MAXIMAL COMPATIBLE EXTENSIONS OF PARTIAL ORDERS

STEPHAN FOLDES and JENŐ SZIGETI ${ }^{\text {® }}$

(Received 4 February 2005; revised 14 June 2006)

Communicated by D. Easdown

Abstract

We give a complete description of maximal compatible partial orders on the mono-unary algebra (A, f), where $f: A \rightarrow A$ is an arbitrary unary operation.

2000 Mathematics subject classification: primary 06A10.
Keywords and phrases: compatible partial order, prohibited pair, quasilinear partial order.

1. Introduction

The well-known Szpilrajn theorem ([9]) asserts that any partial order \leq_{r} (or r) on a set A can be extended to a linear order \leq_{R}. Recent work related to this early result includes ([2-4,6,7]). As a consequence of Szpilrajn's theorem we obtain that the maximal partial orders (with respect to the containment relation) on A are exactly the linear orders of A. A general scheme for extending Szpilrajn's theorem consists of restricting attention to orders with some prescribed property, and requiring that the linear extension also possess this property (see [1]). In particular, if $f: A \rightarrow A$ is a unary operation, then we can restrict our consideration to the so called compatible partial orders of (A, f), that is, to partial orders with the following property: $x \leq_{r} y$ implies $f(x) \leq_{r} f(y)$ for all $x, y \in A$. In the present paper we investigate the compatible extensions of a given r in a partially ordered mono-unary algebra $\left(A, f, \leq_{r}\right)$. Using f-prohibited pairs, for compatible partial orders we define the notion of f-quasilinearity. Our main result states, that a compatible partial order r on (A, f) can always be extended to a compatible f-quasilinear partial order R. As

[^0]a consequence, we obtain that the maximal compatible partial orders on (A, f) are exactly the compatible f-quasilinear partial orders. It turns out, that a compatible f-quasilinear partial order is linear if and only if the function f has no proper cycle (acyclic according to the terminology of [8]). Thus the following main theorem of [8] will appear as a special case of our Theorem 4.2.

Let $f: A \rightarrow A$ be an acyclic function (there is no $c \in A$ such that $f(c) \neq c$ and $f^{n}(c)=c$ for some integer $n \geq 2$) and $r \subseteq A \times A$ a compatible partial order on (A, f). Then there exists a compatible linear order $R \subseteq A \times A$ on (A, f) with $r \subseteq R$.

On the other hand, we shall make extensive use of the above result in proving Theorem 4.2.

2. Components, cycles and distance

Let $f: A \rightarrow A$ be a function (unary operation on the set A). We define the relation \sim_{f} as follows: for $x, y \in A$ let $x \sim_{f} y$ if $f^{k}(x)=f^{l}(y)$ for some integers $k \geq 0$ and $l \geq 0$. It is straightforward to see that \sim_{f} is an equivalence on A. The equivalence class $[x]_{f}$ of an element $x \in A$ is called the f-component of x. Clearly, $[x]_{f} \subseteq A$ is a subalgebra in (A, f), that is, $f\left([x]_{f}\right) \subseteq[x]_{f}$. An element $c \in A$ is called cyclic with respect to f (or cyclic in (A, f)), if $f^{m}(c)=c$ for some integer $m \geq 1$. For a cyclic element c,

