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We computationally study the motion of an initially spherical capsule flowing through
a straight channel with an orthogonal lateral branch, using a three-dimensional
immersed-boundary lattice-Boltzmann method. The capsule is enclosed by a strain-
hardening membrane and contains an internal fluid of the same viscosity as the
fluid in which it is suspended. Our primary focus is to study the influence of the
geometry of the side branch on the capsule path selection. Specifically, we consider
the case where the side branch cross-section is half that of the straight channel
and study various bifurcation configurations, where the branch is rectangular or
square, centred or not on the straight channel axis. The capsule is initially centred
on the axis of the straight channel. We impose the flow rate split ratio between
the two downstream branches of the bifurcation. We summarise the results obtained
for different capsule-to-channel size ratios, flow Reynolds number Re (based on the
parent channel size and average flow speed) and capsule mechanical deformability
(as measured by the capillary number) in phase diagrams giving the critical flow rate
split ratio above which the capsule flows into the side branch. A major finding is
that, at equal flow rate split between the two downstream branches, the capsule will
enter a branch which is narrow in the spanwise direction, but will not enter a branch
which is narrow in the flow direction. For Re 6 5, this novel intriguing phenomenon
primarily results from the background flow, which is strongly influenced by the side
branch geometry. For higher values of Re, the capsule relative size and deformability
also play specific roles in the path selection. The capsule trajectory does not always
obey the classical Fung’s bifurcation law, which stipulates that a particle (in Fung’s
case, a red blood cell) enters the bifurcation branch with the highest flow rate. We
also consider the same branched channels operating under constant pressure drop
conditions and show that such systems are difficult to control due to the transient
additional pressure drop caused by the capsule. The present results obtained for dilute
systems open new perspectives on the design of microfluidic systems, with optimal
channel geometries and flow conditions to enrich cell and particle suspensions.
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Path selection of a spherical capsule in a branched channel 137

1. Introduction
Path selection of a deformable capsule suspended in an external fluid flowing

through a branched microchannel is an important problem that is relevant to
understand blood-related flows in the microcirculation (Popel & Johnson 2005;
Secomb 2017), aerosol particle deposition in respiratory airways (Kleinstreuer &
Zhang 2010) or to develop microfluidic technologies to separate or enrich suspensions
(Gossett et al. 2010; Tripathi et al. 2015). The aim of such studies is usually to
determine the path selection of the suspended particles at a bifurcation, depending on
their position in the feed channel, the flow rate split between the two branches and
the bifurcation geometry. This is a complex problem that involves the interactions of
a particle with the channel wall or other particles, as well as the effect of the flow
field.

In this paper, we eliminate particle–particle interactions and consider a single
capsule centred on the feed channel axis far from the bifurcation. Our objective is to
understand the fundamental fluid dynamic processes that lead a small capsule to flow
into one branch rather than the other, depending on the bifurcation geometry and
flow conditions. Another objective is to identify an optimal microfluidic geometry for
capsule suspension enrichment.

Different bifurcation configurations have been considered to study the path selection
of single fluid-suspended cells or elastic capsules (figure 1): they are defined by the
angles between the feed channel and the two daughter branches α and β, and also
by the respective cross-sections of the different branches. Typical cases include the
symmetric Y-bifurcation where α=β, the symmetric T-bifurcation where α=β=π/2
and the lateral bifurcation (a straight channel with an orthogonal side branch) where
α =π/2 and β = 0.

The path selection of a red blood cell (RBC) at a bifurcation has been considered
by Fung and co-workers (Fung 1973; Yen & Fung 1978), who have proposed a
simple qualitative model (Fung’s model) that tries to predict which branch an RBC
will take. To this effect, they have considered a single RBC centred at the entrance of
a symmetrical Y-bifurcation with branches of equal section (figure 1a), and estimated
the pressure and viscous shear forces acting on it. They find that the resultant force
is pointing towards the fast channel, and that consequently, the RBC will flow into
the branch with the highest flow rate, or equivalently, the highest velocity. Over
the years, Fung’s model has been quoted using velocity or flow rate indifferently
as the criterion for branch selection. Although the notions of flow rate or velocity
are equivalent when the branches are equal, this is, however, not the case when the
branch sections are different. So the question that arises is: when the branches of
a bifurcation have different sections, does a particle (deformable or not) flow into
the branch which has the highest flow rate or the highest velocity? The answer to
this question is important if one wishes to predict the path selection of particles in a
network. Surprisingly enough, there are few studies of the path selection of a particle
in an asymmetric bifurcation.

Recent careful microfluidic experiments on the flow of a hard sphere in a
T-bifurcation (figure 1b) have shown that when the particle is close to the flow
separation line, it has a tendency to enter the low flow rate branch rather than the
high flow rate one (Doyeux et al. 2011). The effect is more pronounced for particles
with a radius comparable to the channel cross-section, than for very small particles,
which tend to follow the flow streamlines. This phenomenon can also be inferred
from the results of two-dimensional numerical models of particle flow in Y- or lateral
bifurcations (Barber et al. 2008; Doyeux et al. 2011; Ye, Huang & Lu 2015) – see
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(a) (b) (c)

FIGURE 1. Typical configurations of branched channels: (a) Y-bifurcation; (b) T-
bifurcation; (c) lateral bifurcation (straight channel with an orthogonal side branch). α and
β represent the angles between the feed channel and the two daughter branches as shown
in (a).

the recent review of Secomb (2017). But these studies were mainly concerned by the
flow of off-centred particles in order to investigate the Zweifach–Fung effect (Svanes
& Zweifach 1968; Fung 1973; Pries et al. 1989), which deals with RBC suspensions
flowing through a bifurcation. This is a more complex problem than that considered
in Fung’s model.

In the specific case of a centred capsule, Woolfenden & Blyth (2011) designed
a low Reynolds number two-dimensional numerical model of the flow of a RBC-
like capsule in an asymmetric Y-bifurcation with β = 0 and different values of α.
They find that the capsule takes the branch with the highest flow rate, when the two
branches have the same cross-section (as predicted by Fung’s model). For branches
with unequal cross-sections but equal flow rates, they find that the capsule goes into
the branch with the highest velocity. However, this does not answer the question of
path selection criterion (velocity or flow rate), since only one value of flow rate split
was considered. Note that two-dimensional models reduce the effect of bifurcation
geometry to a channel size ratio and branching angle α values, and in addition may
introduce a bias to flow situations, which are inherently three-dimensional.

