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Abstract. In this paper, by using the fixed point index method first we obtain
some existence and multiplicity results for sign-changing solutions of an (e1, B)-limit
increasing operator equation. The main results can be applied to many non-linear
boundary value problems to obtain the existence and multiplicity results for sign-
changing solutions. We also give a clear description of locations of these sign-changing
solutions through strict lower and upper solutions. As an example, in the last section
we obtain some existence and multiplicity results for sign-changing solutions of some
Sturm–Liouville differential boundary value problems.
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1. Introduction. As is well known, when studying non-linear problems, better
results may be established if the non-linear terms are assumed to have some
monotonicity properties. For instance, when studying non-linear differential boundary
value problems, if the non-linear terms are increasing and there exists a pair of well-
ordered upper and lower solutions, then the differential boundary value problems
always have maximal and minimal solutions on the ordered interval defined by the
well-ordered upper and lower solutions. For another instance, recently some authors
obtained the existence results for critical points by combing the lower and upper
solutions method with the descending flowing invariant set method; see [6, 27] and
the references therein. In order to establish these results, the authors of these papers
always assume that the non-linear terms satisfy some kinds of monotonicity properties.
However, in many cases the non-linear terms may not have any monotonicity
properties. In order to overcome this difficulty, in [13] we introduced a new concept of
(e1, B)-limit increasing operator and studied the existence of solutions of (e1, B)-limit
increasing operator equations under the condition of pairs of paralleled upper and
lower solutions.

The sign-changing solutions have attracted much attention in recent years; see [1–
12, 21–30] and the references therein. Generally speaking, there are three approaches
to establish the sign-changing solution results. They are critical point theory, the
topological degree method and the global bifurcation theory. In our papers [8–11],
we established some existence results for sign-changing solutions of some differential
boundary value problems via the topological degree method and the global bifurcation
theories. Concerning the method of global bifurcation theories, we also refer readers to
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Rabinnowitz’s classical results [29, 30]. Since there are explicit geometrical significance,
recently the method of critical point theory has been employed extensively to find sign-
changing solutions. Bartsch and Wang [27] established an abstract critical point theory
in the partially ordered Hilbert spaces by virtue of critical groups and studied sign-
changing solutions of some elliptic boundary value problems. Concerning the method
of critical point theory we also refer readers to Refs. [1–7, 21–26, 28]. Moreover,
there were some interesting results in Zou’s recent monographs [28] concerning sign-
changing critical point theory. However, we should point out that in many cases this
method is invalid because a suitable variational setting can not be found for some non-
linear boundary value problems, e.g. impulsive differential boundary value problems,
multi-point differential boundary value problems etc.; nevertheless we may establish
existence results for sign-changing solutions for these differential boundary value
problems by using the methods of the topological degree or global bifurcation theories.

The main purpose of this paper is to study the sign-changing solutions of (e1, B)-
limit increasing operator equations. Some existence and multiplicity results for the sign-
changing solutions of an equation of (e1, B)-limit increasing operator are established
and the locations of these sign-changing solutions are clearly described in terms of
the cone structure of the space. The abstract theorems are applied to the Sturm–
Liouville equations to obtain the existence results for sign-changing solutions. Of
course, the abstract theorems may also be applied to many other non-linear boundary
value problems to obtain sign-changing solutions, such as impulsive differential
boundary value problems and multi-point differential boundary value problems.

2. Main results. Let (X, ‖ · ‖X ) and (Z, ‖ · ‖Z) be the two real Banach spaces,
and P and P1 normal cones of X and Z, respectively. Denoted by �, the both partial
orderings in X and Z are induced by the cones P and P1, respectively. For more
discussions about cone and partial ordering we refer the reader to [20]. Let u0, v0 ∈ X
and [u0, v0] = {x ∈ X |u0 � x � v0} denote an ordered interval of X . In this paper we
will consider the existence of solutions of the operator equation

Lx = Fx, (2.1)

where L : domL ⊂ X �→ Z is a linear operator and F : X �→ Z is a continuous and
bounded operator.

Let B : X �→ Z be a linear bounded operator such that B : P\{θ} → P1\{θ}, e1 ∈
P1\{θ}, ē0 = L−1e1 ∈ P\{θ}. For any x, y ∈ X , denote by x ≺0 y if there exists δ > 0
such that y − x � δē0. For any x, y ∈ Z, denote by x ≺1 y if there exists δ > 0 such
that y − x � δe1. Let � denote the set of all natural numbers, and �+ = {0} ∪ �.

First recall the concept of (e1, B)-limit-increasing operator.

DEFINITION 2.1. Let D ⊂ X be a bounded and closed set, and F : D �→ Z a
bounded and continuous operator. Then F is called an (e1, B)-limit-increasing operator
on the set D if there exist a sequence of continuous operators {Fn}∞n=1 and a sequence
of positive numbers {Mn}∞n=1 such that for all n ∈ �,

−1
n

e1 � Fu − Fnu � 1
n

e1, ∀u ∈ D, (2.2)

Gnv > Gnu, ∀v, u ∈ D, v > u, (2.3)
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where the operator Gn : D �→ Z is defined by Gnx = Fnx + MnBx for all x ∈ D and
n ∈ �. An (e1, B)-limit-increasing operator F on a bounded closed set D whose interior
is non-empty is called locally increasing at an interior point x0 of D if there exists r0 > 0
such that U(x0, r0) ⊂ D and

Fu = F1u = F2u = · · · = Fnu = · · · , ∀u ∈ U(x0, r0). (2.4)

REMARK 2.1. The concept of (e1, B)-limit-increasing operator was put forward
in [13, 18, 19]. However, there are some subtle differences between the concept of
(e1, B)-limit-increasing operator in this paper and those in [13, 18, 19]. In this paper,
we will always assume that (2.2) and (2.3) hold if we assume that F : D �→ Z is an
(e1, B)-limit-increasing operator.

DEFINITION 2.2. ([15]) An operator T : D(T) ⊂ Z �→ X is called e-continuous at
x0 ∈ D(T) if for every ε > 0, there is number δ > 0, such that

−εe � Tx − Tx0 � εe

for every x ∈ D(T) ∩ U(x0, δ). An operator T is called e-continuous on D(T) if T is
e-continuous at every x ∈ D(T).

DEFINITION 2.3. ([13]) Let α0 and β0 ∈ X . Then α0 and β0 are said to be strict
lower and upper solutions of (2.1), respectively, if Lα0 ≺1 Fα0 and Fβ0 ≺1 Lβ0.

DEFINITION 2.4. ([13]) Let α0 and β0 be strict lower and upper solutions of (2.1),
respectively. Then α0 and β0 is called a pair of well-ordered strict lower and upper
solutions of (2.1) if α0 ≺0 β0.

DEFINITION 2.5. ([16]) Let e ∈ P\{θ}. An operator T : D(T) ⊂ Z → X is said to
be e-positive if for any u ∈ P1 \ {θ}, there exist α = α(u), β = β(u) > 0 such that

αe � Tu � βe.

