MAXIMAL COMPATIBLE EXTENSIONS OF PARTIAL ORDERS

STEPHAN FOLDES and JENŐ SZIGETI™

(Received 4 February 2005; revised 14 June 2006)

Communicated by D. Easdown

Abstract

We give a complete description of maximal compatible partial orders on the mono-unary algebra (A, f), where $f: A \to A$ is an arbitrary unary operation.

2000 Mathematics subject classification: primary 06A10.

Keywords and phrases: compatible partial order, prohibited pair, quasilinear partial order.

1. Introduction

The well-known Szpilrajn theorem ([9]) asserts that any partial order \leq_r (or r) on a set A can be extended to a linear order \leq_R . Recent work related to this early result includes ([2–4, 6, 7]). As a consequence of Szpilrajn's theorem we obtain that the maximal partial orders (with respect to the containment relation) on A are exactly the linear orders of A. A general scheme for extending Szpilrajn's theorem consists of restricting attention to orders with some prescribed property, and requiring that the linear extension also possess this property (see [1]). In particular, if $f: A \rightarrow A$ is a unary operation, then we can restrict our consideration to the so called *compatible* partial orders of (A, f), that is, to partial orders with the following property: $x \leq_r y$ implies $f(x) \leq_r f(y)$ for all $x, y \in A$. In the present paper we investigate the compatible extensions of a given r in a partially ordered mono-unary algebra (A, f, \leq_r) . Using f-prohibited pairs, for compatible partial orders we define the notion of f-quasilinearity. Our main result states, that a compatible partial order r on (A, f) can always be extended to a compatible f-quasilinear partial order r. As

The work of the first named author was partially supported by the European Community's Marie Curie Program (contract MTKD-CT-2004-003006). The second named author was supported by OTKA of Hungary No. T043034.

^{© 2006} Australian Mathematical Society 1446-7887/06 A 2.00 + 0.00

a consequence, we obtain that the maximal compatible partial orders on (A, f) are exactly the compatible f-quasilinear partial orders. It turns out, that a compatible f-quasilinear partial order is linear if and only if the function f has no proper cycle (acyclic according to the terminology of [8]). Thus the following main theorem of [8] will appear as a special case of our Theorem 4.2.

Let $f: A \to A$ be an acyclic function (there is no $c \in A$ such that $f(c) \neq c$ and $f^n(c) = c$ for some integer $n \geq 2$) and $r \subseteq A \times A$ a compatible partial order on (A, f). Then there exists a compatible linear order $R \subseteq A \times A$ on (A, f) with $r \subseteq R$.

On the other hand, we shall make extensive use of the above result in proving Theorem 4.2.

2. Components, cycles and distance

Let $f: A \to A$ be a function (unary operation on the set A). We define the relation \sim_f as follows: for $x, y \in A$ let $x \sim_f y$ if $f^k(x) = f^l(y)$ for some integers $k \ge 0$ and $l \ge 0$. It is straightforward to see that \sim_f is an equivalence on A. The equivalence class $[x]_f$ of an element $x \in A$ is called the f-component of x. Clearly, $[x]_f \subseteq A$ is a subalgebra in (A, f), that is, $f([x]_f) \subseteq [x]_f$. An element $c \in A$ is called cyclic with respect to f (or cyclic in (A, f)), if $f^m(c) = c$ for some integer $m \ge 1$. For a cyclic element c,

$$n = n(c) = \min\{m \mid m \ge 1 \text{ and } f^m(c) = c\}$$

is called the *period* of c or the *length* of the *cycle* $C = \{c, f(c), \ldots, f^{n-1}(c)\}$; it is easy to prove that C has exactly n elements, f(C) = C and $f^k(c) = f^l(c)$ holds if and only if k - l is divisible by n. A pair $(x, y) \in A \times A$ is called f-prohibited, if we can find integers $k \ge 0$, $l \ge 0$ and $m \ge 2$ such that m is not a divisor of k - l, the elements $f^k(x)$, $f^{k+1}(x)$, ..., $f^{k+m-1}(x)$ are distinct and $f^{k+m}(x) = f^k(x) = f^l(y)$. For an f-prohibited pair (x, y) and an integer $k \ge 0$ as above, we have $y \in [x]_f$, and $f^k(x)$ is a cyclic element in $[x]_f$ of period m. It is easy to verify, that a pair (x, y) is f-prohibited, if and only if $f^k(x) = f^l(y)$ is cyclic and $f^{k+l}(x) \ne f^{k+l}(y)$ for some integers $k \ge 0$ and $k \ge 0$ (the latter condition can be replaced by $k \ge 0$). The distance between an element $k \ge 0$. The distance between an element $k \ge 0$. The proof of which is straightforward and hence omitted.