Recently, Wang et al. (2016) designed a three-dimensional model of the flow of
a finite-sized deformable capsule in a lateral bifurcation made of cylindrical tubes
having the same diameter and consisting of a straight channel with an orthogonal
side branch (figure 1c) with α = π/2. They found that at low Reynolds number
Re, a capsule favours the branch which receives the most flow, provided it is not
too deformable. However, at equal flow split between the two downstream branches,
inertia may affect the path selection of a capsule, which tends to flow straight as Re
is increased. Thus, under small inertial effects, the capsule can flow into the straight
downstream tube even when it receives less flow than the side branch. This indicates
the fact that the qualitative model of Fung and co-workers has its limitations and that
phenomena such as inertia can modify the relative position of deformable particles
with respect to the fluid separation line. Although this previous study opened a new
viewpoint on Fung’s model, it provided little information on how to control the
particle’s trajectory: an open question being the possibility to optimise the vessel
geometry to lead deformable particles into a preferred branch.

Numerically, it is possible to calculate the flow of capsules in bifurcations with any
cross-section geometry (cylindrical, prismatic, etc.). Experimentally, it is, however,
difficult and expensive to fabricate bifurcated cylindrical microchannels. Fortunately,
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Path selection of a spherical capsule in a branched channel 139

with the recent development of microfluidic techniques, one can nowadays fabricate
bifurcated microchannels with various size ratios and geometries at relatively low
cost. The drawback of the soft lithography techniques, which are classically used, is
that the microfluidic channel section is usually square or rectangular. For the same
cross-sectional area of a side branch, there can be many different possible bifurcation
geometries.

We thus consider the case of a capsule flowing in a microfluidic asymmetric
bifurcation consisting of a straight channel with a narrowed lateral bifurcation
(figure 1b) and numerically model its path selection under different conditions. The
capsule has dimensions comparable to the side branch cross-section and is centred
along the feeding channel axis by hydrodynamic forces or by some flow-focusing
devices. This situation is pertinent for the design of particle/cell enrichment devices
(Yang, Ündar & Zahn 2006; Gossett et al. 2010; Kersaudy-Kerhoas et al. 2010;
Shields IV, Reyes & López 2015), for which it is essential that the branch collecting
the particles receives as little suspending fluid as possible. Many questions still
remain regarding the magnitude of the velocity difference that allows separation and
the effect of the flow pattern in the bifurcation, since microfluidic technology allows
for different bifurcation designs. The objective of this study is to analyse the effect
of the side branch geometry on flow patterns in the channel and on path selection of
a single capsule flowing through an asymmetric lateral bifurcation. This should help
not only advance the fundamental understanding of capsule trajectory at complicated
bifurcations, but also identify an optimal geometry for capsule suspension enrichment.

The fluid–capsule interaction problem is solved by means of immersed boundaries
coupled to a three-dimensional lattice-Boltzmann method. This is detailed in § 2 along
with the main parameters and numerical method. In the result sections, we present
the flow patterns and pressure drops as a function of the bifurcation geometries
and determine the path selection of initially spherical capsules as a function of the
capsule properties, bifurcation geometry and flow Reynolds number. This leads to
phase diagrams that allow selection of efficient enrichment devices. We first present
the results for three main distinctive geometries in § 3 and discuss the effect of
side branch geometry on the background flow and on the capsule path selection.
In § 4, we discuss the efficiency of other bifurcation geometries and show how
the present results obtained for constant flow rate conditions can be extended to
pressure-controlled systems. We then conclude the paper in § 5.

2. Problem statement and numerical method
2.1. Problem statement

We consider an initially spherical capsule with radius a, flowing through a straight
channel with an orthogonal side branch. The parent channel and the downstream
straight daughter channel have a constant square cross-section 4l2 with a side length
2l. Different bifurcation geometries have been studied, as shown in figure 2. A
three-dimensional Cartesian coordinate system is used with x-axis along the axis
of the main channel, z-axis along the side branch axis and x = y = z = 0 at the
bifurcation centre. As the reference case, we consider a side branch channel (channel
A, figure 2a,b), with the same square cross-section area 4l2 as the main channel.
Then we consider a narrow side branch with cross-section w× d= 2l2, where w and
d are measured along the x- and y-directions respectively. The cross-section area is
thus half that of the straight channel but still allows the passage of the capsule. With
this later restriction in mind, the side branch has been narrowed in two different
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x
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z

Channel A Channel B Channel C

(a)

(b)

FIGURE 2. (Colour online) (a) Three-dimensional geometry of a branched channel. The
width and depth of the side branch are w and d, respectively. (b) Top view of the
side branches for channel A (w = d = 2l), channel B (w = l, d = 2l) and channel C
(w= 2l, d= l). All side branches are centre-connected to the main channel.

ways: along the x-direction (channel B, figure 2b) or along the y-direction (channel
C, figure 2b). The side branches and main channels for the above geometries are
centre-connected. From a microfabrication point of view, channels A and B are easier
to make than channel C. In all cases, the length of the parent channel is 12l, and the
length of the two daughter channels is 10l.

The fluid motion is governed by the Navier–Stokes equations, with a no-slip
condition imposed at the channel wall. We operate under imposed flow rates in the
different branches of the bifurcation. We checked that the inlet S0 and outlet sections
S1 and S2 were far enough for the disturbance due to the bifurcation to be negligible.
The flows at S0, S1 and S2 are thus fully developed laminar channel flows, with
constant imposed flow rates Q0, Q1 and Q2 respectively, such that Q0=Q1+Q2. The
velocity profiles corresponding to the respective flow rate and section geometry are
well known (e.g. White 1991). The mean inlet velocity in S0 is denoted by V and
serves as a reference velocity throughout. Note that the pressures P0(t), P1(t) and
P2(t) in sections S0, S1 and S2, respectively, vary with time t when a capsule flows
in the bifurcated system. It is also possible to operate the system under constant
pressure conditions, where the pressures P0, P1 and P2 are kept constant. In this case,
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Path selection of a spherical capsule in a branched channel 141

the flow rates Q0(t), Q1(t) and Q2(t) will depend on time. The constant pressure drop
operation of the system is further discussed in § 4.2.

The capsule is enclosed by a hyperelastic membrane with a small bending stiffness.
The fluids inside and outside the capsule are incompressible Newtonian liquids with
identical viscosity µ and density ρ. We initially place the undeformed capsule on
the centreline of the parent channel, with its mass centre in the cross-section Sc at
a distance 2l from the entrance S0 (see figure 2). We find that the capsule reaches its
steady-state shape once its centre of mass has travelled a distance of approximately
5l.

The shear deformation and area dilatation of the capsule membrane are modelled
using the strain-hardening Skalak’s (SK) law (Skalak et al. 1973),

W =
Gs

4
[(I2

1 + 2I1 − 2I2)+CI2
2], (2.1)

where W is the strain energy density per unit undeformed surface area, Gs is the
surface shear elasticity modulus, I1 = λ1

2
+ λ2

2
− 2 and I2 = (λ1λ2)

2
− 1 are the first

and second strain invariants of the surface deformation, and λ1 and λ2 are the principal
extension ratios in the plane of the membrane. The membrane area dilatation modulus
in SK law is Ks = (1+ 2C)Gs. We take C= 1 in the present study.