$$
n=n(c)=\min \left\{m \mid m \geq 1 \text { and } f^{m}(c)=c\right\}
$$

is called the period of c or the length of the cycle $C=\left\{c, f(c), \ldots, f^{n-1}(c)\right\}$; it is easy to prove that C has exactly n elements, $f(C)=C$ and $f^{k}(c)=f^{l}(c)$ holds if and only if $k-l$ is divisible by n. A pair $(x, y) \in A \times A$ is called f-prohibited, if we can find integers $k \geq 0, l \geq 0$ and $m \geq 2$ such that m is not a divisor of $k-l$, the elements $f^{k}(x), f^{k+1}(x), \ldots, f^{k+m-1}(x)$ are distinct and $f^{k+m}(x)=f^{k}(x)=f^{l}(y)$. For an f-prohibited pair (x, y) and an integer $k \geq 0$ as above, we have $y \in[x]_{f}$, and $f^{k}(x)$ is a cyclic element in $[x]_{f}$ of period m. It is easy to verify, that a pair (x, y) is f-prohibited, if and only if $f^{k}(x)=f^{l}(y)$ is cyclic and $f^{k+l}(x) \neq f^{k+l}(y)$ for some integers $k \geq 0$ and $l \geq 0$ (the latter condition can be replaced by $f^{t}(x) \neq f^{t}(y)$ for all integers $t \geq 0$). The distance between an element $y \in[x]_{f}$ and a given cyclic element $c \in[x]_{f}$ is defined in part (1) of the following proposition, the proof of which is straightforward and hence omitted.

PROPOSITION 2.1. Let $y \in[x]_{f}$ and $c \in[x]_{f}$ be a cyclic element of period $n \geq 1$. Then we have the following.
(1) There exists an integer $t \geq 0$ such that $f^{t}(y)=c$. Let

$$
d(y, c)=\min \left\{t \mid t \geq 0 \text { and } f^{t}(y)=c\right\}
$$

denote the distance of y from c.
(2) $d(f(c), c)=n-1$ and for $y \neq c$, we have $d(f(y), c)=d(y, c)-1$.
(3) All cyclic elements of $[x]_{f}$ are in $C=\left\{c, f(c), \ldots, f^{n-1}(c)\right\}$ and each element in C is cyclic of period n.
(4) If $l \geq 0$ is an integer, then $f^{l}(y)=c$ holds if and only if $l \geq d(y, c)$ and $l-d(y, c)$ is divisible by n.
(5) (x, y) is f-prohibited if and only if $d(x, c)-d(y, c)$ is not divisible by n.

PROPOSITION 2.2. If $\left(A, f, \leq_{r}\right)$ is a partially ordered mono-unary algebra, then we have the following.
(1) If $c \in A$ is a cyclic element of period $n \geq 1$, then $C=\left\{c, f(c), \ldots, f^{n-1}(c)\right\}$ is an antichain with respect to \leq_{r}.
(2) If $(x, y) \in A \times A$ is an f-prohibited pair, then x and y are incomparable with respect to $\leq r$.

Proof. (1) Take $c^{*}=f^{i}(c)$ and $t=j-i$. Then $f^{t}\left(c^{*}\right)=f^{j}(c)$. Now $c^{*} \leq_{r} f^{t}\left(c^{*}\right)$ implies $c^{*} \leq_{r} f^{t}\left(c^{*}\right) \leq_{r} f^{2 t}\left(c^{*}\right) \leq_{r} \cdots \leq_{r} f^{n t}\left(c^{*}\right)=c^{*}$, in contradiction with $c^{*} \neq f^{t}\left(c^{*}\right)$. The reverse relation $f^{t}\left(c^{*}\right) \leq_{r} c^{*}$ leads to a similar contradiction.
(2) Let $f^{k}(x), \ldots, f^{k+m-1}(x)$ be distinct elements and $f^{k+m}(x)=f^{k}(x)=f^{l}(y)$ for some integers $k \geq 0, l \geq 0$ and $m \geq 2$ with $m \nmid k-l$. The assumption $x \leq_{r} y$ implies

$$
f^{k+l}(x) \leq_{r} f^{k+l}(y)
$$

for the elements $f^{k+l}(x)$ and $f^{k+l}(y)=f^{k}\left(f^{l}(y)\right)=f^{k}\left(f^{k}(x)\right)=f^{2 k}(x)$ of the cycle $C=\left\{f^{k}(x), f^{k+1}(x), \ldots, f^{k+m-1}(x)\right\}$, which contradicts (1), since $m \nmid 2 k-(k+l)$. The case $y \leq_{r} x$ can be treated similarly.

