these is:

(g) For all nonnegative integers g, h and every G-stable subspace W of (V ∨)⊗g⊗V ⊗h, if G−∞+

acts trivially on W and G acts on W via a finite abelian group, then G acts trivially on W
itself.

This eliminates the original counterexample: the action of G on the trace-zero subspace of V ∨⊗V
factors through Z/pZ but is not trivial. If F contains all roots of unity (or in the context of Lemma
1.1.4, just a primitive pth root of unity), then the following condition is equivalent:

(g′) For all nonnegative integers g, h and every one-dimensional G-stable subspace W of
(V ∨)⊗g ⊗ V ⊗h, if G−∞+ acts trivially on W and G acts trivially on some power of W ,
then G acts trivially on W itself.

The second additional condition is:

(h) For each r ∈ R, there exists s0 ∈ (r,+∞) with the following property: for any s ∈ (r, s0], if
Gt/Gs is finite and abelian for all t ∈ (r, s], then Gr+/Gs is finite.

This eliminates the variant counterexample.
For later use (see the discussion of Theorem 2.3.17 below), we observe that without condition

(g), it is already possible to show that the groups Gr are finite for all r ∈ R. To wit, let S be
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the set of r ∈ R for which Gr is finite. By (a), the set S is up-closed. By (b), the set S does not
contain its infimum. If this infimum is finite, we obtain a contradiction by combining Lemma 1.1.1
with (h); it follows that Gr is finite for all r ∈ R.

We now prove the modified version of Proposition 1.1.2.

Proof of (modified) Proposition 1.1.2. There is no harm in assuming at once that F is
algebraically closed. As noted above, the current hypotheses suffice to imply that Gr is finite for
all r ∈ R; it thus remains to derive a contradiction under the assumption that G−∞+ is infinite.

By Lemma 1.1.1, there exists s0 ∈ R such that G−∞+/Gs0 embeds into a product of finitely
many copies of Q/Z. By decreasing s0 suitably, we may ensure in addition that G−∞+/Gs0 is
nontrivial and has no nontrivial finite quotients.

We next verify that G centralizes G−∞+. For each s ∈ R, the conjugation action of G on
the finite group Gs must be trivial on the identity connected component of G, so this action
factors through the component group π0(G) of G. For each prime p, let Hp be the union of
the p-Sylow subgroups of Gs/Gs0 for s 6 s0; it then suffices to check that G centralizes Hp

provided that the latter is nonzero. Since Hp has no nontrivial finite quotients, it is isomorphic
to (Qp/Zp)n for some positive integer n, and the action of π0(G) corresponds to a homomorphism
ρ : π0(G) → GLn(Zp), which we wish to show is trivial. By (d) plus Tannaka–Krein duality, the
image of π0(G) in GLn(Fp) is unipotent; consequently, the image of ρ is a p-group. Suppose by
way of contradiction that this image is nontrivial; then the kernel of ρ is contained in a normal
subgroup G′ of G such that G/G′ ∼= Z/pZ. By duality again, for some g, h, there exists a G-stable
subspace W of (V ∨)⊗g ⊗ V ⊗h on which G′ acts trivially but G acts (completely reducibly and)
nontrivially. However, since G−∞+ ⊆ ker(ρ) ⊆ G′, this constitutes a violation of (g); this yields
a contradiction and shows that indeed G centralizes G−∞+.

By duality yet again, we can choose g, h so that (V ∨)⊗g ⊗V ⊗h contains a G-stable subspace
X on which Gs0 acts trivially but Gs acts nontrivially for some s < s0. By Maschke’s theorem,
X admits a G−∞+-isotypical decomposition, which is respected by G since G centralizes G−∞+;
since G−∞+ is infinite, this decomposition admits a summand Y for which the image of the
action of G−∞+ on Y is isomorphic to an infinite subgroup of Q/Z. Put W = ∧dim(Y )Y ; this
space occurs as a G-invariant subspace of (V ∨)⊗g ⊗ V ⊗h for some g, h. However, the image of
G−∞+ in GL(W ) is again isomorphic to an infinite subgroup of Q/Z, which is a contradiction.
This yields that G−∞+ is finite, as claimed. 2

Remark 1.1.3. The fiber functor ω should be assumed to be neutral. More seriously, additional
conditions are needed in order to imply the added hypotheses (g) and (h) of Proposition 1.1.2.