DEFINITION 2.6. Let x̄ be a non-zero solution of the operator equation (2.1). If
x̄ ∈ (−P) (or x̄ ∈ P, or x̄ ∈ E \ (P ∪ (−P))), then x̄ is called a negative (or positive, or
sign-changing) solution of (2.1).

From [14, Lemma 5.2] we have the following result.

LEMMA 2.1. Let E be an ordered Banach space with solid cone P. Let K : E �→ E
be a compact, e-positive, linear operator and let F : E �→ E be a map such that for some
u0 ∈ E, u0 = KF(u0). Suppose F is Gâteaux differentiable at u0 with strictly positive
derivative F ′(u0). Denote by r(T) the spectral radius of the operator T = KF ′(u0) and by
h0 the positive eigenfunction of T corresponding to r(T). Then there exists a τ0 > 0 such
that for all 0 < τ < τ0,

r(T) > 1 implies

{
KF(u0 + τh0) > u0 + τh0,

KF(u0 − τh0) < u0 − τh0,

and

r(T) < 1 implies
{

KF(u0 + τh0) < u0 + τh0,

KF(u0 − τh0) > u0 − τh0.

From [17, Theorem 19.2] we have the following Lemma 2.2.
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LEMMA 2.2. (Krein–Rutman) Let E be a Banach space, P ⊂ E a total cone and
K ∈ L(E) a compact positive with r(K) > 0. Then r(K) is an eigenvalue with a positive
eigenvector.

For convenience, let us introduce the following conditions to be used in the sequel.
(H1) There exists a pair of well-ordered strict lower and upper solutions u0 and v0 of

(2.1) such that u0, v0 ∈
◦

P.
(H2) F is (e1, B)-limit increasing on any bounded set of X and is locally increasing

at θ , F(θ ) = θ , F is Fréchet differentiable at θ , F ′(θ ) = β0B, and F is e1-continuous on
[u0, v0], where β0 > 0.

(H3) For each M � 0, KM := (L + MB)−1 : Z �→ X exists and is completely
continuous, KM is ēM-continuous and ēM-positive on any ordered interval of Z for some
ēM ∈ P\{θ}; the algebraic multiplicity of each positive eigenvalue of KMB is 1.

(H4) There exists a pair of well-ordered strict lower and upper solutions, u1 and v1,
of (2.1) such that u1, v1 ∈ X\(P ∪ (−P)) and u0 ≺0 u1 ≺0 v1 ≺0 v0.

Assume in the sequel that the positive eigenvalues of KB decreasingly are {λn}∞n=1,
where K := K0. Then we have the following main results.

THEOREM 2.1. Suppose that (H1)–(H3) hold, β0 ∈ ( 1
λ2n0

, 1
λ2n0+1

), where n0 is a natural
number. Then (2.1) has at least one sign-changing solution. Moreover, (2.1) has at least
one positive and one negative solution.

Proof. The proof is achieved in the following six steps:
Step 1. Since F is an (e1, B)-limit-increasing operator, which is locally increasing at θ ,
there exist a sequence of continuous operators {Fn}, a sequence of positive numbers
{Mn} and r0 > 0 such that (2.2)–(2.4) hold, where x0 = θ and D = [u0, v0]. For
brevity, let us denote F0 = F , G0 = F , M0 = 0 and Kn = KMn for each n ∈ � in the
sequel of this section. Now, since u0 and v0 are strict lower and upper solutions and
F is e1-continuous on [u0, v0], by (2.2) and the Definitions 2.1 and 2.3, for sufficiently
large enough n ∈ � (assume without loss of generality that for all n ∈ �), we have

Lu0 ≺1 Fnu0, Fnv0 ≺1 Lv0.

Since F ′(θ ) = β0B, we have

lim
x∈X,‖x‖X →0

‖Fx − Fθ − β0Bx‖Z

‖x‖X
= 0.

By (2.4) we have for each n ∈ �+,

lim
x∈X,‖x‖X →0

‖KnGnx − KnGnθ − (β0 + Mn)KnBx‖Z

‖x‖X

� lim
x∈X,‖x‖X →0

‖Kn‖‖Fx − Fθ − β0Bx‖Z

‖x‖X
= 0.

This implies that KnGn is Fréchet differentiable at θ for each n ∈ �+, and
(KnGn)′(θ ) = (β0 + Mn)KnB. Let μ be a positive eigenvalue of the linear operator
(β0 + Mn)KnB and xμ be the corresponding eigenfunction, that is

(β0 + Mn)KnBxμ = μxμ.

https://doi.org/10.1017/S0017089511000115 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089511000115


SIGN-CHANGING SOLUTIONS OF (e1, B) 539

Then, we have

(β0 + Mn)Bxμ = μ(L + MnB)xμ,

and so

KBxμ = μ

β0 + (1 − μ)Mn
xμ.

Since the positive eigenvalues of KB are {λi}, there exists i0 such that

λi0 = μ

β0 + (1 − μ)Mn
,

and so

μ = λi0 (β0 + Mn)
1 + λi0 Mn

. (2.5)

On other hand, we can easily prove that every positive number μ satisfying (2.5) is
an eigenvalue of the linear operator (β0 + Mn)KnB. Thus, the sequence of positive
eigenvalues of the linear operator (β0 + Mn)KnB is{

λi(β0 + Mn)
1 + λiMn

}∞

i=1
.

Step 2. For each n ∈ �+, let

S+
n = {x ∈ [u0, v0]|x > θ, x = KnGnx},

S−
n = {x ∈ [u0, v0]|x < θ, x = KnGnx}.

By (H3), there exists ēn ∈ P\{θ} such that, for each n ∈ �+, KnB is ēn-positive and
ēn-continuous. Now we shall show that for each n ∈ �+, there exists ζn > 0 such
that

S+
n � ζnēn, S−

n � −ζnēn. (2.6)

Let x0 ∈ S+
n . Now, since Gnx0 > Gnθ = θ and Kn is ēn-positive, there exists β

(n)
x0 > 0

such that x0 = KnGnx0 � β
(n)
x0 ēn. On the other hand, since Gn : X �→ Z is continuous

and Kn : Z �→ X is ēn-continuous, for
β

(n)
x0
2 > 0, there exits rx0 > 0 such that for any

x ∈ U(x0, rx0 ) ∩ S+
n ,

−1
2
β(n)

x0
ēn � KnGnx − KnGnx0 � 1

2
β(n)

x0
ēn,

and thus, for any x ∈ U(x0, rx0 ) ∩ S+
n , we have

x � x0 − 1
2
β(n)

x0
ēn � 1

2
β(n)

x0
ēn.

