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Abstract

It is a well-known result that if a nonconstant meromorphic function f on C and its lth derivative f (l) have
no zeros for some l ≥ 2, then f is of the form f (z) = exp(Az + B) or f (z) = (Az + B)−n for some constants
A, B. We extend this result to meromorphic functions of several variables, by first extending the classic
Tumura–Clunie theorem for meromorphic functions of one complex variable to that of meromorphic
functions of several complex variables using Nevanlinna theory.
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1. Introduction

Let Z+ denote the set of nonnegative integers. For z = (z1, . . . , zm) ∈ Cm, i =

(i1, . . . , im) ∈ Zm
+ , we write

∂zk =
∂

∂zk
, k = 1, . . . ,m; ∂i = ∂i

z = ∂i1
z1
· · · ∂im

zm
; |i| = i1 + · · · + im.

In this paper, we are interested in the following problem.

Conjecture 1.1. If f is a meromorphic function in Cm such that f and ∂l f have no
zeros for some l = (l1, . . . , lm) ∈ Zm

+ with lk ≥ 2 (1 ≤ k ≤ m) and such that the set of
poles of f is algebraic, then there exists a partition

{1, . . . ,m} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Ii ∩ I j = ∅ (i , j), and

f (z1, . . . , zm) = exp
(∑

i∈I0

Aizi + B0

) k∏
j=1

(∑
i∈I j

Aizi + B j

)−n j

,

where Ai, B j are constants with Ai , 0, and n j are positive integers.
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This is open if m > 1. When m = 1, the conclusion of Conjecture 1.1 was obtained
by Tumura [12], and Hayman [5] gave a proof for the case l = lm = 2. Later, as a
correction of the gap in Tumura’s proof, Clunie [1] gave a valid proof of the assertion
for any l > 1 (or see [6]). If there is no finiteness assumption on the poles of f , a proof
was given by Frank [2] in 1976 for l = lm ≥ 3 (see also Frank et al. [3]) and Langley [9]
in 1993 for l = lm = 2.

Let f be a nonconstant meromorphic function in Cm. We shall be concerned largely
with meromorphic functions h = P( f , ∂i1 f , . . . , ∂ik f ) which are polynomials in f and
the partial derivatives ∂i1 f , . . . , ∂ik f of f with meromorphic coefficients a of the form

‖ T (r, a) = o(T (r, f )), (1.1)

where T (r, f ) is Nevanlinna’s characteristic function of f , and where the symbol
‖ means that the relation holds outside a set of r of finite linear measure. Such
functions h will be called differential polynomials in f . The degree of the polynomial
P(x0, x1, . . . , xk) is called the degree of h. To study Conjecture 1.1, the following result
will play a crucial role.

Theorem 1.2. Suppose that f is meromorphic and not constant in Cm, that

g = f n + Pn−1( f ), (1.2)

where Pn−1( f ) is a differential polynomial of degree at most n − 1 in f , and that

‖ N(r, f ) + N
(
r,

1
g

)
= o(T (r, f )),

where N(r, f ) is Nevanlinna’s valence function of f for poles. Then

g =

(
f +

a
n

)n
,

where a is a meromorphic function of the form (1.1) in Cm determined by the terms of
degree n − 1 in Pn−1( f ) and by g.

When m = 1, Theorem 1.2 is due to Hayman [6, Theorem 3.9]. By using
Theorem 1.2, we can give a proof of Conjecture 1.1, under a condition on the
nonvanishing of the partial derivatives of order greater than 1 that differs from the
one posed in the conjecture. This is the following theorem.

Theorem 1.3. If f is a meromorphic function in Cm such that f , ∂l1
z1 f , . . . , ∂lm

zm f have
no zeros for some lk ≥ 2 (1 ≤ k ≤ m) and such that the set of poles of f is algebraic,
then there exists a partition

{1, . . . ,m} = I0 ∪ I1 ∪ · · · ∪ Ik

such that Ii ∩ I j = ∅ (i , j), and

f (z1, . . . , zm) = exp
(∑

i∈I0

Aizi + B0

) k∏
j=1

(∑
i∈I j

Aizi + B j

)−n j

,

where Ai, B j are constants with Ai , 0, and n j are nonnegative integers.
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In particular, if f is entire then the function f in Theorem 1.3 has only an
exponential form

f (z1, . . . , zm) = exp(A1z1 + · · · + Amzm + B0).