(iv) For each V ∈ C with r(V ) = −∞, if G(V ) is finite abelian, then it is trivial. (This implies
(g).)

(v) For each r ∈ R, there exists s0 ∈ (r,+∞) with the following property: for any s ∈ (r, s0]
and any V ∈ C with r(V ) < s, if Gt(V ) is finite and abelian for all t ∈ (r, s], then Gr+(V )
is finite. (This implies (h).)

See the discussions of Theorems 2.3.17 and 3.8.16 below.

Corollary 2.2.7. In the statement of (b), logω − log ρ + s should be logω − log ρ + c.
More seriously, the application of [Ked10, Theorem 6.7.4] is not sufficient; see the erratum for
[Ked10, Lemma 6.8.1] for an alternate approach that gives the value δ = s(ω/s)a(n1,n2,m) for
some a(n1, n2,m).
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Lemma 2.3.9. Given the inclusion V ′2 →
⊕p−1

m=0(V
′
1 ⊗ Xm), it is asserted that ‘since V ′2 is

indecomposable, we have V ′2 ⊆ V ′1 ⊗Xm for some m’. We clarify this point here.
For each irreducible constituent Z of V ′2 , there must be an index m for which Z also occurs

as an irreducible constituent of V ′1⊗Xm. In fact, this index must be unique because V ′1 is refined.
(For m′ 6= m, the intrinsic subsidiary radii of (V ′1 ⊗Xm)∨⊗ (V ′1 ⊗Xm′) ∼= ((V ′1)∨⊗ V1)⊗Xm′−m
are all equal to ωp, so this differential module cannot contain a trivial constituent.)

Form ∈ {0, . . . , p−1}, let Ym be the kernel of V ′2 →
⊕

m′ 6=m(V ′1⊗Xm′). The map
⊕p−1

m=0 Ym →

V ′2 is injective: if Z were an irreducible submodule of the kernel, then Z would project nontrivially
to Ym for at least one value of m, but the previous paragraph would then imply that this value is
unique and this would contradict the manifest injectivity of Ym → V ′2 . The map

⊕p−1
m=0 Ym → V ′2

is also surjective: if Z were a constituent of the cokernel, then by the previous paragraph Z would
occur in V ′1 ⊗Xm for some m, but then V ′2/Ym →

⊕
m′ 6=m(V ′1 ⊗Xm′) would be an injective map

for which Z occurs in the source but not the target.
We thus conclude that V ′2 =

⊕p−1
m=0 Ym. Since V ′2 is indecomposable, there can only be one

index m for which Ym 6= 0. For that m, the map V ′2 → V ′1 ⊗Xm is injective.

Lemma 2.3.11. In the last paragraph of the proof, the V ′i need not be indecomposable, so
Lemma 2.3.9 does not apply directly. However, we may decompose V ′i as a direct sum

⊕
j V
′
ij of

indecomposable summands and then apply Lemma 2.3.9 to produce mij ∈ {0, . . . , p − 1} such
that IR((V ′0)∨ ⊗ V ′ij ⊗Wmij ) > ωp. For j′ 6= j, we also have IR((V ′ij)

∨ ⊗ V ′ij′ ⊗Wmij′−mij ) > ωp;

since V ′i is refined, this implies that mij′ = mij . That is, the mij are all equal to a common value
mi, and we may take V ′ =

⊕r
i=0 V

′
i ⊗Wmi , as originally claimed.

Theorem 2.3.17. In light of the correction to Proposition 1.1.2, we no longer can apply it
directly to yield this result. As explained in the discussion of Proposition 1.1.2 above, to prove
that the groups Gr(V ) are finite, it is not necessary to check condition (iv) of Remark 1.1.3;
since conditions (i)–(iii) are already confirmed in the original text, we need only supplement
them by verifying condition (v). (Note that in light of Remark 2.3.18, the filtration of G must
be truncated at some index s′ ∈ (s, 1) in order for condition (iii) to be satisfied.)

Before doing so, however, we should point out that the fiber functor ω as defined is not
neutral, so Remark 1.1.3 does not apply directly (see above). Instead, one should extend scalars
from E to a larger differential field over which every differential module over E becomes trivial
(e.g., a Picard–Vessiot extension).

To establish condition (v) of Remark 1.1.3, we use the following lemma.