Obviously, {U(x0, rx0 )|x0 ∈ S+
n } is an open cover of S+

n . Since P ⊂ X and P1 ⊂ Z
are normal, (2.3) implies that Gn is bounded on [u0, v0] for each n ∈ �. Thus,
S+

n = KnGnS+
n ⊂ X is a relative compact set for each n ∈ �+ (note G0 = F also
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is bounded). Therefore, there exist finite subsets of {U(x0, rx0 )|x0 ∈ S+
n }, say,

U(x1, rx1 ), . . . , U(xkn , rkn ), such that

S+
n ⊂

kn⋃
i=1

U(xi, rxi ).

Let β
(n)
+ = min{ 1

2β
(n)
x1 , 1

2β
(n)
x2 , . . . , 1

2β
(n)
xkn

} > 0 for each n ∈ �+. Then, we have

S+
n � β

(n)
+ ēn. Similarly, there exists β

(n)
− > 0 such that S−

n � −β
(n)
− ēn. Let β(n) =

1
2 min{β(n)

+ , β
(n)
− }, then (2.6) holds.

Step 3. Let n ∈ �+ be fixed at present. The spectrum radius of (KnGn)′(θ ) = (β0 +
Mn)KnB is

r((β0 + Mn)KnB) = λ1(β0 + Mn)
1 + λ1Mn

> 1.

By Lemma 2.2, there exists hn ∈ P\{θ} such that

(β0 + Mn)KnBhn = r((β0 + Mn)KnB)hn. (2.7)

Since Kn is ēn-positive and B : P\{θ} �→ P1\{θ}, by (2.7), there exist α(hn) > 0 and
β(hn) > 0 such that

α(hn)ēn � hn � β(hn)ēn. (2.8)

By Lemma 2.1, there exists τn > 0 such that for any τ ∈ (0, τn],

−τhn > KnGn(−τhn), KnGn(τhn) > τhn. (2.9)

By (2.6), (2.8) and (2.9), we may take τn > 0 small enough such that

u0 < v2,n < θ < u2,n < v0, (2.10)

S+
n � u2,n, S−

n � v2,n (2.11)

and

u2,n < KnGnu2,n, KnGnv2,n < v2,n, (2.12)

where u2,n = τnhn and v2,n = −τnhn. Since 1 is not an eigenvalue of the linear operator
(KnGn)′(θ ), there exists r̄n > 0 such that KnGn has the unique fixed point θ in U(θ, r̄n),
and

deg(I − KnGn, U(θ, r̄n), θ ) = (−1)2n0 = 1. (2.13)

Assume that r̄n > 0 small enough such that v2,n, u2,n �∈ U(θ, r̄n), U(θ, r̄n) ⊂ [u0, v0]
and r̄n < r̄0 < r0.
Step 4. For each n ∈ �, let


1,n = {x ∈ [u0, v0]|there exists τ > 0 such that KnGnx � KnGnv2,n − τ ēn},

2,n = {x ∈ [u0, v0]|there exists τ > 0 such that KnGnx � KnGnu2,n + τ ēn}.
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It is easy to see that u0 ∈ 
1,n and v0 ∈ 
2,n. By the ēn-continuity of KnGn, it is easy
to see that 
1,n and 
2,n are open subsets of [u0, v0]. Now assume that n is a fixed
natural number. Now we shall show that for any x ∈ ∂[u0,v0]
1,n and t ∈ [0, 1],

x �= tKnGnx + (1 − t)u0. (2.14)

If (2.14) is not true, then there exists x0 ∈ ∂[u0,v0]
1,n and t0 ∈ [0, 1] such that

x0 = t0KnGnx0 + (1 − t0)u0. (2.15)

Notice that x0 ∈ ∂[u0,v0]
1,n, so we have

KnGnx0 � KnGnv2,n < v2,n.

It follows from (2.10) and (2.15) that x0 < v2,n. Thus, by the ēn-positivity of Kn we
have

KnGnv2,n − KnGnx0 = Kn(Gnv2,n − Gnx0) � α(Gnv2,n − Gnx0)ēn,

where α(Gnv2,n − Gnx0) > 0. This implies that x0 ∈ 
1,n, which contradicts x0 ∈
∂[u0,v0]
1,n. Thus, (2.14) holds, and so

i(KnGn,
1,n, [u0, v0]) = 1. (2.16)

Similarly, we have

i(KnGn,
2,n, [u0, v0]) = 1. (2.17)

Obviously, we have

i(KnGn, [u0, v0], [u0, v0]) = 1. (2.18)

From (2.3.5) of [20], we have

i(KnGn, U(θ, r̄n), [u0, v0]) = deg(I − KnGn · r, U(θ, R̄n) ∩ r−1(U(θ, r̄n)), θ ), (2.19)

where r : X �→ [u0, v0] is a retraction and R̄n > r̄0. It is easy to see that each fixed
point of KnGn · r in U(θ, R̄n) ∩ r−1(U(θ, r̄n)) must belong to U(θ, r̄n). Thus, by the
properties of the Leray–Schauder degree,

deg(I − KnGn, U(θ, r̄n), θ ) = deg(I − KnGn · r, U(θ, R̄n) ∩ r−1(U(θ, r̄n)), θ ). (2.20)

It follows from (2.13), (2.19) and (2.20) that

i(KnGn, U(θ, r̄n), [u0, v0]) = 1. (2.21)

By (2.16)–(2.18) and (2.21), we have

i
(
KnGn, [u0, v0]\(Cl[u0,v0]
1,n ∪ Cl[u0,v0]
2,n ∪ Ū(θ, r̄n)

)
, [u0, v0]

) = −2. (2.22)

By (2.16), (2.17) and (2.22), KnGn has three fixed points x1,n ∈ 
1,n, x2,n ∈ 
2,n and
x3,n ∈ [u0, v0]\(Cl[u0,v0]
1,n ∪ Cl[u0,v0]
2,n ∪ Ū(θ, r̄n)

)
, respectively. Let us show that

‖xi,n‖X � r̄0, i = 1, 2, 3. (2.23)
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We only show that ‖x3,n‖X � r̄0. By contradiction, assume that ‖x3,n‖X < r̄0 < r0.
Since

x3,n = KnGnx3,n = (L + Mn)−1(Fnx3,n + MnBx3,n),

we have x3,n = KFx3,n. Now, since θ is the unique solution of KF in U(θ, r̄0), we
see that x3,n = θ , which contradicts x3,n �∈ B̄(θ, r̄n), and so (2.23) holds.
Step 5. Since [u0, v0] is bounded and F : [u0, v0] �→ Z is bounded, there exists R′ > 0
such that ‖Fx1,n‖Z < R′. It follows from (2.2) that

θ � Fnx1,n − Fx1,n + 1
n

e1 � 2
n

e1 � 2e1,

and so

‖Fnx1,n‖Z � ‖Fnx1,n − Fx1,n + 1
n e1‖Z + ‖Fx1,n − 1

n e1‖Z

� 2γ0‖e1‖Z + ‖Fx1,n − 1
n e1‖Z

� 2γ0‖e1‖Z + ‖Fx1,n‖Z + ‖e1‖Z

� (2γ0 + 1)‖e1‖Z + R′,

where γ0 > 0 is the normal constant of the cone P1. Since x1,n = KFnx1,n and K is
a linear completely continuous operator, {x1,n}∞n=1 is a relatively compact set. Thus,
there exist a sub-sequence of {x1,n}∞n=1 (assume without loss of generality that the
sub-sequence is {x1,n}∞n=1 itself) and x∗

1 such that x1,n → x∗
1(n → ∞). Since

−1
n

e1 � Fnx1,n − Fx1,n � 1
n

e1,

we have Fnx1,n − Fx1,n → θ (n → ∞) and so K(Fnx1,n − Fx1,n) → θ (n → ∞).
Consequently, we have

KFx1,n = K(Fx1,n − Fnx1,n) + KFnx1,n

= K(Fx1,n − Fnx1,n) + x1,n → x∗
1(n → ∞).