The bending resistance of the membrane is modelled following Helfrich’s
formulation for bending energy (Zhong-Can & Helfrich 1989):

Eb =
kc

2

∫
A
(2H − c0)

2 dA. (2.2)

Here kc is the bending modulus, H is the mean curvature, c0 is the spontaneous
curvature and A is the surface area. A small bending stiffness (kc = 0.0008Gsl2) is
used to prevent the formation of wrinkles on the capsule membrane, like in our
previous study (Wang et al. 2016).

The non-dimensional parameters of the problem are as follows.

(i) The branch flow ratio q, which is the flow rate in the side branch normalised by
the flow rate in the parent channel,

q=
Q2

Q0
. (2.3)

(ii) The flow Reynolds number Re in the parent channel,

Re=
2ρVl
µ

. (2.4)

(iii) The size ratio a/l between the capsule characteristic size (radius of the initially
spherical capsule) and the half-cross-sectional dimension of the parent channel.
Note that in a narrowed side branch, the local size ratio is doubled, which puts
limits on the magnitude of a/l.

(iv) The capillary number Ca, which compares the viscous fluid force acting on the
capsule to the membrane elastic force,

Ca=
µV
Gs
. (2.5)
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It is clear from equations (2.4) and (2.5) that both the capillary number and the
Reynolds number increase with V and are related by

Ca/Re=µ2/2ρGsl. (2.6)

The ratio depends only on the physical properties of the channel flow and of the
capsule.

2.2. Numerical method and validation
The numerical method is similar to the one used for capsules flowing through a
circular branched channel (Wang et al. 2016) and will only be outlined briefly here.
The fluid flow in the whole domain is computed by means of a lattice-Boltzmann
method (LBM) with a standard grid size 1x = 1y = 1z = 0.04l. A second-order
bounce-back scheme based on interpolations (Bouzidi, Firdaouss & Lallemand 2001)
has been employed to apply the no-slip boundary condition to the solid walls of
the branched channel. At the inlet and outlets of the channel, velocity boundary
conditions have been implemented using a second-order non-equilibrium extrapolation
method (Guo, Zheng & Shi 2002). A finite-element membrane model is employed to
obtain the forces acting at the discrete nodes of the membrane (detailed in Sui et al.
(2008)). The typical membrane mesh size is chosen to be of the same order as the
LBM mesh. It thus depends on the capsule size. Correspondingly, for a/l= 0.2, the
three-dimensional capsule membrane is discretised into 2048 flat triangular elements
connecting 1026 nodes, leading to a maximum element edge length 1Lc ∼ 0.03l and
a ratio 1Lc/1x < 0.75. For a capsule with a/l = 0.3, a membrane mesh of 8192
elements connecting 4098 nodes is used, leading to 1Lc∼ 0.023l and 1Lc/1x< 0.58.
At time t= 0, the capsule centre of mass is positioned at the centre of section Sc. The
computation is stopped when the capsule centre is at a distance of 2l from the exit
section: we have verified that the corresponding exit velocity was not significantly
perturbed then.

The immersed-boundary method (IBM) of Peskin (1977) has been used to solve the
fluid–capsule interaction. The membrane force is transmitted to the fluid by means
of a three-dimensional Dirac function which is spread over approximately two fluid
elements (21x) on both sides of the membrane. As a result, the method cannot resolve
the film flow when the minimum distance between the capsule and channel wall is
comparable to 21x. This has limited the study to small capsules with a/l 6 0.3, this
ratio being doubled in the narrowed side branch. A larger capsule is otherwise likely
to get closer than 21x, to the wall. This is a significant limitation of the method.

In order to evaluate the effect of the LBM mesh size, we analyse the trajectory of
a capsule with a/l= 0.3 flowing in channel C at Re= 1, Ca= 0.005, q= 0.44. The
capsule membrane is discretised with 8192 elements (1Lc ∼ 0.023l), but we consider
three LBM meshes with 1x= 0.063l, 0.04l, 0.031l. As shown in figure 3, the capsule
trajectories are almost superimposed for the two fine meshes 1x= 0.04l or 0.031l. For
the coarse mesh 1x= 0.063l, the trajectory deviates by at most 0.05l near the exit of
the channel. This justifies the use of an LBM mesh size of 0.04l throughout the study.
Furthermore, we have verified that increasing the channel lengths leads to negligible
changes in the capsule trajectory near the bifurcation.

In order to validate the membrane discretisation, we compute the equilibrium
deformed profiles of a spherical capsule with a/l= 0.85 enclosed by an SK membrane
(C= 1) without bending stiffness, when it flows in a 20l-long straight square channel
with Re= 0.25, Ca= 0.1, B= 0. The LBM mesh size is 1x= 0.04l. The membrane
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FIGURE 3. (Colour online) Trajectories of a capsule flowing in channel C for a/l =
0.3, Re = 1, Ca = 0.005, q = 0.44. Different grid resolutions are used: 1x = 0.063R
(dash-dotted line, green online), 1x= 0.04R (solid line, red online), 1x= 0.031R (dashed
line, blue online). The maximum membrane element edge length is 1Lc ∼ 0.023l in all
cases.

0

–0.4

0.4

0.8

–0.8

0–0.4–0.8 0.4 0.8

FIGURE 4. (Colour online) Steady profiles of an initially spherical capsule with an SK
membrane (C= 1) flowing in a square section channel for a/l= 0.85,Re= 0.25,Ca= 0.1.
The bending stiffness of the membrane is, in this case, set to zero to be consistent with
Hu et al. (2013). Dotted line (blue online), profile C1, obtained with 32 768 flat triangular
elements; solid line (red online), profile C2 obtained with 8192 elements; dashed line
(black online), profile obtained by Hu et al. (2013) for Re= 0, using a boundary element
method.

is discretised into either 32 768 elements (1Lc/1x 6 0.82, profile C1) or 8192
elements (1Lc/1x 6 1.63, profile C2). As shown in figure 4, the two profiles C1
and C2 are almost superimposed, which indicates that 8192 elements are sufficient
to model the capsule membrane with good accuracy. The equilibrium profile C1 is
also compared to the deformed profile C3 obtained by Hu et al. (2013) for Re = 0,
using a boundary element method. The distance between C1 and C3 is measured
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by means of the Hausdorff distance (Dubuisson & Jain 1994). Correspondingly, we
consider a set of m points, R = {r1, r2, r3, . . . , rm} from C3, and another set of n
points, T = {t1, t2, t3, . . . , tn} from C1. Assuming that the two sets of points have
the same barycentre, we define the maximum h(R, T) and mean h(R, T) Hausdorff
distances as

h(R, T)=max
r∈R
{min

t∈T
[d(r, t)]}, (2.7)

h(R, T)=
1
m

∑
r∈R

min
t∈T
[d(r, t)], (2.8)

where d(r, t) is the distance from any point in R to any point in T . We find that the
Hausdorff distances between C1 and C3 are h(R, T) = 0.032l and h(R, T) = 0.011l.
Note that the maximum Hausdorff distance corresponds to one grid mesh, as could
be expected in view of the fundamental difference between the two methods. The
fact that our results are obtained for Re = 0.25, while those of Hu et al. are for
zero Reynolds number, may also be the cause of differences between the equilibrium
profiles. With the lattice-Boltzmann method, the computational time significantly
increases as the Re value decreases, which makes it computationally unaffordable to
consider cases where Re� 0.25.