We shall use the methods developed in [6–8] and the generalised Clunie lemma
(Lemma 2.1, below) to prove the main results.

2. Proof of Theorem 1.2

The proofs of Theorems 1.2 and 1.3 are based on the following generalised Clunie
lemma.

Lemma 2.1. Let f be a nonconstant meromorphic function on Cm. Take a positive
integer n and take polynomials of f and its partial derivatives:

P( f ) =
∑
p∈I

ap f p0 (∂i1 f )p1 · · · (∂il f )pl , p = (p0, . . . , pl) ∈ Zl+1
+ , (2.1)

Q( f ) =
∑
q∈J

cq f q0 (∂ j1 f )q1 · · · (∂ js f )qs , q = (q0, . . . , qs) ∈ Zs+1
+ , (2.2)

and

B( f ) =

n∑
k=0

bk f k, (2.3)

where I, J are finite sets of distinct elements and ap, cq, bk are meromorphic functions
on Cm with bn . 0. Assume that f satisfies the equation

B( f )Q( f ) = P( f ) (2.4)

such that P( f ), Q( f ) and B( f ) are differential polynomials, that is, their coefficients a
have property (1.1). If deg(P( f )) ≤ n = deg(B( f )), then

‖ m(r,Q( f )) = o(T (r, f )).

For the case m = 1, see [6, Lemma 3.3]. We refer the reader to [7, 8] for some
special cases of Lemma 2.1, where P( f ) is only a polynomial in f . A general proof
can be found in [10].

Now we begin the proof of Theorem 1.2. Note that by (1.2) g can have poles only at
poles of f or of the coefficients aν of Pn−1( f ). Let l be the order of the highest partial
derivatives ∂i f of f occurring on the right-hand side of (1.2). At a pole of f of order
p, ∂i f generically has a pole of order at most

p + l ≤ (l + 1)p,

and so g has a pole of order at most n(l + 1)p + k, where k is the sum of the orders of
the poles of all the coefficients aν. Thus

N(r, g) ≤ n(l + 1)N(r, f ) +
∑

N(r, aν),
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and so
‖ N(r, g) = o(T (r, f ))

by hypothesis. Nevanlinna’s proximity function of g satisfies

‖ m(r, g) ≤ O
(∑
|i|≤l

m(r, ∂i f ) +
∑
ν

m(r, aν)
)

= O(T (r, f )),

so that
‖ T (r, g) = m(r, g) + N(r, g) = O(T (r, f )).

Note that

‖ N
(
r,
∂zi g

g

)
≤ N(r, g) + N

(
r,

1
g

)
= o(T (r, f )).

We have

‖ T
(
r,
∂zi g

g

)
= m

(
r,
∂zi g

g

)
+ N

(
r,
∂zi g

g

)
= o(T (r, f )), (2.5)

where, by using the lemma of logarithmic derivative (see [7]), we also have

‖ m
(
r,
∂zi g

g

)
= o(T (r, f )).

We now differentiate (1.2) and obtain

∂zi g = n f n−1∂zi f + Qi( f ) (2.6)

for each i = 1, . . . ,m, where Qi( f ) = ∂zi Pn−1( f ) is a differential polynomial in f of
degree at most n − 1. We multiply (1.2) by ∂zi g/g and subtract from (2.6). This gives

f n−1
(
n∂zi f −

∂zi g
g

f
)

+ Ln−1( f ) = 0. (2.7)

The differential polynomial Ln−1( f ) satisfies the conditions of the generalised Clunie
lemma. Thus we deduce from (2.7) that

‖ m
(
r, n∂zi f −

∂zi g
g

f
)

= o(T (r, f )).