On the other hand, KFx1,n → KFx∗
1(n → ∞). Therefore, x∗

1 = KFx∗
1, and so Lx∗

1 =
Fx∗

1, that is, x∗
1 is a solution of (2.1). Similarly, there are two sub-sequences of

{x2,n}∞n=1 and {x3,n}∞n=1 (assume that the two sub-sequences are themselves) and x∗
2,

x∗
3, such that x2,n → x∗

2 and x3,n → x∗
3(n → ∞). Then, x∗

2 and x∗
3 are two solutions

of (2.1).
Step 6. Note that x1,n ∈ 
1,n, so we have

x1,n = KnGnx1,n � KnGnv2,n − τ ēn < v2,n < θ

for some τ > 0, and so x∗
1 � θ . It follows from (2.23) that ‖x∗

1‖X � r̄0. Thus, x∗
1 is

a negative solution of (2.1). Similarly, x∗
2 is a positive solution of (2.1). Finally we

shall show that x∗
3 is a sign-changing solution of (2.1). By contradiction, assume

that x∗
3 is not a sign-changing solution of (2.1). It follows from (2.23) that x∗

3 is not
a zero solution of (2.1). Assume that x∗

3 is a positive solution of (2.1), then by (2.6)
we have

x∗
3 � ζ0ē0. (2.24)
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It is easy to see that

x3,n − x∗
3 = KFnx3,n − KFx∗

3

= K(Fnx3,n − Fx3,n) + K(Fx3,n − Fx∗
3)

� − 1
n Ke1 + K(Fx3,n − Fx∗

3)

= − 1
n ē0 + K(Fx3,n − Fx∗

3).

(2.25)

Since 1
n → 0, x3,n → x∗

3(n → ∞) and K is ē0-continuous, for
ζ0

2
> 0, there exists

n1 > 0 large enough such that

−1
n

ē0 + K(Fx3,n1 − Fx3) � −1
2
ζ0ē0. (2.26)

It follows from (2.24)–(2.26) that

x3,n1 � x∗
3 − 1

2
ζ0ē0 � 1

2
ζ0ē0,

that is, x3,n1 ∈ S+
n1

. From (2.11), we have for any x ∈ S+
n and n ∈ �,

x = KnGnx � KnGnu2,n > u2,n,

and so by (2.2) and the ēn-positive property of Kn, we have

KnGnx − KnGnu2,n � α(Gnx − Gnu2,n)ēn,

where α(Gnx − Gnu2,n) > 0. This implies that x ∈ 
2,n, and so S+
n ⊂ 
2,n for each

n ∈ �. Similarly, we have S−
n ⊂ 
1,n for each n ∈ �. Hence,

x3,n1 ∈ [u0, v0]\(Cl[u0,v0]
1,n1 ∪ Cl[u0,v0]
2,n1 ∪ Ū(θ, r̄n1 )
) ⊂ [u0, v0]\(S+

n1
∪ S−

n1
),

which is a contradiction. Therefore, x∗
3 is a sign-changing solution of (2.1). The

proof is complete.

�

THEOREM 2.2. Suppose that (H1)–(H4) hold, β0 > 1
λ1

, β0 �= 1
λn

for all n � 2. Then
(2.1) has at least four sign-changing solutions. Moreover, (2.1) has at least one positive
and one negative solution.

Proof. In a similar way as that of Theorem 2.1, take a sequence of continuous
operators {Fn}, a sequence of positive numbers {Mn} and r0 > 0 such that (2.2)–(2.4)
hold. Let S+

n and S−
n be defined as in Theorem 2.1. Then there exists ζn > 0 such

that (2.6) holds. A similar argument as in Theorem 2.1 shows that KnGn is Fréchet
differentiable at θ , and r((KnGn)′(θ )) > 1. Thus, there exist u2,n, v2,n such that (2.10)–
(2.12) hold. For each n ∈ �+, take 0 < r̄n < r̄0 < r0 small enough such that u2,n, v2,n �∈
U(θ, r̄n), U(θ, r̄n) ⊂ [u0, v0], KnGn has the unique fixed point θ in U(θ, r̄n), and

i(KnGn, U(θ, r̄n), [u0, v0]) = deg(I − KnGn, U(θ, r̄n), θ ) = (−1)k = ±1, (2.27)
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where k is the sum of all algebraic multiplicities of eigenvalues of (KnGn)′(θ ) larger than
1. Since F is e1-continuous, we may take δ0 > 0 small enough such that ũ1 ≺0 ṽ1, and

L̃u1 ≺1 Fũ1, F ṽ1 ≺1 L̃v1.

where ũ1 = u1 + δ0ē0 and ṽ1 = v1 − δ0ē0. This means that ũ1 and ṽ1 is a pair of well-
ordered strict lower and upper solutions of (2.1). Assume without loss of generality
that for all n ∈ �,

L̃u1 ≺1 Fñu1, Fñv1 ≺1 L̃v1, (2.28)

Lu1 ≺1 Fnu1, Fnv1 ≺1 Lv1, (2.29)

Lu0 ≺1 Fnu0, Fnv0 ≺1 Lv0. (2.30)

For each n ∈ �, let

O1,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGñu1 + τ ēn},

2,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnu2,n + τ ēn},

3,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnv2,n − τ ēn},
O4,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGñv1 − τ ēn},

1,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnu1 + τ ēn},

4,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnv1 − τ ēn}.

