A NOTE ON THE CARADUS CLASS \mathcal{G} OF BOUNDED LINEAR OPERATORS ON A COMPLEX BANACH SPACE

A. F. RUSTON

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class \mathcal{G} of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class \mathcal{G} if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in \mathcal{G} if and only if it has a rational resolvent (8, p. 314).

Some ten years ago (in May, 1957), I discovered a property of the class \mathcal{G} which may be of interest in connection with Caradus' work, and is the subject of the present note.

2. Theorem. Let X be a complex Banach space. If T belongs to the class \mathcal{G}, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that $S = p(T)$.

Suppose that T and S satisfy the hypothesis of the theorem. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the points of the spectrum of T, which by hypothesis are poles of the resolvent of T, and let $\nu_1, \nu_2, \ldots, \nu_n$ be the orders of those poles, respectively. Let M_r be the kernel (or “null manifold”) of $(T - \lambda_r I)^r$ ($r = 1, 2, \ldots, n$). Then $X = M_1 \oplus M_2 \oplus \ldots \oplus M_n$ (8, p. 317, Theorem 5.9-E). For typographical convenience we write T_r for $T - \lambda_r I$ ($r = 1, 2, \ldots, n$).

Now let x be any member of M_r (where r is any integer with $1 \leq r \leq n$). Choose a bounded linear functional f on X such that $(T_{r-1} f) T_r x = 0$ but $(T_r^* f) T_r x \neq 0$; such an f exists since λ_r is also a pole of order ν_r of the resolvent of the adjoint T^* of T (3, p. 568, Theorem VII.3.7). We now consider the bounded linear operator

$$V = \sum_{s=1}^{r} T_r^{-s} (x \otimes f) T_r^{r-s},$$

where $x \otimes f$ denotes the operator $y \rightarrow f(y)x$ on X into itself; cf. (7, p. 110). In view of our choice of x and f, we have:

$$T_r V = \sum_{s=1}^{r-1} T_r^{-s} (x \otimes f) T_r^{r-s} = VT_r,$$

Received November 28, 1967.
so that \(V \) commutes with \(T_r \), and thus with \(T \). Hence (by hypothesis), \(V \) commutes with \(S \).

Now

\[
f, \ T_r \cdot f, \ (T_r \cdot f)_2, \ldots, \ (T_r \cdot f)_{r-1}\f
\]

are clearly linearly independent (if \(\sum_{s=1}^{r} \alpha_s (T_r \cdot f)^{s-1}\f = 0 \), then

\[
\sum_{s=1}^{r} \alpha_s (T_r \cdot f)^{s-2}\f = 0,
\]

and hence \(\alpha_1 = 0, \ \sum_{s=1}^{r} \alpha_s (T_r \cdot f)^{r+s-2}\f = 0 \), and therefore \(\alpha_2 = 0 \), and so on), and thus a point \(y \) of \(X \) can be found such that

\[
[(T_r \cdot f)^{r-1}\f](y) = 1, \quad [(T_r \cdot f)^{s-1}\f](y) = 0 \quad (s = 1, 2, \ldots, r - 1),
\]

that is,

\[
f(T_r \cdot f)^{r-1}\f = 1, \quad f(T_r \cdot f)^{s-1}\f = 0 \quad (s = 2, 3, \ldots, r)
\]

(cf. 2, p. 6, Theorem I.2.2, Corollary 2). Then \(SVy = VSy \), and therefore

\[
\sum_{s=1}^{r} \ T_r^{s-1} (x \otimes f) T_r^{r-s} y = \sum_{s=1}^{r} \ T_r^{s-1} (x \otimes f) T_r^{r-s} Sy,
\]

that is,

\[
Sx = \sum_{s=1}^{r} f(T_r \cdot f)^{s-1}\f T_r^{s-1} x
\]

\[
= \sum_{s=1}^{r} f(T_r \cdot f)^{s-1}\f (T - \lambda I)^{s-1} x.
\]

However, the choice of \(f \) and \(y \) was quite independent of the choice of \(x \in M_r \). Hence,

\[
Sx = p_r(T)x
\]

for every \(x \in M_r \), where \(p_r \) is the polynomial given by

\[
p_r(\lambda) = \sum_{s=1}^{r} f(T_r \cdot f)^{s-1}\f (\lambda - \lambda_r)^{s-1}.
\]

Having chosen a polynomial \(p_r \) as above for each \(r = 1, 2, \ldots, n \), we now choose a polynomial \(p \) such that

\[
p^{(s)}(\lambda_r) = p_r^{(s)}(\lambda_r) \quad (s = 0, 1, 2, \ldots, r - 1; r = 1, 2, \ldots, n).
\]

This can certainly be done; for example we can take

\[
p = p_1 \cdot \phi_1 + p_2 \cdot \phi_2 + \ldots + p_n \cdot \phi_n,
\]

where \(\phi_r \) is given by

\[
\phi_r(\lambda) = \left[\prod_{s=1}^{r} \ (\lambda - \lambda_s)^{r-s} \right] \Phi_r(\lambda),
\]
A. F. RUSTON

\[\Phi_r(\lambda) \text{ being the sum of the first } v_r \text{ terms in the expansion of } \left[\prod_{s=1}^{\infty} (\lambda - \lambda_s)^{v_r} \right]^{-1} \]

as a power series in \(\lambda - \lambda_r \) (this generalizes, in effect, the Lagrange interpolation formula, which corresponds to the case \(v_1 = v_2 = \ldots = v_n = 1 \); that such a generalization is possible is, of course, well known; cf. \((6; 5; 4) \); the last two refer specifically to the Hermite interpolation formula, which corresponds to the case \(v_1 = v_2 = \ldots = v_n = 2 \). Then

\[p(T)x = p_r(T)x = Sx \]

for every \(x \in M_r \) (3, p. 571, Theorem VII.3.16; 8, p. 307, Theorem 5.8-B). Hence,

\[p(T)x = Sx \]

for every \(x \in M_1 \oplus M_2 \oplus \ldots \oplus M_n = X \), and therefore \(S = p(T) \), as required. Incidentally, \(\phi_r(T) \) is the spectral projection of \(X \) onto \(M_r \); cf. (8, § 5.9, p. 319, Problem 3).

Note. Since \(V \) is of finite rank, and thus a member of \(\mathfrak{F} \), we have in fact proved the following, slightly stronger, result.

If \(T \in \mathfrak{F} \), **and the linear operator** \(S \) **commutes with every member** \(\mathfrak{F} \) **which commutes with** \(T \), **then there is a polynomial** \(p \) **such that** \(S = p(T) \).

References

University College of North Wales,
Bangor, Caernarvonshire

https://doi.org/10.4153/CJM-1969-066-6 Published online by Cambridge University Press