Again the function

Fi = ∂zi f −
1
n
∂zi g

g
f

has poles only at poles of f or ∂zi g/g and so we have

‖ N(r, Fi) ≤ 2N(r, f ) + N
(
r,
∂zi g

g

)
= o(T (r, f )),

and hence
‖ T (r, Fi) = m(r, Fi) + N(r, Fi) = o(T (r, f )).
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If h is defined by the equations

∂zi h
h

=
1
n
∂zi g

g
, i = 1, . . . ,m,

we have just proved that
∂zi f = ψi f + Fi,

where

ψi =
1
n
∂zi g

g
=
∂zi h

h
.

We deduce that

∂z j∂zi f = f∂z jψi + ψi∂z j f + ∂z j Fi = (∂z jψi + ψiψ j) f + ∂z j Fi + ψiF j.

If we define ψ = log h, by induction we obtain

∂i f = Li(ψ) f + Fi,

where i = (i1, . . . , im) ∈ Zm
+ , Li(ψ) is a certain differential polynomial in ψ which is

independent of Fi, and
‖ T (r, Fi) = o(T (r, f )),

and further Fi = 0 if Fi = 0 for each i. Writing h instead of f so that ∂zi h = ψih, we
deduce that

∂ih = Li(ψ)h, (2.8)

so that

∂i f =
∂ih
h

f + Fi.

We deduce that if n0 + n1 + · · · + nl = n − 1,

f n0 (∂i1 f )n1 · · · (∂il f )nl = f n−1
(
∂i1 h

h

)n1

· · ·

(
∂il h
h

)nl

+ Pn−2( f )

=

( f
h

)n−1
hn0 (∂i1 h)n1 · · · (∂il h)nl + Pn−2( f ),

where Pn−2( f ) is a differential polynomial in f of degree at most n − 2. Therefore, if
πn−1( f ) is a homogeneous differential polynomial of degree n − 1 in f ,

πn−1( f ) =

( f
h

)n−1
πn−1(h) + Pn−2( f ). (2.9)

Also it follows from (2.5) and (2.8) that

‖ T
(
r,
∂ih
h

)
= T (r, Li(ψ)) = o(T (r, f ))

and so
‖ T (r, h1−nπn−1(h)) = o(T (r, f )).
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By using (2.9), we can rewrite (1.2) in the form

g = f n + a f n−1 + Pn−2( f ),

where Pn−2( f ) is a differential polynomial in f of degree at most n − 2, and

a =
πn−1(h)

hn−1

satisfies property (1.1). Further, we may write this as

g = Hn + Pn−2(H), (2.10)

where Pn−2(H) is a differential polynomial in H of degree at most n − 2, and

H = f +
a
n
.

We can now again differentiate (2.10) and eliminate g. We obtain the analogue of (2.7),
namely

Hn−1Gi = Ln−2( f ), (2.11)

where we note that this time the differential polynomial Ln−2 has degree at most n − 2,
and

Gi = ∂zi H −
1
n
∂zi g

g
H.

By using the generalised Clunie lemma with (2.11) twice, we deduce as before that

‖ T (r,Gi) = o(T (r, f ))

and
‖ T (r,HGi) = o(T (r, f )).

Hence if Gi is not identically zero we deduce that

‖ T (r,H) ≤ T (r,HGi) + T
(
r,

1
Gi

)
= o(T (r, f )).

This gives a contradiction since then also

‖ T (r, f ) ≤ T (r,H) + T
(
r,

a
n

)
+ O(1) = o(T (r, f )).

Thus Gi must be identically zero for each i ∈ {1, . . . ,m} and

n
∂zi H

H
=
∂zi g

g
, g = cHn,

where c is a constant.
We can finally prove that c = 1. For otherwise we should deduce from (2.10) that

(1 − c)Hn + Pn−2(H) = 0.
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A further application of the generalised Clunie lemma now yields that

‖ m(r, (1 − c)H) = o(T (r,H)) = o(T (r, f )),

and since
‖ N(r,H) ≤ N(r, f ) + N

(
r,

a
n

)
= o(T (r, f )),

by hypothesis, this yields
‖ T (r,H) = o(T (r, f ))

giving a contradiction as before. Thus c = 1 and Theorem 1.2 is proved.