3. The order components of $\left(A, f, \leq_{r}\right)$

Let ($A, f, \leq r$) be a partially ordered mono-unary algebra. Consider the factor set

$$
B=A / \sim_{f}=\left\{[x]_{f} \mid x \in A\right\} .
$$

We define the relation \triangleleft_{r} on B as follows: $[x]_{f} \triangleleft_{r}[y]_{f}$ if $x_{1} \leq_{r} y_{1}$ for some $x_{1} \in[x]_{f}$ and $y_{1} \in[y]_{f}$.

PROPOSITION 3.1. (1) \triangleleft_{r} is a quasiorder (reflexive and transitive) on B.
(2) If $[x]_{f} \triangleleft_{r}[y]_{f}$ and $[y]_{f} \triangleleft_{r}[x]_{f}$ for the f-components $[x]_{f} \neq[y]_{f}$, then there is no cyclic element $c \in[x]_{f} \cup[y]_{f}$ of period $n \geq 1$.

PROOF. (1) In order to see transitivity, suppose $[x]_{f} \triangleleft_{r}[y]_{f} \triangleleft_{r}[z]_{f}$. Then $x_{1} \leq_{r} y_{1}$ and $y_{1}^{\prime} \leq_{r} z_{1}$ for some $x_{1} \in[x]_{f}, y_{1}, y_{1}^{\prime} \in[y]_{f}$ and $z_{1} \in[z]_{f}$. Since $y_{1} \sim_{f} y_{1}^{\prime}$, we can find integers $k \geq 0$ and $l \geq 0$ such that $f^{k}\left(y_{1}\right)=f^{l}\left(y_{1}^{\prime}\right)$. However,

$$
f^{k}\left(x_{1}\right) \leq_{r} f^{k}\left(y_{1}\right)=f^{l}\left(y_{1}^{\prime}\right) \leq_{r} f^{l}\left(z_{1}\right)
$$

for $f^{k}\left(x_{1}\right) \in[x]_{f}$ and $f^{l}\left(z_{1}\right) \in[z]_{f}$, so $[x]_{f} \triangleleft_{r}[z]_{f}$.
(2) Suppose that $[x]_{f} \triangleleft_{r}[y]_{f} \triangleleft_{r}[x]_{f},[x]_{f} \neq[y]_{f}$ and, without loss of generality, $c \in[x]_{f}$ is a cyclic element of period $n \geq 1$. There exist $x_{1}, x_{2} \in[x]_{f}$ and $y_{1}, y_{2} \in[y]_{f}$ with the properties $x_{1} \leq_{r} y_{1}$ and $y_{2} \leq_{r} x_{2}$. By part (1) of Proposition 2.1,

$$
f^{t_{1}}\left(x_{1}\right)=c=f^{t_{2}}\left(x_{2}\right)
$$

for some integers $t_{1} \geq 0$ and $t_{2} \geq 0$. Since $f^{t_{1}}\left(y_{1}\right) \sim_{f} f^{t_{2}}\left(y_{2}\right)$, we can find integers $k \geq 0$ and $l \geq 0$ such that

$$
f^{k}\left(f^{t_{1}}\left(y_{1}\right)\right)=f^{l}\left(f^{t_{2}}\left(y_{2}\right)\right)
$$

The compatibility of \leq_{r} gives

$$
f^{k}(c)=f^{k}\left(f^{t_{1}}\left(x_{1}\right)\right) \leq_{r} f^{k}\left(f^{t_{1}}\left(y_{1}\right)\right)=f^{l}\left(f^{t_{2}}\left(y_{2}\right)\right) \leq_{r} f^{l}\left(f^{t_{2}}\left(x_{2}\right)\right)=f^{l}(c)
$$

where $f^{k}(c)$ and $f^{l}(c)$ are cyclic elements. Applying part (1) of Proposition 2.2, we obtain that $f^{k}(c)=f^{k}\left(f^{t_{1}}\left(y_{1}\right)\right)=f^{l}(c)$ in contradiction with $[x]_{f} \cap[y]_{f}=\varnothing$.