Altogether, the above study on the influence of LBM mesh size and membrane
discretisation shows that the numerical parameters we have selected (1x = 0.04l
and 8192 elements on the largest capsule considered) are enough to ensure that the
average numerical errors on the capsule shape or trajectory will be of the order of
1 % or less. The capsule trajectory results, which are presented henceforward, take
approximately 72 h on the High-Performance Computing facility at Queen Mary,
University of London, using 12 threads in parallel computing.

3. Capsule flowing in channels A, B and C
Channel A corresponds to the simple situation where all of the channels have

the same cross-section, whereas channels B and C correspond to two narrowed
side branches with different orientations. Note that for equal flow split (q = 0.5) in
channels B and C, the mean velocity in the side branch is twice the mean velocity
in the straight daughter branch. We first determine the background flow in each
channel when no capsule is present. We then study the path selection of a capsule
for different values of the problem parameters a/l,Ca, Re.

3.1. Fluid separation line in the absence of a capsule
At any cross-section of the parent channel perpendicular to the channel axis, one can
define a separation line which divides the fluid elements that flow into the side branch
from those flowing into the downstream main channel. The flow separation line is
computed in cross-section Sc by means of the approach of Wang et al. (2016). We
concentrate on the influence of side branch geometry and Reynolds number on the
position of the flow separation line for q= 0.5.

As shown in figure 5, we first note that channels A and B exhibit very similar flow
patterns irrespective of the value of Re: the separation line bends towards the side
branch, which indicates a tendency for the fluid particles in the centre of the cross-
section to flow straight rather than take the branch when Re increases. As pointed out
by Wang et al. (2016), this pattern is in agreement with experiments and numerical
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z/l 0

1

1–1 0
y/l

0

1

1–1 0
y/l 

0

1

1–1 0
y/l 

(a) (b) (c)

FIGURE 5. (Colour online) Background flow separation lines calculated in cross-section
Sc for different side branch geometries at different Reynolds numbers with q= 0.5. The
cross-section Sc is 2l from the entrance, where the flow is already fully developed, and the
side branch is going upwards. In the cross-section, the fluid elements above the separation
line enter the side branch and those below remain in the main channel. (a) Re = 0.25;
(b) Re= 10; (c) Re= 40.

simulations, albeit for cylindrical channels (Rong & Carr 1990; Enden & Popel 1992;
Carr & Kotha 1995). However, the situation is different for channel C: for Re 6 10,
the fluid particles near the left and right walls (i.e. y=±l) flow straight because they
are located in corners where the bifurcation has no influence; conversely, the fluid
particles located near the centre tend to take the branch. It is only for Re > 20 that
the influence of the bifurcation extends to particles near the wall as well as centred
ones (figure 5c): this leads to a tendency for centred particles to flow straight.

To complement the study of the separation line, we compare the bifurcation velocity
fields in the x= 0 plane for channels B and C in figures 6 and 7 for Re= 0.25 and
Re= 20, respectively. Recall that x = y= z= 0 is defined as the channel bifurcation
centre. The flow into channel C from the straight channel is hindered by the two
corners of the main channel (figures 6b and 7b). Thus in order to keep the same
flow rate (as compared to channel B) in the side branch, more fluid from the central
region of the main channel has to be to fed into the side branch of channel C. This
explains why the fluid separation line at the centre of Sc is lower for channel C than
for channels A and B at any value of Re. It can thus be expected that a side branch
similar to channel C will be more efficient at capturing fluid elements flowing in the
central region of the parent channel than geometries like A and B. Furthermore, the
flow velocity maps of figures 6 and 7 show clearly that the bifurcation perturbation
has disappeared for x> 2l in the straight branch and z> 2l in the side branch for low
Re. When inertial effects are not negligible (e.g. Re= 20) the bifurcation perturbation
extends to longer distances in the side branch and dies out for z> 3l. This study thus
shows that for the same level of inertia effects, as measured by Re, geometry plays a
significant role in the flow pattern determination near the bifurcation.

A simple model may help understand the effect of the channel geometry on the
relative position of the fluid separation lines in Sc (figure 5). If one considers a
massless diffusiveless particle, initially positioned on the parent channel centreline
and passing through the bifurcation, its deflection dz in the z-direction will be of the
order of VmzT , where the residence time T can be estimated to be T = w/Vmx, and
where Vmx and Vmz are the averages of the mean flow velocities at the entrance and
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FIGURE 6. (Colour online) Unperturbed velocity field (non-dimensionalised by V) in the
vicinity of the bifurcation for channels B and C. The contours represent the fluid velocity
in the z-direction. Re= 0.25 and q= 0.5. (a) y= 0-plane; (b) x= 0-plane.

Channel A B C E

w 2l l 2l
√

2l
Vmx 3V/4 3V/4 3V/4 3V/4
T 8l/3V 4l/3V 8l/3V 4

√
2l/3V

Vmz V/4 V/2 V/2 V/2
dz 2l/3 2l/3 4l/3 2

√
2l/3

TABLE 1. Estimations of the distance dz that a particle travels along the z-direction in the
bifurcation of different channels for q= 0.5. Note that channel E is introduced in § 4.1.

exit of the bifurcation along the x- and z-directions, respectively. The larger the value
of dz, the lower the separation line is in Sc. For q = 0.5, the values of w, Vmx, Vmz,
T and dz can be easily calculated for channels A, B and C (listed in table 1). We
note that dz is systematically larger for channel C than for channels A and B, which
explains the relative positions of the separation lines in figure 5.

3.2. Phase diagram
The critical branch flow ratio qc is the flow rate above which a centred capsule enters
the side branch. The lower qc is, the larger the range of branch flow ratios qc < q< 1
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FIGURE 7. (Colour online) The same legend as in figure 6 but for Re= 20 and q= 0.5.

is for which the capsule will flow to the side branch. In order to determine qc for a
given Re, we vary q by steps of 0.02 near the transition region of path selection. The
value of qc is the average value of the two successive branch flow ratios wherein the
capsule enters the side branch at the larger value but remains in the main channel at
the smaller one. Thus qc is determined within ±0.01.