Lemma. With notation as in Theorem 2.3.17, define Gr− =
⋃
s<rG

s. For any r < ω, if Gs(V )
is a finite abelian p-group for all s < r, then Gr−(V ) is finite.

Proof. We will use throughout the following observation: for X ∈ [V ] and s ∈ (0, 1), the
multiplicity of s among the intrinsic subsidiary radii of X is equal to the dimension of the space
ω(X)G(V )s−/ω(X)G(V )s . In particular, for s < r this quantity depends only on the isomorphism
class of ω(X) as a representation of Gr−(V ).

LetH be the dual group ofGr−(V ); it is a finitely generated Zp-module. Choose an irreducible
constituent Vi of V and let χ1, . . . , χn ∈ H be the distinct characters occurring in ω(Vi); these
are all G(V )-conjugate, and so occur to the same multiplicity d. For each nonnegative integer k,

let Wk be the differential submodule of (∧dVi)⊗p
k

with the property that ω(Wk) is the union of

the one-dimensional subspaces of ω((∧dV )⊗p
k
) on which Gr−(V ) acts via the characters χ⊗p

kd
1 ,

. . . , χ⊗p
kd

n . By the previous paragraph, it will suffice to check that there exists a constant c > 1
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independent of k such that IR(Wk+1) > max{r, cIR(Wk)}; there is nothing to check unless
IR(Wk) < r.

Let T be the unique maximal torus inside the group GL(ω(Wk)) containing the image of
Gr−(V ). The Weyl group of GL(ω(Wk)) is the symmetric group Sn. The highest-weight vectors
are the orbits of Sn on the character group of T ; these orbits may be identified with partitions
λ = (λ1 > · · · > λn > 0) of nonnegative integers into at most n parts. Order these partitions
lexicographically, and write |λ| for λ1 + · · · + λn. The irreducible representation of GL(ω(Wk))
with highest weight λ may be identified with ω(SλWk), where Sλ is the Schur functor associated
to λ; see [FH91, ch. 15] for a concrete discussion. We may decompose ω(SλWk) into eigenspaces
Xλ,µ indexed by partitions µ with |µ| = |λ|, with the dimension dλ,µ of Xλ,µ being given by the
Weyl character formula; the only fact we need here is that dλ,µ = 1 if µ = λ and dλ,µ = 0 if
µ > λ. This implies the existence of an isomorphism

Wk+1
∼=

∏
|λ|=p

(SλWk)
⊗eλ

of virtual representations of Gr−(V ) for some integers eλ with e(p,0,...,0) = 1.
Apply Corollary 2.1.6 to find a cyclic vector v for Wk and then write Dn(v) = a0v + · · · +

an−1D
n−1(v) with a0, . . . , an−1 ∈ E as in Proposition 2.2.6. Let α1, . . . , αn be the multiset of

roots of the polynomial Q(T ) = Tn − an−1Tn−1 − · · · − a0 in some algebraic closure of E; we
then have −log |αi| = log IR(Wk)− logω + log ρ for i = 1, . . . , n. Using the quantitative form of
Corollary 2.2.7 described above, we see that there exists c > 1 depending on n, p, r (but not k)
such that for any partition λ with |λ| = p, the following two multisets coincide in their values
not exceeding log max{cIR(Wk), r}− logω+ log ρ. (In principle, the choice of c depends also on
IR(Wk), but since log IR(Wk) < r < ω we may make the choice uniform in this parameter.)

– The multiset consisting of log s − logω + log ρ for s ranging over the intrinsic subsidiary
radii of SλWk.

– The multiset consisting of −log |π1α1 + · · · + πnαn| taken with multiplicity dλ,µ, for each
partition µ and each distinct permutation (π1, . . . , πn) of (µ1, . . . , µn).

This formally implies an analogous assertion with SλWk replaced by
∏
λ(SλWk)

⊗eλ , or
equivalently by Wk+1, and dλ,µ replaced by

∑
λ eλdλ,µ, or equivalently by 1 if µ = (p, 0, . . . , 0)

and 0 otherwise. This implies at once that IR(Wk+1) > max{cIR(Wk), r}, as desired. 2

Using the lemma, we may apply Proposition 1.1.2 to see that Gr−(V ) is finite for r < ωp. It
follows that for r < ω, the set (0, r] contains only finitely many distinct values which can occur
as IR(W ) as W runs over [V ]. Using Proposition 2.3.5 and Lemma 2.3.6, we inductively deduce

the same statement for r 6 ωp
−h

for h = 0, 1, . . . . We thus obtain condition (v) of Remark 1.1.3
for general r, and applying Proposition 1.1.2 again finishes the proof.