The relation \equiv_{r} is defined on $B=A / \sim_{f}$ as follows: for $x, y \in A$ let $[x]_{f} \equiv \equiv_{r}[y]_{f}$ if $[x]_{f} \triangleleft_{r}[y]_{f}$ and $[y]_{f} \triangleleft_{r}[x]_{f}$. It is well-known that starting from the quasiorder \triangleleft_{r}, the above definition provides an equivalence on B. We define the order component of x in $\left(A, f, \leq_{r}\right)$ by

$$
\langle x\rangle=\bigcup_{y \in A \text { and }[y]_{f} \equiv_{r}[x]_{f}}[y]_{f} .
$$

Clearly, $[x]_{f} \subseteq\langle x\rangle \subseteq A$ and $\langle x\rangle$ is a subalgebra in (A, f), which corresponds to the \equiv_{r} equivalence class $\left[[x]_{f}\right]_{\equiv_{r}}$ of $[x]_{f}$ in B. It is easy to see that $\{\langle x\rangle \mid x \in A\}$ is a partition of A.

If $c \in\langle x\rangle$ is a cyclic element, then part (2) of Proposition3.1 gives that $\langle x\rangle=[x]_{f}$. We make use of the partial order $<_{r}$ on B / \equiv_{r}, which can be derived from \triangleleft_{r} in a natural way: $\langle x\rangle<_{r}\langle y\rangle$ if $[x]_{f} \triangleleft_{r}[y]_{f}$.

LEMMA 3.2. Let $\left(A, f, \leq_{r}\right)$ be a partially ordered mono-unary algebra. If $x \in A$ and there is no cyclic element in $\langle x\rangle$, then there exists a linear order ρ on $\langle x\rangle$ with the following properties:
(1) ρ is compatible on $(\langle x\rangle, f)$,
(2) ρ is an extension of \leq_{r} on the elements of $\langle x\rangle$.

PROOF. The absence of cyclic elements ensures that $f:\langle x\rangle \longrightarrow\langle x\rangle$ is acyclic, preserving the partial order $r \cap(\langle x\rangle \times\langle x\rangle)$. A straightforward application of the Main Theorem in [8] gives the existence of the desired ρ.

LEmMA 3.3. Let $\left(A, f, \leq_{r}\right)$ be a partially ordered mono-unary algebra, $x \in A$ and $c \in\langle x\rangle$ a cyclic element of period $n \geq 1$. Then there exists a partial order ρ on $\langle x\rangle=[x]_{f}$ with the following properties:
(1) ρ is compatible on $\left([x]_{f}, f\right)$,
(2) ρ is an extension of \leq_{r} on the elements of $[x]_{f}$,
(3) $[x]_{f}=E_{0} \cup E_{1} \cup \cdots \cup E_{n-1}$ is a pairwise disjoint union, where each set

$$
E_{i}=\left\{u \in[x]_{f} \mid d(u, c)-i \text { is divisible by } n\right\}, \quad 0 \leq i \leq n-1
$$

is a chain with respect to ρ, and for $i \neq j$ the elements of $E_{i} \times E_{j}$ are f-prohibited pairs.