The values of qc as a function of Re are shown for small capsules with a/l= 0.2 in
figure 8(a) and for larger capsules a/l= 0.3 in figure 8(b). Figure 8(a) also compares
the results to the ones obtained in the case of a point particle to see when the capsule
follows the flow streamlines similarly to particle with negligible size and deformation.
The results are surprising in two respects. Firstly, the values of qc for channels A and
B are very similar. This means that narrowing the side branch (as done for channel B)
and thus increasing the flow speed does not help the capsule enter this branch. In fact,
it slightly hinders it for Re6 10, since qcB> qcA. Secondly, for each Reynolds number,
the value of qc for channel C is significantly lower than those obtained for channels A
or B. In order to analyse the effect of capsule deformability, we have also considered
the case Ca= 0.02Re, which corresponds to values of Ca four times higher than those
of the case Ca= 0.005Re, for the same Re. For channels A, B or C, this leads to a
decrease of qc of order 0.01 only if Re > 20 (not shown).

As an illustration in figure 9, we show the trajectories of a capsule with a/l= 0.3
in the bifurcations B and C for flow conditions where the difference between the two
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FIGURE 8. (Colour online) Phase diagram: critical branch flow ratio as a function of the
channel Reynolds number for capsules with different sizes and membrane shear elasticity
(Ca = 0.005Re) flowing in branched channels with different geometries. For q > qc, the
capsule flows into the side branch. (a) Comparison of the results for a/l= 0.2 versus a
point particle (a/l= 0); (b) a/l= 0.3.

channel configurations appears clearly. When inertia effects are small (Re= 1, Ca=
0.005, q= 0.46), the capsule is only slightly deformed (due to the low flow strength,
as measured by Ca) and follows the centre streamline that originates from the centre
of Sc. In channel B, the centre streamline is below the separating streamline and the
capsule flows into the downstream straight branch (figure 9a); however in channel C,
the centre streamline is above the separating streamline and the capsule enters the side
branch (figure 9b). Since inertial effects are negligible in this case, the difference in
capsule trajectories is only due to the bifurcation geometry and to the residence time
in the bifurcation, which depends on the orientation of the side branch. The case of a
quite deformable capsule (Re= 20,Ca= 0.1, q= 0.54) flowing through channels B and
C is shown in figure 9(c,d). In both instances, the deformability of the capsule leads
to a deviation of its trajectory from the centre streamline. In all four cases shown
in figure 9, the perturbation created by the bifurcation leads to a significant offset
of the capsule from the axis of the branch it takes. It is thus to be expected that
the capsule motion and deformation will be strongly influenced by the walls of the
daughter channel in which it flows.

Indeed, the effect of the bifurcation geometry and confinement on the capsule
deformation is illustrated in figure 10, for a/l = 0.3, Re = 20, Ca = 0.1 and q = 0.7,
corresponding to flow conditions for which the capsule takes the side branch in
all three bifurcations. We can immediately note that the deformed profiles of the
capsule depend significantly on the geometry of the bifurcation: this illustrates
clearly that the phenomena are three-dimensional and cannot be well represented
by a two-dimensional model. In channels A and B, the deformation occurs mostly
in the xz-plane and is due essentially to the drag created by the proximity of the
wall (with little influence of the added effect of the confinement in channel B). The
yz-plane profile is barely deformed because there is no confinement in this direction.
In channel C, the capsule is deformed in the two directions, because of wall drag in
the xz-plane and because of confinement in the yz-plane.

We now investigate the importance of the background flow on the path selection
of the capsule. An approximate way of doing this is to use the simplified model of
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(a) (b)

(c) (d)

FIGURE 9. (Colour online) Effect of narrowing the side branch on the capsule trajectory
in the symmetric xz-plane for a/l= 0.3. The thick solid line (blue online) represents the
trajectory of the capsule centre. The dark line with arrows (red online) represents the
unperturbed streamline starting from the centre of Sc in the absence of a capsule, while
the grey line with arrows (green online) represents the separating streamlines that divide
the fluid elements entering the side branch from those entering the downstream straight
channel. (a,b) Re=1, Ca=0.005, q=0.46; (c,d) Re=20, Ca=0.1, q=0.54; (a,c) channel
B; (b,d) channel C.

Wang et al. (2016), which is based on the momentum split in section Sc. Specifically,
the cross-sectional area of the undeformed capsule in Sc is divided by the fluid
separation line into two regions Sb and Sm, corresponding to fluid elements that
later flow into the branch or the downstream channel, respectively (figure 11a). The
background fluid momentum ratio M is defined as

M =

∫
Sb

ρu(y, z) dSb∫
Sb

ρu(y, z) dSb +

∫
Sm

ρu(y, z) dSm

, (3.1)

where u(y, z) is the undisturbed fluid velocity along the x-direction in Sc. We
then assume that the background flow carries a capsule into the lateral branch if
M > 0.5 and we compute the corresponding value qcm of q for which M = 0.5.
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FIGURE 10. (Colour online) Effect of the side branch geometry and confinement on the
capsule motion and deformation in channels A, B and C for Re= 20, Ca= 0.1, q= 0.7.
The cross-sections of the deformed capsules are shown in two orthogonal planes, using
Cartesian coordinate systems centred on the capsule mass centre, with directions x′, y′, z′
parallel to the respective directions x, y, z of figure 2. The solid straight lines represent
the walls of the side branch.

The determination of qcm is similar to that of qc, so that qcm is also determined
within ±0.01. The values of qcm are compared with the values qc obtained from
the full fluid–structure interaction simulations in figure 11(b,c). Several interesting
observations can be made. Firstly, the order of qcm always follows qcmC < qcmA < qcmB
for capsules with different sizes at different Reynolds numbers. Secondly, there is
only a small difference between qc and qcm for small capsules (figure 11b): this is not
surprising as a small capsule creates a small perturbation and thus essentially follows
the undisturbed centre flow streamline. Thirdly, for all three channel geometries, the
values of qcm and qc are close for low Reynolds numbers (i.e. Re6 4 for a/l= 0.3 and
Re 6 10 for a/l= 0.2) when the capsule deformation is negligible. Finally, at higher
Reynolds numbers, the deviation of qcm from qc becomes significant, in particular for
channels with a narrowed side branch. This phenomenon is due to the fact that we
consider a capsule with fixed intrinsic properties at constant Ca/Re ratio: thus when
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FIGURE 11. (Colour online) (a) Illustration of the definition of the momentum ratio.
The dashed line is a fluid separation line (for q = 0.5, Re = 10 in channel A), which
divides the cross-sectional area of the capsule (shaded circle) into two regions, Sb and
Sm, the fluid elements of which finally enter the side branch and the downstream main
channel, respectively. (b) Phase diagram: critical branch flow ratio as a function of the
channel Reynolds number for a capsule with a/l = 0.2 flowing in branched channels
with different geometries. Solid lines, full fluid–structure simulations with a capsule (see
figure 8); dashed lines, qcm from the background flow only. (c) The same as (b), with
a/l= 0.3.