Similar to the proof of Theorem 2.1, we have

i(KnGn,
i,n, [u0, v0]) = 1, i = 1, 2, 3, 4, n ∈ �, (2.31)

i(KnGn, Oi,n, [u0, v0]) = 1, i = 1, 4, n ∈ �. (2.32)

Obviously, v0 ∈ O1,n ∩ 
2,n. Next we shall show that for any x ∈ ∂[u0,v0](O1,n ∩ 
2,n)
and t ∈ [0, 1],

x �= tKnGnx + (1 − t)v0, (2.33)

Suppose this is not the case. Then there exists x0 ∈ ∂[u0,v0](O1,n ∩ 
2,n) and t0 ∈ [0, 1]
such that x0 = t0KnGnx + (1 − t0)v0. Now we have three cases: (i) x0 ∈ (∂[u0,v0]O1,n) ∩

2,n; (ii) x0 ∈ O1,n ∩ ∂[u0,v0]
2,n; (iii) x0 ∈ ∂[u0,v0]O1,n ∩ ∂[u0,v0]
2,n. Similar to the proof
of (2.14) in Theorem 2.1, we can get contradictions for the above three cases, and so
(2.33) holds. Thus, we have

i(KnGn, O1,n ∩ 
2,n, [u0, v0]) = i(v0, O1,n ∩ 
2,n, [u0, v0]) = 1. (2.34)

Similarly, we have

i(KnGn, O1,n ∩ O4,n, [u0, v0]) = i
(

ũ1 + ṽ1

2
, O1,n ∩ O4,n, [u0, v0]

)
= 1, (2.35)
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i(KnGn, O4,n ∩ 
3,n, [u0, v0]) = i(u0, O4,n ∩ 
3,n, [u0, v0]) = 1, (2.36)

i(KnGn, O1,n ∩ 
4,n, [u0, v0]) = i
(

ũ1 + v1

2
, O1,n ∩ 
4,n, [u0, v0]

)
= 1, (2.37)

i(KnGn, O4,n ∩ 
1,n, [u0, v0]) = i
(

u1 + ṽ1

2
, O4,n ∩ 
1,n, [u0, v0]

)
= 1. (2.38)

Let

D1,n = O1,n\
(
Cl[u0,v0](O1,n ∩ 
4,n) ∪ Cl[u0,v0](O1,n ∩ 
2,n)

)
,

D2,n = O4,n\
(
Cl[u0,v0](O4,n ∩ 
1,n) ∪ Cl[u0,v0](O4,n ∩ 
3,n)

)
.

It follows from (2.32)–(2.34) and (2.36)–(2.38) that

i(KnGn, D1,n, [u0, v0]) = −1, (2.39)

i(KnGn, D2,n, [u0, v0]) = −1. (2.40)

By (2.34)–(2.40), KnGn has fixed points x1,n ∈ O1,n ∩ 
2,n, x2,n ∈ O4,n ∩ 
3,n, x3,n ∈
O1,n ∩ O4,n, x4,n ∈ D1,n, x5,n ∈ D2,n. Similar to the proof of (2.23) in Theorem 2.1, we
have

‖xi,n‖X � r̄0, i = 1, 2, 3, 4, 5, n ∈ �.

A similar argument as in Step 5 of Theorem 2.1 shows that for each i = 1, 2, 3, 4, 5
there are sub-sequences of {xi,n}∞n=1 (assume without loss of generality that the four
sub-sequences are {xi,n}∞n=1 themselves) and x∗

i such that xi,n → x∗
i (n → ∞). Then, x∗

i
is a solution of (2.1) for each i = 1, 2, 3, 4, 5. Moreover, by a similar argument as in
Step 6 of Theorem 2.1, we see that x∗

1 is a positive solution of (2.1), x∗
2 is a negative

solution of (2.1) and x∗
3, x∗

4 and x∗
5 are three sign-changing solutions of (2.1). Since

x3,n ∈ O1,n ∩ O4,n, there exists τ > 0 such that

x3,n = KnGnx3,n � KnGñv1 − τ ēn < KnGñv1 < ṽ1

and so x∗
3 � ṽ1. Next we shall show that x∗

3 �= x∗
4. Suppose this is not the case. Then

x∗
4 � ṽ1 = v1 − δ0ē0. On the other hand, a similar argument as in Step 6 of The-

orem 2.1 shows that

x4,n − x∗
4 = KFnx4,n − KFx∗

4

= K(Fnx4,n − Fx4,n) + K(Fx4,n − Fx∗
4)

� 1
n Ke1 + K(Fx4,n − Fx∗

4)

= 1
n ē0 + K(Fx4,n − Fx∗

4).

(2.41)

Since F is e1-continuous and 1
n → 0(n → +∞), there exists n1 > 0 large enough such

that

1
n

ē0 + K(Fx4,n1 − Fx∗
4) � 1

2
δ0ē0.
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Then, by (2.41) we have

x4,n1 � x∗
4 + 1

2
δ0ē0 � v1 − 1

2
δ0ē0 < v1. (2.42)

Since Kn1 is ēn1 -positive and Gn1 is strictly increasing, we have

Kn1 Gn1 x4,n1 � Kn1 Gn1v1 − α(Gn1v1 − Gn1 x4,n1 )ēn1 , (2.43)

where α(Gn1v1 − Gn1 x4,n1 ) > 0. This implies that x4,n1 ∈ 
4,n1 , which contradicts x4,n1 ∈
D1,n1 , and so x∗

3 �= x∗
4. Similarly, x∗

3 �= x∗
5. From x4,n � ũ1, we have x∗

4 � ũ1 = u1 + δ0ē0.
Then, we can show that x∗

5 �= x∗
4. Thus, x∗

3, x∗
4 and x∗

5 are three distinct sign-changing
solutions of (2.1).

Now we show the existence of the fourth sign-changing solution. For each n ∈ �,
let us define 
i,n(i = 1, 2, 3, 4) as above. For each n ∈ �, we have

i(KnGn,
1,n ∩ 
2,n, [u0, v0]) = 1, (2.44)

i(KnGn,
3,n ∩ 
4,n, [u0, v0]) = 1, (2.45)

i(KnGn,
4,n ∩ 
1,n, [u0, v0]) = 1, (2.46)

i(KnGn, [u0, v0], [u0, v0]) = 1. (2.47)

Let

D̃1,n = 
1,n\
(
Cl[u0,v0](
1,n ∩ 
4,n) ∪ (Cl[u0,v0](
1,n ∩ 
2,n)

)
,

D̃2,n = 
4,n\
(
Cl[u0,v0](
1,n ∩ 
4,n) ∪ (Cl[u0,v0](
4,n ∩ 
3,n)

)
.

It follows from (2.31) and (2.44)–(2.46) that

i(KnGn, D̃1,n, [u0, v0]) = −1, (2.48)

i(KnGn, D̃2,n, [u0, v0]) = −1. (2.49)

By (2.27), (2.31) and (2.46)–(2.49), we have

i
(
KnGn, [u0, v0]\(Cl[u0,v0]D̃1,n ∪ Cl[u0,v0]D̃2,n ∪ Cl[u0,v0](
1,n ∩ 
4,n) ∪ Cl[u0,v0]
2,n

∪ Cl[u0,v0]
3,n ∪ Ū(θ, r̄n)
)
, [u0, v0]

) = 1 − (−1) − (−1) − 1 − 1 − 1 − (±1) = ∓1.