3. Proof of Theorem 1.3

According to Hartogs’ theorem, a function f defined on Cm is meromorphic on Cm

if and only if, for each j ∈ {1, . . . ,m}, f is meromorphic for z j when the variables
z1, . . . , z j−1, z j+1, . . . , zm are fixed. Thus we can prove Theorem 1.3 by induction on
the number m of variables. When m = 1, Theorem 1.3 is just the result of Tumura [12]
and Clunie [1] (or see [6, Theorem 3.8]). Now we fix m ≥ 2 and assume that the
conclusion in Theorem 1.3 holds for variables of number at most m − 1.

First of all, we claim that ∂zi f / f (1 ≤ i ≤ m) are all rational. Assume, to the contrary,
that one of them, say ∂zm f / f , is transcendental. Applying Theorem 1.3 for m − 1
variables z1, . . . , zm−1, there exists a partition

{1, . . . ,m − 1} = I0 ∪ I1 ∪ · · · ∪ Ik

with Ii ∩ I j = ∅ (i , j) such that

f (z1, . . . , zm) = exp
(∑

i∈I0

Ãi(zm)zi + B̃0(zm)
) k∏

j=1

(∑
i∈I j

Ãi(zm)zi + B̃ j(zm)
)−n j

, (3.1)

where Ãi(zm) (.0) and B̃ j(zm) are entire functions of zm because f is a nonvanishing
meromorphic function on Cm. Set

F =
∂zm f

f
.

Then
∂2

zm
f = F∂zm f + f∂zm F = (F2 + ∂zm F) f .

For n ≥ 1 we deduce inductively (see [6, Lemma 3.5]) that

∂n
zm

f

f
= Fn +

n(n − 1)
2

Fn−2∂zm F + anFn−3∂2
zm

F + bnFn−4(∂zm F)2 + Pn−3(F), (3.2)

where
an = 1

6 n(n − 1)(n − 2), bn = 1
8 n(n − 1)(n − 2)(n − 3),
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and Pn−3(F) is a differential polynomial with constant coefficients, which vanishes
identically for n ≤ 3 and has degree n − 3 when n > 3.

Since the set of poles of f is algebraic, we have

N(r, f ) = O(log r)

(see [4] or [11]) and hence

N(r, F) = N
(
r,
∂zm f

f

)
≤ 2N(r, f ) = O(log r).

Since F is transcendental, which means (see [4] or [11])

lim
r→∞

T (r, F)
log r

=∞,

then the function

g =
∂l

zm
f

f

with l = lm satisfies

‖ N(r, F) + N
(
r,

1
g

)
= o(T (r, F)).

Thus Theorem 1.2 shows that g = ψl, where ψ = F + a/l. The case which is relevant
to Theorem 1.2 is that in which g = F l + Pl−1(F), where

Pl−1(F) =
l(l − 1)

2
F l−2∂zm F + alF l−3∂2

zm
F + blF l−4(∂zm F)2 + Pl−3(F).

In this case

hl−1a = πl−1(h) =
l(l − 1)

2
hl−2∂zm h,

that is,

a =
l(l − 1)

2
∂zm h

h
=

l − 1
2

∂zm g
g

;

see the proof of Theorem 1.2 for the last relation and definitions of h and πl−1(h).
Hence,

ψ = F +
l − 1

2l
∂zm g

g
= F +

l − 1
2

∂zmψ

ψ
.

Set

α =
l − 1

2
∂zmψ

ψ
.

Then

∂zmψ =
2α

l − 1
ψ, ∂2

zm
ψ =

( 4α2

(l − 1)2 +
2∂zmα

l − 1

)
ψ,
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and hence

F = ψ − α,

∂zm F = ∂zmψ − ∂zmα =
2α

l − 1
ψ − ∂zmα,

∂2
zm

F = ∂2
zm
ψ − ∂2

zm
α =

( 4α2

(l − 1)2 +
2∂zmα

l − 1

)
ψ − ∂2

zm
α,

and so on. Thus, if n = l = lm ≥ 2, we obtain from (3.2) that

ψl = (ψ − α)l +
l(l − 1)

2
(ψ − α)l−2

( 2α
l − 1

ψ − ∂zmα
)