we increase Re, it follows that Ca and the capsule deformation increase accordingly,
a phenomenon that tends to lower qc. We can thus surmise from figure 11(c) that
there are instances where the simple model based on the background flow and the
full numerical model lead to different predictions. Specifically, in figure 11(c) this
occurs for flow conditions corresponding to the parameter domain between the dashed
and solid line curves of a given channel. As an illustration, we show the case of
a capsule in channel C for a/l = 0.3, Re = 20, Ca = 0.1, q = 0.5 (figure 12). In
the feed branch, the capsule centre is slightly below the flow separation streamline.
The centre streamline continues into the straight daughter branch, but the capsule
trajectory crosses the separation streamline to flow into the side branch. The main
conclusion of this study is that the flow path selection of a capsule is not completely
determined by the background flow, especially when the capsule has a non-negligible
size and when its deformation is significant.

Finally, we note that after the capsule has passed the bifurcation, it is no longer
centred on the channel axis but has been deported near one channel wall. This means
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FIGURE 12. (Colour online) Capsule crossing the background flow separation streamline
in channel C for a/l= 0.3, Re= 20,Ca= 0.1, q= 0.5.

that we can expect the capsule to eventually migrate back towards the channel axis
(Helmy & Barthès-Biesel 1982; Secomb, Styp-Rekowska & Pries 2007; Doddi &
Bagchi 2008). However, this process is slow and cannot be captured by the present
simulation because the daughter branches of the channel are not long enough.

3.3. Additional pressure drop due to the capsule
Under constant flow rates, the capsule creates time-dependent additional pressure
drops 1Pcap

1 and 1Pcap
2 for the straight channel and side branch, respectively. These

are defined as

1Pcap
1 (t)= P0(t)− P1(t)− [P0(0)− P1(0)], (3.2)

1Pcap
2 (t)= P0(t)− P2(t)− [P0(0)− P2(0)], (3.3)

where P0(0) − P1(0) and P0(0) − P2(0) are the pressure drops from the inlet to the
outlets of the straight downstream channel and of the side branch, respectively, when
the capsule is absent. As an example, we consider channel C with a/l= 0.3, Re= 20,
Ca = 0.1, for which qc = 0.47. We then show the time evolution of the additional
pressure drops in the straight channel and in the side branch (figure 13) as the capsule
flows across the bifurcation for two different values of q below and above qc. For
q = 0.46, the capsule goes straight, whereas it flows into the side branch for q =
0.48. In all cases, the crossing of the bifurcation itself creates a significant pressure
perturbation across the two branches because the capsule hinders the flow temporarily.
After the capsule has passed the bifurcation, 1Pcap

1 (t) goes to zero when the capsule
takes the lateral branch. When the capsule flows straight, 1Pcap

1 (t)→1Pcap
1∞, a value

that corresponds to the perturbation that the capsule would create in an infinite channel
where the straight channel flow conditions prevail. It is clear from figure 13 that
1Pcap

1∞ is quite small because the capsule is small compared to the straight branch
cross-dimensions. However, when the capsule flows into the side branch, the reduced
branch section leads to significant interactions between the wall and the capsule, so
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FIGURE 13. (Colour online) Time evolution of the capsule additional pressure drop in
channel C under constant flow rate conditions (a/l = 0.3, Re = 20, Ca = 0.1, qc = 0.47).
The positions of the capsule mass centre in the respective branches are shown by the
arrows.
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FIGURE 14. Additional capsule pressure drop in a rectangular side branch (section 2l× l)
as a function of the flow split ratio for a/l= 0.3, Ca= 0.005Re. Note that Re is defined
in the parent channel.

that 1Pcap
2 (t) tends towards a much larger value 1Pcap

2∞. The latter corresponds to the
additional pressure drop created by this capsule in a rectangular channel, when it has
reached an equilibrium state under the flow conditions specified above.

Since there are no published data on the additional pressure drop created by
a capsule in a rectangular channel, we have systematically determined the relation
between 1Pcap

2∞ and the flow split ratio q for a capsule flowing in a straight rectangular
channel (2l × l) for a/l = 0.3 and Ca = 0.005Re at two values of Re. The results
are shown in figure 14. The additional pressure drop increases, as is expected, with
q (i.e. with the mean flow velocity in the channel). The fact that it decreases when
Re increases is mainly because the local increase of the Reynolds number has led to
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larger deformation of the capsule. We have also computed the corresponding values
of 1Pcap

1∞ and found that, although they increase with q, they are all lower than 0.08.
As mentioned earlier, this is due to the small size ratio between the capsule and the
channel.

3.4. Comparison with Fung’s model
Recall that the simple qualitative Fung’s model, developed for a symmetric Y-shaped
bifurcation, predicts that an RBC enters the branch where the flow rate or velocity is
highest. In the case of channel A, where the all branches have the same cross-section,
Fung’s theory leads to qF

c = 0.5, which is in good agreement with the numerical
model predictions for moderate Reynolds number (Re<5), even though the bifurcation
geometry is not Y-shaped (figure 8a). In the case of channels B and C and low inertia
(Re6 1), it is clear that Fung’s criterion on flow rate does not apply: q must be larger
than 0.52 for the capsule to flow into the side branch of channel B. For channel C, qc

is about 20 % lower than the equal flow split criterion of Fung’s model, which means
that for 0.4< q< 0.5, the capsule flows into the side branch even though the flow rate
there is lower than in the straight branch. Trying to apply Fung’s criterion based on
velocities rather that flow rate would lead to qF

c = 1/3 for channels B and C, which is
much lower than what is calculated (figure 8). As inertial effects increase, qc increases
too, which means that for 0.5 6 q < qc, the capsule tends to go straight even if the
flow rate is higher in the side branch than in the straight one.

We conclude that Fung’s model does not apply to bifurcations with equal branch
cross-sections, if inertia effects are significant. It does not apply either to bifurcations
where the branch sections are different, even when inertia effects are small. The
results show clearly that, for a given bifurcation geometry, the flow rate is better than
the velocity as the main criterion for path selection, but that the three-dimensional
phenomena that occur at the bifurcation are too complex to be amenable to a simple
phenomenological, one-dimensional theory.