Therefore, for each n ∈ �, KnGn has a fixed point

x6,n ∈ [u0, v0]\(Cl[u0,v0]D̃1,n ∪ Cl[u0,v0]D̃2,n ∪ Cl[u0,v0](
1,n ∩ 
4,n) ∪ Cl[u0,v0]
2,n

∪ Cl[u0,v0]
3,n ∪ Ū(θ, r̄n)
)
.

Then, by the method of Theorem 2.1, we see that ‖x6,n‖X � r̄0 for each n ∈ �. Similar
to the proof of Steps 5 and 6 in Theorem 2.1, we see that there exist a sub-sequence
of {x6,n}∞n=1 (assume without loss of generality that the sub-sequence is {x6,n}∞n=1 itself)
and x∗

6 such that x∗
6,n → x∗

6 as n → ∞ and x∗
6 is a sign-changing solution of (2.1). A
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similar way to that of showing (2.41)–(2.43) yields that x∗
6 is different from x∗

3, x∗
4, x∗

5.
Thus, x∗

3, . . . , x∗
6 are four sign-changing solutions of (2.1). The proof is complete. �

REMARK 2.2. In [10] we obtained some existence results for sign-changing solutions
of a three-point boundary value problem. The method to show the main results in [10]
are different from that of this paper. We obtained the main results in [10] by using
the modification functions technique and the Leray–Schauder degree method. But in
this paper we obtained the main results by using the fixed point index method and the
(e1, B)-limit-increasing operator method.

THEOREM 2.3. Suppose that (H1)–(H4) hold, β0 < 1
λ1

. Then (2.1) has at least
four sign-changing solutions. Moreover, (2.1) has at least two positive and two negative
solutions.

Proof. The proof is similar to that of Theorem 2.2. For completeness, we will
sketch the proof. Take {Fn}, {Mn} and r0 such that (2.2)–(2.4) hold. Then KnGn is
Fréchet differentiable at θ , 1 is not an eigenvalue of (KnGn)′(θ ) = (β0 + Mn)KnB and
r((KnGn)′(θ )) < 1 for each n ∈ �. By Lemma 2.1, there exists τn > 0 such that for any
τ ∈ (0, τn],

−τhn < KnGn(−τhn), KnGn(τhn) < τhn,

where hn is the eigenfunction of (KnGn)′(θ ) corresponding to the eigenvalue
r((KnGn)′(θ )).

For each n ∈ � and i ∈ �, take εi ∈ (0, τn] small enough such that

u(i)
2,n �� v1, u1 �� v

(i)
2,n,

u0 < u(i)
2,n < θ < v

(i)
2,n < v0,

and εi → 0 as i → ∞, where u(i)
2,n = −εihn, v

(i)
2,n = εihn. Similar to the proof of The-

orem 2.2, we may take δ0 > 0 small enough such that L̃u1 ≺1 Fũ1, F ṽ1 ≺1 L̃v1 and
ũ1 ≺0 ṽ1, where ũ1 = u1 + δ0ē0 and ṽ1 = v1 − δ0ē0. Assume without loss of generality
that (2.28)–(2.30) hold for all n ∈ �. For each n ∈ � and i ∈ �, let


1,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnu1 + τ ēn},



(i)
2,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnu(i)

2,n + τ ēn},



(i)
3,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnv

(i)
2,n − τ ēn},


4,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGnv1 − τ ēn},
O1,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGñu1 + τ ēn},
O4,n = {x ∈ [u0, v0]| there exists τ > 0 such that KnGnx � KnGñv1 − τ ēn},

D(i)
1,n = O1,n\

(
Cl[u0,v0](O1,n ∩ 
4,n) ∪ Cl[u0,v0](O1,n ∩ 


(i)
2,n)

)
,

D(i)
2,n = O4,n\

(
Cl[u0,v0](O4,n ∩ 
1,n) ∪ Cl[u0,v0](O4,n ∩ 


(i)
3,n)

)
,

D(i)
3,n = 


(i)
3,n\

(
Cl[u0,v0](
4,n ∩ 


(i)
3,n) ∪ Cl[u0,v0](
3,n ∩ 


(i)
2,n)

)
,

D(i)
4,n = 


(i)
1,n\

(
Cl[u0,v0](
1,n ∩ 
4,n) ∪ Cl[u0,v0](
1,n ∩ 


(i)
2,n)

)
.
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Similar to the proof of Theorem 2.1, we can show that for each n ∈ � and some i0 ∈ �,

i(KnGn, O1,n ∩ O4,n, [u0, v0]) = 1, (2.50)

i
(
KnGn, D(i0)

j,n , [u0, v0]
) = −1, j = 1, 2, 3, 4. (2.51)

By (2.50) and (2.51), KnGn has fixed points x1,n ∈ O1,n ∩ O4,n, x2,n ∈ D(i0)
1,n and x3,n ∈

D(i0)
2,n. Moreover,

i(KnGn, [u0, v0], [u0, v0]) = 1, (2.52)

i(KnGn,

(i0)
2,n, [u0, v0]) = 1, (2.53)

i(KnGn,
4,n, [u0, v0]) = 1. (2.54)

It follows from (2.51)–(2.54) that

i
(
KnGn, [u0, v0]\(Cl[u0,v0]


(i0)
2,n ∪ Cl[u0,v0]
4,n ∪ Cl[u0,v0]D

(i0)
3,n

∪ Cl[u0,v0]D
(i0)
4,n

)
, [u0, v0]

) = 1 − 1 − 1 − (−1) − (−1) = 1.

Therefore, KnGn has a fixed point

x4,n ∈ [u0, v0]\(Cl[u0,v0]

(i0)
2,n ∪ Cl[u0,v0]
4,n ∪ Cl[u0,v0]D

(i0)
3,n ∪ Cl[u0,v0]D

(i0)
4,n

)
.

Since [θ, v0] ⊂ 

(i0)
2,n and [u0, θ ] ⊂ 


(i0)
3,n, we easily see that x1,n, x2,n, x3,n, x4,n ∈ X\(P ∪

(−P)). By a similar way as that of Theorem 2.2 we can show that for each n ∈ �+ there
exists r̄n > 0 such that r̄n < r̄0 < r0 and KnGn has the unique solution θ in U(θ, r̄n).
Then as the proof of Theorem 2.1, we can show that ‖xi,n‖X � r̄0 for i = 1, 2, 3, 4
and n ∈ �, and there exist sub-sequences of {xi,n}∞n=1(i = 1, 2, 3, 4) (assume without
loss of generality that the sub-sequences are {xi,n}∞n=1(i = 1, 2, 3, 4) themselves) and
x∗

i (i = 1, 2, 3, 4) such that xi,n → x∗
i as n → ∞ for each i = 1, 2, 3, 4. It is easy to see

that x∗
1, x∗

2, x∗
3 and x∗

4 are four distinct sign-changing solutions of (2.1).
Next we shall show that (2.1) has at least two positive solutions. It is easy to see

that for each i, n ∈ �,

i(KnGn, O1,n ∩ 

(i)
2,n, [u0, v0]) = 1. (2.55)