+

(
al

( 4α2

(l − 1)2 +
2∂zmα

l − 1

)
+ bl

4α2

(l − 1)2

)
ψl−2 + Ql−3(ψ), (3.3)

where Ql−3(ψ) is a differential polynomial of degree at most l − 3 in ψ. In fact, the
coefficients of Ql−3 are polynomials in α and its derivatives on zm and the poles of α
occur at the zeros and poles of ψ, that is, of g, and so by hypothesis

N(r, α) = O(log r) = o(T (r, F)),

and also

‖ m(r, α) = m
(
r,
∂zmψ

ψ

)
+ O(1) = m

(
r,
∂zm g

g

)
+ O(1) = o(T (r, g)) = o(T (r, F)).

Therefore,
‖ T (r, α) = o(T (r, F)). (3.4)

We collect terms in the powers of ψ in (3.3) and note that terms of degree l and l − 1
are eliminated. The equation becomes

a0ψ
l−2 + (terms of degree at most l − 3) = 0, (3.5)

where

a0 =
l(l − 1)

2
(α2 − ∂zmα) − l(l − 2)α2 + al

( 4α2

(l − 1)2 +
2∂zmα

l − 1

)
+ bl

4α2

(l − 1)2

=
l(l + 1)

6

(
α2

l − 1
− ∂zmα

)
.

If l = 2, we see at once that a0ψ
l−2 = 0, so that a0 = 0. If l > 2, we apply the generalised

Clunie lemma with (3.5), and deduce that

‖ m(r, a0ψ) = o(T (r, ψ)) = o(T (r, F)).

Since by hypothesis

‖ N(r, ψ) = O{N(r, g)} = o(T (r, F)),
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we deduce that
‖ T (r, a0ψ) = o(T (r, F))

and hence, if a0 is not identically zero, by using (3.4),

‖ T (r, ψ) = o(T (r, F)),

‖ T (r, F) ≤ T (r, ψ) + T
(
r,
∂zm g

g

)
+ O(1) = o(T (r, F)),

giving a contradiction. Thus in any case

a0 =
l(l + 1)

6

(
α2

l − 1
− ∂zmα

)
= 0.

This gives on integration either α = 0 or

∂zmα

α2 =
1

l − 1
,

1
α

=
c1 − zm

l − 1
,

α =
l − 1

2
∂zmψ

ψ
=

l − 1
c1 − zm

,

ψ = c2(c1 − zm)−2, c2 . 0,
∂zm f

f
= F = ψ −

l − 1
2

∂zmψ

ψ
= c2(c1 − zm)−2 −

l − 1
c1 − zm

,

f (z) = c3(c1 − zm)l−1 exp(c2(c1 − zm)−1), c3 . 0,

where c1, c2 and c3 are entire functions that are independent of zm. Clearly this function
f cannot be meromorphic in Cm. Thus α must be identically zero. It follows that ψ is
independent of zm, and so is F. Note that

F(z1, . . . , zm) =
∑
i∈I0

Ã′i(zm)zi + B̃′0(zm)

−

k∑
j=1

n j

(∑
i∈I j

Ãi(zm)zi + B̃ j(zm)
)−1(∑

i∈I j

Ã′i(zm)zi + B̃′j(zm)
) (3.6)

is independent of zm, and so Ã′i(zm), B̃′j(zm) are constants. Therefore F is rational. This
is a contradiction, and so our claim is proved.

Since ∂zi f / f (1 ≤ i ≤ m) are all rational, so in particular is F, and, by using (3.2),
then ∂l

zm
f / f is rational. Thus, writing f in the form (3.1) again, by the induction

assumptions we find from (3.6) that Ã′i(zm), B̃′j(zm) are polynomials. By using the
relation

∂l
zm

f

f
= F l + Pl−1(F),

we see that if
∑

i∈I0
Ã′i(zm)zi + B̃′0(zm) is not constant,

∂l
zm

f

f
(z1, . . . , zm) ∼ F l ∼

(∑
i∈I0

Ã′i(zm)zi + B̃′0(zm)
)l
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as zm →∞. It follows that ∂l
zm

f = 0 somewhere in Cm, giving a contradiction. Thus
we have

Ã′i(zm) ≡ 0 (i ∈ I0), B̃′0(zm) = Â0 = constant,

and so there exist constants Ai, B0 such that

Ãi(zm) = Ai (i ∈ I0), B̃0(zm) = Â0zm + B0.