Definition 3.4.2. The notation 〈x〉 is not defined; it is not the usage of Definition 3.1.4.
Rather, for x ∈ Qp, one writes 〈x〉 for the smallest positive rational number a such that one of
x− a, x+ a is in Zp.

Corollary 3.4.6. In the statement and the proof, ‘p-adic non-Liouville number’ should be
‘p-adic Liouville number’.

Corollary 3.4.7. The proof given is incorrect: given the correction to Corollary 3.4.6, we
cannot rule out the possibility that a−b is a p-adic Liouville number. See [Ked10, Lemma 13.4.3]
for a correct argument.
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Remark 3.4.14. We provide a more detailed derivation of part (a) of this statement in the
case 0 /∈ I. Let e1, . . . , en be a basis of M1,J , and choose e′1, . . . , e

′
n′ ∈MJ lifting a basis of M2,J .

By [Ked10, Lemma 13.5.4], there exists k > 0 such that for each ζ ∈ Kalg with ζp
m

= 1, the
matrix of action of ζ∗ on e1, . . . , en, e

′
1, . . . , e

′
n′ has operator norm at most pkm. Of course this

remains true after enlarging k, which we will do several times hereafter.
By hypothesis, after enlarging k, for each m there exist elements vm,A1,j ∈ M1,J such that

ζ∗(vm,A1,j) = ζa1,jvm,A1,j for all ζ ∈ Kalg with ζp
m

= 1, and the matrix Sm,A1 defined by
vm,A1,j =

∑
i(Sm,A1)ijei is invertible and satisfies |Sm,A1 |J , |S−1m,A1

|J 6 pkm. After enlarging k
again, there also exist elements v′m,A2,j

∈MJ in the span of e′1, . . . , e
′
n′ such that ζ∗(v′m,A2,j

) ≡
ζa2,jvm,A2,j (mod M1,J) for all ζ ∈Kalg with ζp

m
= 1, and the matrix Sm,A2 defined by v′m,A2,j

=∑
i(Sm,A2)ije

′
i is invertible and satisfies |Sm,A2 |J , |S−1m,A2

|J 6 pkm. By replacing v′m,A2,j
with

v′′m,A2,j =
1

pm

∑
ζpm=1

ζ−a2,jζ∗(v′m,A2,j),

we ensure that ζ∗(v′′m,A2,j
) = ζa2,jv′′m,A2,j

. The change-of-basis matrix Sm,A from e1, . . . , en, e
′
1,

. . . , e′n′ to vm,A1,1, . . . ,vm,A1,n,v
′′
m,A2,1

, . . . ,v′′m,A2,n′
is an upper-triangular block matrix with

diagonal blocks Sm,A1 , Sm,A2 ; by comparing to the original basis, we see that the off-diagonal
block of Sm,A is bounded in norm by p4km. We then have |Sm,A|J , |S−1m,A|J 6 p6km.

Theorem 3.4.20. The given argument alone only implies that the Sm0,AU is the change-of-
basis matrix to a basis e1, . . . , en of M[α′,β′] which is fixed by parallel transport by all p-power
roots of unity. To deduce that the matrix of action N of D on this basis has entries in K, note
that for any λ ∈ K×, the operations λ∗ and D commute; consequently, for ζ a p-power root of
unity, ∑

i

Nijei = D(ei) = (D ◦ ζ∗)(ei) = (ζ∗ ◦D)(ei) =
∑
i

ζ∗(Nij)ei.

This implies that each Nij belongs to K. To see that N is nilpotent, let λ be any eigenvalue; by
[Ked10, Example 9.5.2], we must have λ ∈ Zp. We can then find a nonzero eigenvector v of N
in the K-span of e1, . . . , en, which is fixed by ζ∗; however, by computing ζ∗ in terms of N we
obtain ζ∗(v) = ζλv. This forces λ = 0, so N is nilpotent as claimed. (Compare the errata for
[Ked10, Theorem 13.6.1].)