4. Suspension enrichment with a right-angled bifurcation device
4.1. Effect of bifurcation geometry

The present simulation results can be useful in guiding the design of microfluidic
devices, which use a side branch to enrich capsules in suspending fluid (Gossett et al.
2010; Shields IV et al. 2015; Tripathi et al. 2015). Obviously, this purpose is best
achieved for qc < 0.5, as the smaller qc, the more efficient the device. Our results
(figure 8) indicate that channel C is the most efficient design to achieve suspension
enrichment as qc is just over 0.4 up to Re = 5 and remains lower than 0.5 up to
Re= 20 for the larger particle confinement ratio (a/l= 0.3). Of course, as the particle
becomes small (a/l60.2), it tends to follow the streamlines and thus qc increases with
Re. However, it should be noted that channel C presents some drawbacks: firstly, it is
not very easy to fabricate with soft lithography methods; secondly, its narrow width
puts a limit on the confinement ratios that can be used. It is then worthwhile to test
whether other branch geometries may lead to better suspension enrichment. We have
thus considered three other bifurcations (channels D, E and F, as shown in figure 15a)
with the same branch angle and the same area ratio between the cross-sections of
the side branch and of the straight channel. Channel D has the same orientation and
cross-section as channel C, but is not centre-connected to the main branch. Channel
E and F have square sections with side

√
2l and are respectively centre-connected or
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FIGURE 15. (Colour online) (a) Top view of the side branch geometries for channels
C, D, E and F. Channels C and E are centre-connected to the main channel. (b) Fluid
separation lines for channels C, D, E and F. From left to right: Re = 0.25; Re = 10;
Re= 40.

not. The advantage of channels E and F is that the minimum cross-section dimension
is approximately 40 % larger than that of channel C and thus allows larger capsules
to flow. The advantage of off-centred channels D and F is that they have one side
wall aligned with that of the main channel: they are thus easier to fabricate with soft
lithography methods than channels C and E.

The separation lines for channels C, D, E and F are shown in figure 15(b). For
centred channels (C and E), the flow patterns are similar to those discussed in § 3.1.
Note that at the centre of Sc, the separation line for channel E is between those of
channels B and C, as predicted by the simple residence time model where dz=2

√
2l/3

for channel E. For the two off-centred channels D and F, the separation line is warped,
indicating that fluid particles located at y > 0.5l or y > 0.7l for channel D or F,
respectively tend to flow straight for small values of Re. As inertia effects increase,
the side branch influence extends to a larger area in the section.

We have determined the critical branch flow ratios for capsules with a/l=0,0.2 and
0.3 in channels C, D, E and F. We find that, as regards qc, there is little difference
between channels C and D, and between channels E and F (not shown). This is due
to the fact that we consider centred, fairly small capsules only, and that the flow
separation patterns are not very different near the centre of the channel (figure 15b).
In conclusion the critical branch flow ratios for all of the channels are shown in
figure 16. Channels C or D correspond to the most efficient capsule enrichment
geometry, followed by the square section channels E and F. The choice between
the two types of geometries may be guided by the average size of the suspended
capsules.
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FIGURE 16. (Colour online) Phase diagram: critical branch flow ratio as a function of the
channel Reynolds number for capsules in branched channels A, B, C and E. The values
of qc in channels D and F are very close to those in channels C and E, respectively, and
are therefore not shown. Ca= 0.005Re. (a) a/l= 0.2; (b) a/l= 0.3.

6l

6l 6l

FIGURE 17. Definition of the cross-sections where the pressure is evaluated to determine
the pressure drop in the bifurcation.

4.2. Case of pressure-control systems
The above study corresponds to systems where the flow rates at the inlet and outlets
are controlled and kept constant, independently of the capsule presence. However,
there are other microfluidic systems where the flow is driven by constant pressure
differences between the entrance and exit sections. It is therefore meaningful to
investigate how the present results can apply to pressure-control systems. In order to
do so, we first have to find the relation between the imposed pressure differences
and the resulting flow split. Then the influence of a capsule on the flow has to be
determined.

4.2.1. Pressure drops across the bifurcation
It is of interest to compute systematically the pressure drop across the bifurcation,

as it is information that is not available in the literature. In order to eliminate
the influence of the channel lengths, we consider three cross-sections located at a
distance 6l from the bifurcation centre: S′0 in the parent channel and S′1, S′2 in the two
downstream channels (figure 17). As shown in figures 6 and 7 and discussed in § 3.1,
the flows in those sections are fully developed with pressures denoted by P′0, P′1 and
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FIGURE 18. (Colour online) The additional pressure drop 1P′1 and 1P′2 (non-
dimensionalised by µV/l) due to the bifurcation as a function of the branch flow ratio
q in branched channel flows without the capsule. (a) Re= 0.25; (b) Re= 20.

P′2, respectively. In order to highlight the bifurcation effect, we define a measure of
the singular pressure drop as

1P′i = P′0 − P′i − [1P0(6l)+1Pi(6l)], i= 1, 2. (4.1)

Here 1P0(6l), 1P1(6l) and 1P2(6l) are the pressure drops for fully developed flows
over the distance of 6l in the parent channel, the downstream straight channel and the
side branch, respectively. They are easily computed analytically (e.g. White 1991).

The additional pressure drops due to the bifurcation as a function of the branch
flow ratio q are shown in figure 18 for all of the channel geometries considered in
the present study at Re = 0.25 and 20. The additional pressure drop 1P′1 is always
negative. This is because the flow in the straight channel is relatively regular and the
effective wall area of the control volume with length 12l is diminished by an amount
equal to the area of the side branch entrance. This is also the reason why 1P′2 is
negative at Re= 0.25 and at very low branch flow ratios at Re= 20. However, for high
branch flow ratios at Re=20, 1P′2 becomes positive due to the increasing inertial flow
perturbation, as shown in figure 7. The differences between the different bifurcation
geometries with the same side branch cross-sectional area are slight, and result from
differences in flow patterns at the bifurcation.

The total pressure drops across the channel branches are then obtained by adding
the contribution from those channel lengths between section S0 and each exit S1 and
S2 using analytical solutions:

P0 − Pi =1P′i + [1P0(L0)+1Pi(Li)], i= 1, 2, (4.2)

where L0, L1, L2 are the lengths of the system branches.

4.2.2. Example: dynamic flow split for a capsule in channel C
As an example, we have carried out constant pressure simulations for a capsule in

channel C with a/l= 0.3 at Re= 20 and Ca= 0.1. Using the results of § 4.2.1, we first
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FIGURE 19. (Colour online) Time evolution of the branch flow ratio q in channel C when
using constant pressure boundary conditions for a/l=0.3,Re=20,Ca=0.1,qc=0.47. The
positions of the capsule mass centre in the respective branches are shown by the arrows.

compute the constant pressure differences P0 − P1 and P0 − P2 that must be applied
to obtain two initial values of the flow split q1(0) = 0.46 and q2(0) = 0.48, which
are just below and above the critical value qc = 0.47. Of course, the presence of the
capsule changes the flow rates in each channel and the branch flow ratio varies with
time, as shown in figure 19. In both cases, the maximum variation of q with time is
less than 0.01 and therefore the instantaneous flow split remains above or below the
critical branch flow ratio: the path selection of the capsule is thus unchanged. This
is due to the fact that we have considered a single capsule, which is small compared
with the channel. We have found similar unchanged capsule path selection in other
tests with different channel geometries and flow Reynolds numbers.