Then KnGn has fixed point x(i)
5,n ∈ O1,n ∩ 


(i)
2,n. Similar to the above argument, we see

that ‖x(i)
5,n‖X � r̄0 for all i, n ∈ �. Since x(i)

5,n ∈ O1,n ∩ 

(i)
2,n, we have

x(i)
5,n = KnGnx(i)

5,n � KnGnu(i)
2,n + τ ēn � KnGnu(i)

2,n > u(i)
2,n. (2.56)

A similar argument as given in Theorem 2.1 shows that there exist a sub-sequence
of {x(i)

5,n} (assume without loss of generality that the sub-sequence is {x(i)
5,n} itself) and

x(i)
5 such that x(i)

5,n → x(i)
5 as n → ∞. Obviously, x(i)

5 is a solution of (2.1), and so x(i)
5 =

KFx(i)
5 . From {x(i)

5 |i = 1, 2, . . .} ⊂ [u0, v0], we see that {x(i)
5 |i = 1, 2, . . .} is bounded.

Thus, {x(i)
5 |i = 1, 2, . . .} is a relatively compact set because K is a completely continuous
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operator. Assume that x(i)
5 → x∗

5 as i → ∞, then x∗
5 = KFx∗

5, that is Lx∗
5 = Fx∗

5. This

means that x∗
5 is a solution of (2.1). It follows from (2.56) that x∗

5 � θ . Since ‖x(i)
5,n‖X �

r̄0, x∗
5 is not a zero solution of (2.1). Thus, x∗

5 is a positive solution of (2.1).
Also, we can show that for each i ∈ � and n ∈ � and some j0 ∈ N,

i
(
KnGn,


(i)
2,n\

(
Cl[u0,v0](


(i)
2,n ∩ 


(j0)
3,n) ∪ Cl[u0,v0](


(i)
2,n ∩ 
1,n)

)
, [u0, v0]

) = −1.

Thus, KnGn has a fixed point x(i)
6,n ∈ 


(i)
2,n\

(
Cl[u0,v0](


(i)
2,n ∩ 


(j0)
3,n) ∪ Cl[u0,v0](


(i)
2,n ∩ 
1,n)

)
.

Similar to the above argument, we may assume that x(i)
6,n → x(i)

6 as n → ∞ and x(i)
6 → x∗

6
as i → ∞. Then x∗

6 is a positive solution of (2.1). It is easy to see that x∗
6 �= x∗

5. Therefore,
x∗

5 and x∗
6 are two positive solutions of (2.1). Similarly, we can show that (2.1) has at

least two negative solutions, x∗
7 and x∗

8. The proof is complete. �
REMARK 2.3. In Theorems 2.2 and 2.3 we not only obtained multiplicity results

for sign-changing solutions but also made a clear description of positions of these
solutions of the non-linear operator equation (2.1). In order to show the main results,
we have constructed some strict upper or lower solutions of (2.1). Some pairs of these
strict upper and lower solutions are well ordered and others are not well ordered.
Especially, some pairs of strict upper and lower solutions are parallel to each other.
For other discussions concerning the parallel pairs of upper and lower solutions, the
reader is refereed to [10, 13].

3. Applications of the abstract results in differential boundary value problems. In
this section we will apply the main results of Section 2 to study the Sturm–Liouville
differential boundary value problem⎧⎨⎩

−(p(t)u′)′ − q(t)u = f (t, u(t)), t ∈ I,
R0(u) := au(0) − bu′(0) = 0,

R1(u) := cu(1) + du′(1) = 0,

(3.1)

where I = [0, 1], p(t) ∈ C1(I), q(t) � 0, p(t) > 0(∀t ∈ I), a, b, c, d � 0, a2 + b2 �= 0, c2 +
d2 �= 0.

Let X = C(I) denote the Banach space of all continuous functions on I with the
maximum norm ‖ · ‖X , and Z = X × R2. For each x̃ = (x(t), l, m) ∈ Z, let

‖̃x‖Z = ‖x(t)‖X + |l| + |m|.
Then (Z, ‖ · ‖Z) is the real Banach space. Let P = {x = x(t) ∈ X |x(t) � 0, t ∈ I} and
P1 = {̃x = (x(t), l, m) ∈ Z|x(t) ∈ P, l � 0, m � 0}. Then P and P1 are normal cones of
X and Z, respectively.

Now let us introduce the following conditions to be used.
(A1) f ∈ C(I × R1, R1), f (t, 0) = 0, and f (t, x) is locally continuous differentiable

with x at x = 0.

(A2) There exists β0 > 0 such that lim
x→0

f (t, x)
x

= β0 uniformly with t ∈ I .

(A3) There exist u0(t), v0(t) ∈ X , u0(t) < 0 < v0(t) for all t ∈ I , u0, v0 are strict lower
and upper solutions of (3.1).

(A4) There exist u1, v1 ∈ X such that u1 and v1 are sign-changing on I and u0(t) <

u1(t) < v1(t) < v0(t) for all t ∈ I , u1, v1 are strict lower and upper solutions of (3.1).
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Let {λn} denote the decreasing sequence of the positive eigenvalues of the linear
problem: ⎧⎨⎩−(p(t)u′)′ − q(t)u = 1

λn
u, t ∈ (0, 1),

R0(u) = R1(u) = 0.

The following Lemmas 3.1–3.3 can be found in Section 3 of [13].

LEMMA 3.1. For each M � 0, let ϕM(t) and ψM(t) satisfy

{
(p(t)ϕ′

M(t))′ + (q(t) − M)ϕM(t) = 0, t ∈ I,

ϕM(1) = d, ϕ′
M(1) = −c,

(3.2)

{
(p(t)ψ ′

M(t))′ + (q(t) − M)ψM(t) = 0, t ∈ I,

ψM(0) = b, ψ ′
M(0) = a,

(3.3)

respectively. Then we have
(i) ϕM(t) is non-increasing in [0, 1) with ϕM(t) > 0(t ∈ [0, 1)).
(ii) ψM(t) is non-decreasing in (0, 1] with ψM(t) > 0(t ∈ (0, 1]).
(iii) ϕM and ψM are linearly independent.
(iv) p(t)(ϕM(t)ψ ′

M(t) − ϕ′
M(t)ψM(t)) = ω, where ω is a positive constant.

(v) R0(ϕM) �= 0, R1(ϕM) = 0.

(vi) R0(ψM) = 0, R1(ψM) �= 0.

LEMMA 3.2. Let g ∈ C(I), m, l ∈ R1. Then u ∈ C2(I) is a solution to the following
boundary value problem{

−(p(t)u′)′ − (q(t) − M)u = g(t), t ∈ I,

R0(u) = l, R1(u) = m,

if and only if

u(t) = ϕM(t)
R0(ϕM)

l + ψM(t)
R1(ψM)

m +
∫ 1

0
G(t, s)g(s) ds, t ∈ I,

where

GM(t, s) = 1
ω

{
ϕM(t)ψM(s), s � t,

ϕM(s)ψM(t), s > t.