Theorem 3.4.22. The given argument implies that the Πm converge to a projector Π stable
under parallel transport by all p-power roots of unity. However, it is not immediately apparent
either that the limiting projector is horizontal, or that the summands have the correct exponents.

To remedy this, it is convenient to work in a somewhat larger category. As in the given
argument, we assume that 0 /∈ I. Let µp∞ be the group of p-power roots of unity in an algebraic
closure of K. Let C be the category in which an object is a finite projective RI -module M
together with a semilinear action of µp∞ on M ⊗K K(µp∞) satisfying the following conditions.

– The action of ζ ∈ µp∞ is semilinear with respect to the substitution t 7→ ζt on RI .

– The action of µp∞ is equivariant with respect to the action of Gal(K(µp∞)/K) on both µp∞

and M ⊗K K(µp∞). In particular, for each positive integer n, the action of µpn is induced
by an action on M ⊗K K(µpn).

– For each closed subinterval J of I, for some (and hence any) basis e1, . . . , en of MJ , there
exists k > 0 such that for each positive integer m, for each ζ ∈ µpm , the matrix E(ζ) defined
by ζ∗(ej) =

∑
iE(ζ)ijei satisfies |E(ζ)| 6 pkm.
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We use the following facts about C.

– Every µp∞-stable submodule of an object of C is saturated. This follows from the fact that
every finitely generated µp∞-stable ideal of RI ⊗K K(µp∞) is either zero or trivial (the
support of such an ideal cannot be both finite and nonempty).

– The condition on |E(ζ)| is preserved under passage to µp∞-stable subquotients. Using the
previous point, it follows that C is an abelian category. Beware that the condition on |E(ζ)|
is not preserved under formation of extensions; however, for an extension which does belong
to C, the discussion of Remark 3.4.14 given above carries over.

– The category C contains the differential modules over RI satisfying the Robba condition as
a nonfull subcategory. This is a consequence of [Ked10, Lemma 13.5.4].

– Neither the final part of the proof of [Ked10, Theorem 13.5.5] (starting from ‘We next
choose A. . . ’), nor any of the proof of [Ked10, Theorem 13.5.6], makes any direct reference
to differentiation, only to parallel transport. Consequently, both parts of Theorem 3.4.16
remain true for objects of C.

– The given argument for Theorem 3.4.22 applies without change to an object M of C. That
is, if M has an exponent admitting a nontrivial Liouville partition A1, A2, then M splits
nontrivially in C into summands M1,M2. However, it is not apparent from the construction
that Mi is an exponent of Ai.

In order to proceed, we must formally upgrade this last point to a stronger statement.
Namely, let M be an object of C with an exponent admitting a Liouville partition A1, A2. We
will show that M admits a unique splitting M1 ⊕M2 in C for which Mi admits an exponent
weakly equivalent to Ai. (Note that this does not guarantee that Ai itself occurs as an exponent
for Mi.)

We first verify uniqueness. Suppose that M splits as M ′1⊕M ′2, M ′′1 ⊕M ′′2 with M ′i ,M
′′
i having

exponents A′i, A
′′
i weakly equivalent to Ai (and hence to each other). Let f be the composition

of the inclusion M ′1 → M with the projection M → M ′′2 . Since C is an abelian category, we may
form the exact sequences

0 → ker(f) → M ′1 → image(f) → 0, 0 → image(f) → M ′′2 → coker(f) → 0

and choose exponents E1, E2, E3 for ker(f), image(f), coker(f). By Remark 3.4.14 and
Theorem 3.4.16(b), A′1 is weakly equivalent to E1 ∪E2 and A′′2 is weakly equivalent to E2 ∪E3.
By Proposition 3.4.5(a), A′1, A

′′
2 constitute a Liouville partition, so we must have E2 = ∅, which

is to say f = 0. Similarly, the composition M ′2 → M → M ′′1 equals zero, so we have M ′1 = M ′′1 ,
M ′2 = M ′′2 as desired.