5. Discussion and conclusion
This extensive three-dimensional study of the flow in different bifurcation

geometries is the first of its kind, whether it be for the background flow in a
rectangular cross-section bifurcation or for the path selection of a deformable capsule.
It is important to note that small but finite inertia effects have also been taken into
account. We have thus been able to provide new extensive data on the flow pattern
and pressure drop across microfluidic bifurcations with a right-angled lateral branch
with different cross-section shapes and different positions with respect to the parent
channel axis. The study puts into evidence the crucial importance of accounting
for three-dimensional effects in the simulation. Indeed, a two-dimensional model is
unable to distinguish between the different bifurcation geometries that have been
studied here. This is a significant drawback of such models as we have shown that
the specific bifurcation geometry plays an important role in the path selection of the
capsule. Furthermore, the deformation of the capsule is itself a three-dimensional
mechanical process as it appears in figure 10. The application of two-dimensional
numerical models to actual three-dimensional situations would potentially have led to
erroneous conclusions.

Although the bifurcation flow pattern is quite complex, we have shown that it is
possible to use simplified models to guide the choice of a geometry. For example,
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the residence time evaluation can be correlated with the capture efficiency of a side
branch: the longer a capsule stays in the bifurcation the more likely it is to take the
side branch. For more refined predictions of the capsule path selection, it is necessary
to compute the background flow (a task which is much easier than the solution of the
full fluid–structure interaction problem). We show that a simplified model based on
the background flow predicts well the trajectory of small or low-inertia capsules and
even provides decent estimates for higher-inertia flows. Another important conclusion
of this study is that the commonly accepted Fung’s model only applies to bifurcations
with equal cross-sections when inertia effects are negligible. When inertia starts to
play a role and/or when the branches’ cross-sections are not equal, Fung’s model does
not apply.

The main results of the study are summarised in phase diagrams, which can help
choose an efficient design for a capsule enrichment device, taking into account
the ease of fabrication with the present soft lithography techniques. For suspension
enrichment, the efficiency of a system depends on the values of qc, which should
be as small as possible. For example, we can expect qc > 0.5 for a symmetric
Y- or T-bifurcation (figure 1a,b). With lateral bifurcations such as the ones considered
here, we find values of qc which can be significantly lower than 0.5, depending on
the configuration. Specifically, a narrowed side branch with a cross-section which
is half that of the main branch is shown to be an efficient geometry, provided it
is correctly oriented like channels C or D. The smallest values of qc are obtained
for low Reynolds numbers. Inertia effects (Re > 1) lead to an increase of qc, which
is more pronounced for small particles than for larger more deformable ones. This
may well be due to the specific lateral bifurcation geometry we have studied here,
where elevated inertia forces lead to a tendency for the capsule to flow into the
straight branch rather than take the turn into the side branch. We have also shown
that for small particles (a/l 6 0.2), the path selection of the capsule can be fairly
well evaluated from the background flow, but that is not quite the case for moderate
confinement ratios (a/l 6 0.3) when inertia effects are becoming important (Re > 5).
In this situation, there is a small range of flow parameters where the capsule path
deviates from the background flow.

We have systematically computed the additional pressure drops created in the
bifurcation itself and by the friction between the capsule and the channel wall in
the narrow branch. As a consequence, although the main results have been obtained
under constant flow rate conditions, they can also be used to monitor the same device
operating under constant pressure conditions at the entrance and exit sections.

It is of interest to consider now how a train of non-interacting capsules would be
separated from the ambient fluid. This question is pertinent for practical applications
of the device. A particle separation of one diameter is enough to avoid hydrodynamic
interactions between the capsules (Wang & Skalak 1969; Quéguiner & Barthès-Biesel
1997). When the system operates under constant flow rate, the capsule path has no
reason to change even if there are many capsules in the side branch: this is because
the energy input into the flow system is unlimited. However, when the system
operates under constant pressure (or constant energy), the additional pressure drop
created by the presence of the capsules leads to a decrease of q(t). This effect appears
clearly in figure 19: when one capsule enters the side branch (q(0) = 0.48), there
is a significant decrease of q(t) which eventually tends to q(0) − 0.002. Of course
this decrease depends on the global hydraulic resistance between S0 and S2, which
is a function of the specific configuration of the bifurcation and of the length and
section geometry of the parent and branch channels. For n capsules in the branch,
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it is quite possible that q(t) may decrease below qc, which would change the path
of the capsules. The system may then undergo oscillation where the capsules enter
alternatively the branch or the straight daughter channel. This indicates that it is
easier to control a separation system by using constant flow rate conditions.

This study can also be applied to predict the separation in a dilute suspension of
particles flowing through a bifurcation when the confinement is small. Under those
conditions, assuming a homogeneous particle distribution and ignoring interactions,
all the particles, which are above the flow separation line in the feed channel,
should flow into the side branch. At low Reynolds number, in the channel A, where
qc ∼ 0.5, we thus predict that the particle concentration is highest in the branch
where the flow rate (or velocity) is highest. This prediction is in agreement with
the Zweifach–Fung effect, which showed that the flow of RBC suspensions in a
microcapillary network is mainly determined by two factors: the particle relative
position with respect to the fluid separation line, and the hydrodynamic interactions
between the particles, fluid flow and bifurcation wall (Svanes & Zweifach 1968; Fung
1973; Pries et al. 1989). In vivo, this effect has been found not to depend on the
specific geometry of the bifurcation (Pries et al. 1989; Pries, Secomb & Gaehtgens
1996). Roman et al. (2016) have reached the same conclusion for RBCs flowing
in symmetric T-bifurcations (figure 1b) at low hematocrit. However, recently, Shen
et al. (2016) observed an inversion of the Zweifach–Fung effect, when considering
RBC suspensions flowing through a microfluidic T-bifurcation. They attributed this
phenomenon to RBC organisation in the feeding channel as a consequence of cell
volume fraction, deformability and interactions with the channel walls. The phase
diagram presently obtained for centred capsules in channels B and C (figure 8)
invalidates Fung’s model and therefore the Zweifach–Fung effect for almost all the
Reynolds number values considered. The underlying mechanism is, however, different
from that of Shen et al. (2016), as we do not change the positions of the capsules in
the feed channel, but control the 3-D geometry of the fluid separation line by varying
the side branch geometry. The present study, therefore, provides a new mechanism to
control the path selection of capsules at a bifurcation.

This indicates that further studies are necessary to elucidate the complex interactions
between the capsules (or cells) themselves, the background flow and the capsules to
elucidate the flow behaviour of a suspension of deformable particles near a bifurcation,
or more interesting maybe, in a series of successive bifurcations.
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