LEMMA 3.3. For any M � 0, x ∈ P, l, m � 0, let

y(t) = ϕM(t)
R0(ϕM)

l + ψM(t)
R1(ψM)

m +
∫ 1

0
GM(t, s)x(s) ds, t ∈ I.

Then

y(t) � ‖y‖X ēM(t), t ∈ I,

where ēM(t) = 1
γ 2

M
ϕM(t)ψM(t), γM = max{‖ϕM‖X , ‖ψM‖X }.
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THEOREM 3.1. Suppose (A1)–(A3) hold, and β0 ∈ ( 1
λ2n0

, 1
λ2n0+1

), where n0 is a natural
number. Then (3.1) has at least one sign-changing solution. Moreover, (3.1) has at least
one positive and one negative solution.

Proof. Let us define the linear operators L : dom L = C2(I) ⊂ X �→ Z, B : X �→ Z
and the non-linear operator F : X �→ Z by

Lx = (−(p(t)x′(t))′ − q(t)x(t), ax(0) − bx′(0), cx(1) + dx′(1)),

Bx = (x(t), 0, 0), Fx = (f (t, x(t)), 0, 0),

respectively. Then, we need to consider the operator equation

Lu = Fu, u ∈ domL.

For each M � 0, by Lemma 3.1–3.3 and a method in [13] we can easily show that
(L + MB)−1 exists, (L + MB)−1 is ēM-positive and ēM-continuous (the details of the
proof, one can find in Section 3 of [13]). By the well-known Sturm–Liouville theory of
linear boundary value problems, we easily see that the algebraic multiplicity of each
positive eigenvalue of KMB is 1. Thus, (H3) holds.

Since f (t, x) is locally continuous differentiable with x at x = 0, there exist r0 > 0
and τ0 > 0 such that

f (t, x2) − f (t, x1) � −τ0(x2 − x1), ∀x2, x1 ∈ [−r0, r0], x2 > x1, t ∈ I.

Let R0 > r0. Now since f : I × [r0, R0] �→ R1 is continuous, for any n ∈ �, there exists
g̃(n)

1 : I × [r0, R0] �→ R1 infinitely differentiable such that

|f (t, x) − g(n)
1 (t, x)| <

1
2n

,∀(t, x) ∈ I × [r0, R0].

Let

g1,n(t, x) = g̃(n)
1 (t, x) − (̃g(n)

1 (t, r0) − f (t, r0)), ∀(t, x) ∈ I × [r0, R0].

Then, g1,n is infinitely differentiable with x, and g1,n(t, r0) = f (t, r0)(∀t ∈ I). For any
n ∈ �, we have

|f (t, x) − g1,n(t, x)| � |f (t, x) − g̃(n)
1 (t, x)| + |̃g(n)

1 (t, r0) − f (t, r0)| <
1
n
, ∀(t, x) ∈ I

×[r0, R0].

Since g1,n is infinitely differentiable with x, there exists τ1,n > 0 such that

g1,n(t, x2) − g1,n(t, x1) > −τ1,n(x2 − x1), ∀(t, x1), (t, x2) ∈ I × [r0, R0], x2 > x1.

Similarly, there exists g2,n(t, x), which is continuous on I × [−R0,−r0] and infinitely
differentiable such that g2,n(t,−r0) = f (t,−r0)( ∀t ∈ I), and

|f (t, x) − g2,n(t, x)| <
1
n
, ∀(t, x) ∈ I × [−R0,−r0].

Also, there exists τ2,n > 0 such that

g2,n(t, x2) − g2,n(t, x1) > −τ2,n(x2 − x1), ∀(t, x2), (t, x1) ∈ I × [−R0,−r0], x2 > x1.
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For each n ∈ �, let fn : I × [−R0, R0] �→ R1 be defined by

fn(t, x) =

⎧⎪⎨⎪⎩
g1,n(t, x), (t, x) ∈ I × [r0, R0];

f (t, x), (t, x) ∈ I × [−r0, r0];

g2,n(t, x), (t, x) ∈ I × [−R0,−r0].

Then, fn ∈ C(I × [−R0, R0]), and for each n ∈ �,

|f (t, x) − fn(t, x)| <
1
n
,∀(t, x) ∈ I × [−R0, R0].

Let Mn = τ1,n + τ2,n + τ0. Then we have

fn(t, x2) − fn(t, x1) > −Mn(x2 − x1), ∀(t, x2), (t, x1) ∈ I × [−R0, R0], x2 > x1.

Define Fn : X �→ Z by

Fnx = (fn(t, x(t)), 0, 0).

Then we have

−1
n

e1 < Fnx − Fx <
1
n

e1,

where x̄0(t) ≡ 1(∀t ∈ I) and e1 = (x̄0(t), 0, 0). For each x ∈ U(θ, r0) we have

Fnx = Fx, n = 1, 2, . . . .

Therefore, F is (e1, B)-limit increasing on any bounded set of X and is locally increasing
at θ . It follows from (A2) that F is Fréchet differentiable at θ and F ′(θ ) = β0B. We see
from the continuity of f that F is e1-continuous. This means that (H2) holds. From
(A3) we see that u0 and v0 are strict lower and upper solutions of (3.1), respectively.
This means that (H1) holds. Thus, all conditions of Theorem 2.1 are satisfied. Now the
conclusion of Theorem 3.1 follows from Theorem 2.1. The proof is complete. �

By Theorems 2.2 and 2.3 we can show the following Theorems 3.2. and 3.3.

THEOREM 3.2. Suppose that (A1)–(A4) hold, β0 > 1
λ1

, β0 �= 1
λn

for all n � 2. Then
the boundary value problem (3.1) has at least four sign-changing solutions. Moreover, the
boundary value problem (3.1) has at least one positive and one negative solution.

THEOREM 3.3. Suppose that (A1)–(A4) hold, β0 < 1
λ1

. Then the boundary value
problem (3.1) has at least four sign-changing solutions. Moreover, the boundary value
problem (3.1) has at least two positive and two negative solutions.

REMARK 3.1. In Theorems 2.2 and 2.3 we have employed a condition of a pair of
well-ordered strict lower and upper solutions that are sign-changing. As pointed out
in [10], it is very difficult to construct a pair of well-ordered strict lower and upper
solutions. However, a concrete numeral example shows that such a pair of well-ordered
strict lower and upper solutions does exist, see [10].

REMARK 3.2. In Theorems 2.1–2.3, by combining the fixed point index method
and the concept of (e1, B)-limit-increasing operator we have obtained some multiplicity
results for sign-changing solutions. Obviously, if we combine the critical point theory
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method with the concept of (e1, B)-limit-increasing operator, we may obtain some inter-
esting results for sign-changing critical point of non-linear boundary value problems.
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