We next verify existence, proceeding by induction on the rank of M . There is nothing to check
unless A1, A2 are both nonempty; in this case, we know that there exists a nontrivial splitting
M ∼= M ′1⊕M ′2 in C. Choose exponents A′1, A

′
2 for M ′1,M

′
2; then A′1∪A′2 is an exponent for M . By

Theorem 3.4.16(b), A′1∪A′2 is weakly equivalent to A1∪A2, so, by Proposition 3.4.5(b), A′1∪A′2
admits a Liouville partition A′′1, A

′′
2 with A′′i being weakly equivalent to Ai. In particular, A′′1, A

′′
2

are disjoint.
Identify finite multisubsets of Zp with finitely supported functions Zp → Z>0, and put

A′′ij(x) = min{A′i(x), A′′j (x)} (x ∈ Zp).

Since A′′1, A
′′
2 are disjoint, we have

(A′′1(x), A′′2(x)) ∈ {(A′1(x) +A′2(x), 0), (0, A′1(x) +A′2(x))}.
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We thus have

A′′i1(x) +A′′i2(x) = min{A′i(x), A′′1(x)}+ min{A′i(x), A′′2(x)} = A′i(x)

and hence A′′i1, A
′′
i2 form a Liouville partition of A′i. On the other hand,

A′′1i(x) +A′′2i(x) = min{A′1(x), A′′i (x)}+ min{A′2(x), A′′i (x)} = A′′i (x).

By the induction hypothesis, we may split M ′i as M ′′′i1 ⊕M ′′′i2 with M ′′′ij admitting an exponent A′′′ij
weakly equivalent to A′′ij . Now define Mi = M ′′′1i ⊕M ′′′2i , so that M ∼= M1⊕M2. By construction,

Mi admits the exponent A′′′1i ∪A′′′2i which is weakly equivalent to A′′i and hence to Ai, as desired.

We finally return to the original situation, in which M is a differential module over RI
satisfying the Robba condition, with an exponent admitting the Liouville partition A1, A2. By

the previous arguments, in C there is a unique splitting M ∼= M1 ⊕M2 in which Mi admits an

exponent weakly equivalent to Ai. For λ ∈ K× with |1 − λ| < 1, the substitutions t 7→ ζt and

t 7→ λt commute: consequently, the pullbacks M1,λ and M2,λ of M1,M2 along λ∗ are again objects

of C with the same exponents as M1,M2. Consequently, the splittings M1 ⊕M2, M1,λ ⊕M2,λ of

M must coincide, which is to say that M1 and M2 are preserved by λ∗. By taking a sequence of

values of λ converging to 1, we deduce that M1 and M2 are differential submodules, as desired.

Definition 3.7.9. The displayed equation should read

D(v1) = v2, . . . , D(ve−1) = ve, D(ve) = λth/mv1.

Lemma 3.7.11. In the fifth line of the proof, the inequality should read |α− λ1/eth/(em)|ρ <
|α|ρ. We give some further justification for why this inequality can be achieved.

There is no issue unless ρ belongs to the divisible closure of |F×|; we may thus assume

without loss of generality that K is algebraically closed and ρ = 1. Because of the hypothesis

that M is pure, in the notation of Proposition 3.6.3 we must have sµ,i(M) = 0 for all i and all

nonzero µ. This means that for each index i such that ai corresponds to a point (not necessarily

a vertex) on the Newton polygon of the polynomial P (T ), we can find λi ∈ K, mi ∈ Z such that

|ai − λitmi |ρ < |ai|; moreover, log |λi| and mi are determined by the affine function Fn−i(M, r)

near r = 0. From this, we may infer the desired approximation.

Theorem 3.8.16. In light of the modifications to Proposition 1.1.2 and Remark 1.1.3

described above, we must also verify the conditions (iv) and (v) added to Remark 1.1.3.

– To check (iv), we may enlarge K to contain all roots of unity; we may then reduce to

checking that if M is of rank 1, M satisfies the Robba condition, and M⊗` is trivial for

some prime `, then M becomes trivial after a finite tamely ramified extension (which does

not change G0+(M)). Apply Theorem 3.4.16 to construct an exponent A ∈ Zp of M ; then

`A is weakly equivalent to 0, so Corollary 3.4.7 implies that `A ∈ Z. If ` = p, then it follows

that A ∈ Z, so Theorem 3.4.20 implies that M is trivial; otherwise M becomes trivial after

adjoining t1/`.

– To check (v), we may apply the lemma stated in the discussion of Theorem 2.3.17; it implies

that for any M and any r > 0, the filtration of G0+(M) has only finitely many breaks in

the interval [r, pr].
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