If Â0 , 0, and F is not constant, we see that

F(z) = Â0, ∂n
zm

F = 0 (n ≥ 1)

at zm = ∞. Now we see that on the right-hand side of (3.2) with n = l all the terms
except the first vanish at zm =∞, so that ∂l

zm
f / f = Âl

0 at zm =∞, and ∂l
zm

f must again
have a zero in Cm. This is a contradiction. Thus if Â0 , 0, it follows that F must be
constant, and so

Ã′i(zm) ≡ 0 (i ∈ I j), B̃′j(zm) ≡ 0

for each j = 1, . . . , k, that is,

Ãi(zm) = Ai = constant (i ∈ I j), B̃ j(zm) = B j = constant.

Set Ĩ0 = I0 ∪ {m}. Then the partition

{1, . . . ,m} = Ĩ0 ∪ I1 ∪ · · · ∪ Ik

has the property in Theorem 1.3.
Finally, if Â0 = 0 then

f (z1, . . . , zm) =
1

Q(z1, . . . , zm)
exp

(∑
i∈I0

Aizi + B0

)
,

where

Q(z1, . . . , zm) =

k∏
j=1

(∑
i∈I j

Ãi(zm)zi + B̃ j(zm)
)n j

.

For i ∈ I j (1 ≤ j ≤ k), it is easy to see that

Ãi(zm) = Ai = constant

since ∂li
zi f has no zeros. Set

deg(B̃ j) = p j

and consider the polynomial

Q1(zm) =
∏
j∈J

(∑
i∈I j

Aizi + B̃ j(zm)
)n j

in zm, where
J = { j | 1 ≤ j ≤ k, p j ≥ 1}.
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We choose (z1, . . . , zm−1) ∈ Cm−1 such that the polynomial in zm,

R j(zm) =
∑
i∈I j

Aizi + B̃ j(zm) ( j ∈ J),

has distinct zeros. Thus if Q1(zm) has degree n, f1(zm) = f (z1, . . . , zm) has a zero
of order n at zm = ∞ and no finite zeros. Suppose that f1(zm) has distinct poles of
multiplicity qν for ν = 1, . . . ,N. Then

q1 + · · · + qN = n.

Also, f (l)
1 (zm) has poles of multiplicity qν + l, so that altogether f (l)

1 (zm) has

(q1 + l) + · · · + (qN + l) = n + lN

poles. Also f (l)
1 (zm) has a zero of order n + l at zm =∞. Thus f (l)

1 (zm) has l(N − 1) finite
zeros, and so N = 1 since f (l)

1 (zm) = ∂l
zm

f has no finite zeros. Thus J contains only one
element, say J = {1}, which means that

B̃ j(zm) = B j = constant (2 ≤ j ≤ k).

Since f1(zm) has only one pole, it follows that when I1 = ∅,

Q1(zm) = B̃1(zm)n1 = (Amzm + B1)n,

where Am (, 0), B1 are constant, and so the partition

{1, . . . ,m} = I0 ∪ Ĩ1 ∪ · · · ∪ Ik

has the property in Theorem 1.3, where Ĩ1 = {m}.
When I1 , ∅, and p1 ≥ 2, we may choose (z1, . . . , zm−1) ∈ Cm−1 as before such that

R1(zm) has at least two distinct zeros, and hence f1(zm) has at least two distinct poles.
This is a contradiction. Thus p1 = 1, and so there exist constants Am (, 0), B1 such
that

B̃1(zm) = Amzm + B1.

Hence the partition
{1, . . . ,m} = I0 ∪ Ĩ1 ∪ · · · ∪ Ik

has the property in Theorem 1.3, where Ĩ1 = I1 ∪ {m}, and we obtain the conclusion in
Theorem 1.3, which also completes the proof by induction.
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