Proof. Let $E=[x]_{f}$ and consider the equivalence relation $\varepsilon=\Delta_{E} \cup(C \times C)$ on E, where Δ_{E} is the diagonal of $E \times E$ and $C=\left\{c, f(c), \ldots, f^{n-1}(c)\right\}$ is the set of cyclic elements in E. Clearly, $[u]_{\varepsilon}=\{u\}$ if $u \in E \backslash C$ and $[u]_{\varepsilon}=C$ if $u \in C$. Using the factor set $E^{*}=E / \varepsilon$, define a function $f^{*}: E^{*} \rightarrow E^{*}$ and a relation $r^{*} \subseteq E^{*} \times E^{*}$ as follows: $f^{*}\left([u]_{\varepsilon}\right)=[f(u)]_{\varepsilon}$ and r^{*} is the transitive closure of the reflexive relation

$$
s=\left\{\left([u]_{\varepsilon},[v]_{\varepsilon}\right) \mid u, v \in E \text { and } u^{\prime} \leq_{r} v^{\prime} \text { for some } u^{\prime} \in[u]_{\varepsilon}, v^{\prime} \in[v]_{\varepsilon}\right\}
$$

Then f^{*} is well-defined since $f(C) \subseteq C$. It is immediate from the definitions that f^{*} preserves s, whence f^{*} preserves r^{*}. We claim, that r^{*} is a partial order on E^{*}. It is enough to show that there is no proper cycle in E^{*} with respect to s. If a proper cycle

$$
\left[u_{1}\right]_{\varepsilon} s\left[u_{2}\right]_{\varepsilon} s \cdots s\left[u_{k}\right]_{\varepsilon} s\left[u_{1}\right]_{\varepsilon}
$$

does not contain C, then we have

$$
u_{1} \leq_{r} u_{2} \leq_{r} \cdots \leq_{r} u_{k} \leq_{r} u_{1}
$$

implying that $u_{1}=u_{2}=\cdots=u_{k}$, a contradiction. If C appears in a proper cycle, then we can exhibit a segment of it as

$$
C s\left[v_{1}\right]_{\varepsilon} s\left[v_{2}\right]_{\varepsilon} s \cdots s\left[v_{l}\right]_{\varepsilon} s C
$$

where $v_{1}, v_{2}, \ldots, v_{l} \notin C$. Now we have

$$
c^{\prime} \leq_{r} v_{1} \leq_{r} v_{2} \leq_{r} \cdots \leq_{r} v_{l} \leq_{r} c^{\prime \prime}
$$

for some $c^{\prime}, c^{\prime \prime} \in C$. Applying part (1) of Proposition 2.2 gives that $c^{\prime}=c^{\prime \prime}$. Thus the elements $v_{1}=v_{2}=\cdots=v_{l}=c^{\prime}=c^{\prime \prime}$ are in C, a contradiction. The only cyclic element of $\left(E^{*}, f^{*}\right)$ is C and $f^{*}(C)=C$, so we can apply the Main Theorem of [8] to the partially ordered algebra (E^{*}, f^{*}, r^{*}), in order to get a compatible linear order ρ^{*} on $\left(E^{*}, f^{*}\right)$ with $r^{*} \subseteq \rho^{*}$. We claim that

$$
\rho=\left\{(u, v) \mid u, v \in E,\left([u]_{\varepsilon},[v]_{\varepsilon}\right) \in \rho^{*} \text { and } n \mid d(u, c)-d(v, c)\right\}
$$

is one of the desired relations on E.
The reflexive and transitive properties of ρ can be easily verified. Let $(u, v) \in \rho$ and $(v, u) \in \rho$. Then $\left([u]_{\varepsilon},[v]_{\varepsilon}\right) \in \rho^{*}$ and $\left([v]_{\varepsilon},[u]_{\varepsilon}\right) \in \rho^{*}$ imply $[u]_{\varepsilon}=[v]_{\varepsilon}$, whence $u=v$ or $u, v \in C$. If $u, v \in C$, then we also have $u=v$ since $n \mid d(u, c)-d(v, c)$, proving antisymmetry.

Suppose $(u, v) \in \rho$. Then $\left([u]_{\varepsilon},[v]_{\varepsilon}\right) \in \rho^{*}$ and the compatibility of ρ^{*} provides that

$$
\left([f(u)]_{\varepsilon},[f(v)]_{\varepsilon}\right)=\left(f^{*}\left([u]_{\varepsilon}\right), f^{*}\left([v]_{\varepsilon}\right)\right) \in \rho^{*}
$$

Using part (2) of Proposition 2.1, we obtain $n \mid d(f(u), c)-d(f(v), c)$ as a consequence of the divisibility $n \mid d(u, c)-d(v, c)$, proving that $(f(u), f(v)) \in \rho$.

Suppose $u, v \in E$ and $u \leq_{r} v$. Then first we get $\left([u]_{\varepsilon},[v]_{\varepsilon}\right) \in s$ and next $\left([u]_{\varepsilon},[v]_{\varepsilon}\right) \in r^{*} \subseteq \rho^{*}$. If $n \nmid d(u, c)-d(v, c)$, then (u, v) is f-prohibited by part (5) of Proposition 2.1, contradicting part (2) of Proposition 2.2. Thus we have $n \mid d(u, c)-d(v, c)$ and $(u, v) \in \rho$, proving $r \subseteq \rho$.

For $u, v \in E_{i}$, the divisibility $n \mid d(u, c)-d(v, c)$ follows from $n \mid d(u, c)-i$ and $n \mid d(v, c)-i$. Since ρ^{*} is linear, either $\left([u]_{\varepsilon},[v]_{\varepsilon}\right) \in \rho^{*}$ or $\left([v]_{\varepsilon},[u]_{\varepsilon}\right) \in \rho^{*}$ holds. Thus we have either $(u, v) \in \rho$ or $(v, u) \in \rho$, proving that E_{i} is a chain with respect to ρ.

If $i \neq j$ and $(u, v) \in E_{i} \times E_{j}$, then $n \mid d(u, c)-i$ and $n \mid d(v, c)-j$ imply that $d(u, c)-d(v, c)$ is not divisible by n, so by part (5) of Proposition 2.1, (u, v) is f-prohibited.

Remark 3.4. According to [5, Proposition 3.6], the convexity of the antichain C implies that $\varepsilon=\Delta_{E} \cup(C \times C)$ is an order congruence of $(E, f, r \cap(E \times E))$.

4. The main results

A compatible partial order R on a mono-unary algebra (A, f) is called f-quasilinear, if $(x, y) \in R$ or $(y, x) \in R$ for all non f-prohibited pairs $(x, y) \in A \times A$. In view of part (2) of Proposition 2.2, we have the following simple observation.

PROPOSITION 4.1. If a compatible partial order R on a mono-unary algebra (A, f) is f-quasilinear, then it is maximal (with respect to containment) among the compatible partial orders of (A, f).

THEOREM 4.2. If $\left(A, f, \leq_{r}\right)$ is a partially ordered mono-unary algebra, then there exists a compatible partial order R on (A, f) with the following properties:
(1) R is an extension of r,
(2) R is f-quasilinear.

Proof. Let $<_{\lambda}$ be an arbitrary linear extension of the partial order $<_{r}$ on the set $B / \not \equiv_{r}$ of order components in $\left(A, f, \leq_{r}\right)$, where $B=A / \sim_{f}$. Let $x \in A$. If there is no cyclic element in $\langle x\rangle$, then fix a compatible linear order $\rho_{\langle x\rangle}$ on $\langle x\rangle$ with the properties described in Lemma 3.2. If there is a cyclic element of period $n \geq 1$ in $\langle x\rangle$, then fix a compatible partial order $\rho_{(x)}$ on $\langle x\rangle=[x]_{f}$ with the properties described in Lemma 3.3. We claim that

$$
R=\left\{(x, y) \in A \times A \mid\langle x\rangle<_{\lambda}\langle y\rangle \text { and }(x, y) \in \rho_{(x)} \text { in case of }\langle x\rangle=\langle y\rangle\right\}
$$

satisfies (1) and (2).
The reflexive, antisymmetric and transitive properties of R can be easily verified. In order to prove the compatibility of R, it is enough to note that $\langle f(x)\rangle=\langle x\rangle$ and that $\rho_{\langle x\rangle}$ is a compatible partial order on $(\langle x\rangle, f)$.

Suppose $x \leq_{r} y$. Then $[x]_{f} \triangleleft_{r}[y]_{f}$, whence we obtain $\langle x\rangle<_{r}\langle y\rangle$ as well as $\langle x\rangle<_{\lambda}\langle y\rangle$. In the case of $\langle x\rangle=\langle y\rangle$, the relation $(x, y) \in \rho_{(x\rangle}$ follows from $r \cap(\langle x\rangle \times\langle x\rangle) \subseteq \rho_{(x)}$. Thus we have $(x, y) \in R$, proving $r \subseteq R$. Therefore (1) holds.

Suppose now $x, y \in A$ are incomparable elements with respect to R. Then the linearity of $<_{\lambda}$ implies that $\langle x\rangle=\langle y\rangle,(x, y) \notin \rho_{\langle x\rangle}$ and $(y, x) \notin \rho_{\langle x\rangle}$. Since $\rho_{\langle x\rangle}$ is not linear, the order component $\langle x\rangle$ must contain a cyclic element c of period $n \geq 2$. In view of the properties of $\rho_{(x)}$ described in Lemma 3.3, we obtain that $x \in E_{i}$ and $y \in E_{j}$ for some $i, j \in\{0,1, \ldots, n-1\}$ with $i \neq j$. Now the last property of the E_{i} 's guarantees that (x, y) is an f-prohibited pair. Thus (2) holds.

COROLLARY 4.3. A compatible partial order R on (A, f) is maximal (with respect to containment) if and only if R is f-quasilinear.

Acknowledgement

The final version of this paper was prepared while the first named author was at the Alfred Renyi Institute of Mathematics, Hungarian Academy of Sciences.

References

[1] R. Bonnet and M. Pouzet, 'Linear extensions of ordered sets', in: Ordered Sets (ed. I. Rival), Proceedings of the Nato Advanced Study Institute Conference held in Banff, August 28-September 12, 1981 (D. Reidel Publishing Co., Dordrecht, 1982) pp. 125-170.
[2] G. Bosi and G. Herden, 'On a strong continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller', Order 22 (2005), 329-342.
[3] R. G. Downey, D. R. Hirschfeldt, S. Lempp and R. Solomon, 'Computability-theoretic and prooftheoretic aspects of partial and linear orderings', Israel J. Math. 138 (2003), 271-289.
[4] G. Herden and A. Pallack, 'On the continuous analogue of the Szpilrajn theorem I', Math. Social Sci. 43 (2002), 115-134.
[5] P. Körtesi, S. Radeleczki and Sz. Szilágyi, 'Congruences and isotone maps on partially ordered sets', Math. Pannon. 16 (2005), 39-55.
[6] S. Lahiri, 'A simple proof of Suzumura's extension theorem for finite domains with applications', J. Appl. Math. Decis. Sci. 6 (2002), 183-190.
[7] V. Novak and M. Novotny, 'Linear extensions of orderings', Czechoslovak Math. J. 50 (2000), 853-864.
[8] J. Szigeti and B. Nagy, 'Linear extensions of partial orders preserving monotonicity', Order 4 (1987), 31-35.
[9] E. Szpilrajn, 'Sur l'extension de l'ordre partiel', Fund. Math. 16 (1930), 386-389.

Institute of Mathematics

Tampere University of Technology
PL 553
33101 Tampere
Finnland
e-mail: stephan.foldes@tut.fi

Institute of Mathematics
University of Miskolc
Miskolc 3515
Hungary
e-mail: jeno.szigeti@uni-miskolc.hu

[^0]: The work of the first named author was partially supported by the European Community's Marie Curie Program (contract MTKD-CT-2004-003006). The second named author was supported by OTKA of Hungary No. T043034.
 (c) 2006 Australian Mathematical Society 1446 -7887/06 $\$$ A2.00 +0.00