PROPOSITION 2.1. Let $y \in [x]_f$ and $c \in [x]_f$ be a cyclic element of period $n \ge 1$. Then we have the following.

(1) There exists an integer $t \ge 0$ such that f'(y) = c. Let

$$d(y, c) = \min\{t \mid t \ge 0 \text{ and } f^t(y) = c\}$$

denote the distance of y from c.

- (2) d(f(c), c) = n 1 and for $y \neq c$, we have d(f(y), c) = d(y, c) 1.
- (3) All cyclic elements of $[x]_f$ are in $C = \{c, f(c), \ldots, f^{n-1}(c)\}$ and each element in C is cyclic of period n.
- (4) If $l \ge 0$ is an integer, then $f^l(y) = c$ holds if and only if $l \ge d(y, c)$ and l d(y, c) is divisible by n.
- (5) (x, y) is f-prohibited if and only if d(x, c) d(y, c) is not divisible by n.

PROPOSITION 2.2. If (A, f, \leq_r) is a partially ordered mono-unary algebra, then we have the following.

- (1) If $c \in A$ is a cyclic element of period $n \ge 1$, then $C = \{c, f(c), \ldots, f^{n-1}(c)\}$ is an antichain with respect to \le_r .
- (2) If $(x, y) \in A \times A$ is an f-prohibited pair, then x and y are incomparable with respect to \leq_r .

PROOF. (1) Take $c^* = f^i(c)$ and t = j - i. Then $f^i(c^*) = f^j(c)$. Now $c^* \le_r f^i(c^*)$ implies $c^* \le_r f^i(c^*) \le_r f^{2i}(c^*) \le_r \cdots \le_r f^{ni}(c^*) = c^*$, in contradiction with $c^* \ne f^i(c^*)$. The reverse relation $f^i(c^*) \le_r c^*$ leads to a similar contradiction.

(2) Let $f^k(x), \ldots, f^{k+m-1}(x)$ be distinct elements and $f^{k+m}(x) = f^k(x) = f^l(y)$ for some integers $k \ge 0$, $l \ge 0$ and $m \ge 2$ with $m \nmid k - l$. The assumption $x \le_r y$ implies

$$f^{k+l}(x) \leq_r f^{k+l}(y)$$

for the elements $f^{k+l}(x)$ and $f^{k+l}(y) = f^k(f^l(y)) = f^k(f^k(x)) = f^{2k}(x)$ of the cycle $C = \{f^k(x), f^{k+1}(x), \dots, f^{k+m-1}(x)\}$, which contradicts (1), since $m \nmid 2k - (k+l)$. The case $y \leq_r x$ can be treated similarly.

3. The order components of (A, f, \leq_r)

Let (A, f, \leq_r) be a partially ordered mono-unary algebra. Consider the factor set

$$B = A / \sim_f = \{ [x]_f \mid x \in A \}.$$

We define the relation \triangleleft_r on B as follows: $[x]_f \triangleleft_r [y]_f$ if $x_1 \leq_r y_1$ for some $x_1 \in [x]_f$ and $y_1 \in [y]_f$.

PROPOSITION 3.1. (1) \triangleleft , is a quasiorder (reflexive and transitive) on B.

(2) If $[x]_f \triangleleft_r [y]_f$ and $[y]_f \triangleleft_r [x]_f$ for the f-components $[x]_f \neq [y]_f$, then there is no cyclic element $c \in [x]_f \cup [y]_f$ of period $n \geq 1$.

PROOF. (1) In order to see transitivity, suppose $[x]_f \triangleleft_r [y]_f \triangleleft_r [z]_f$. Then $x_1 \leq_r y_1$ and $y_1' \leq_r z_1$ for some $x_1 \in [x]_f$, $y_1, y_1' \in [y]_f$ and $z_1 \in [z]_f$. Since $y_1 \sim_f y_1'$, we can find integers $k \geq 0$ and $k \geq 0$ such that $k \in [x]_f$. However,

$$f^{k}(x_{1}) \leq_{r} f^{k}(y_{1}) = f^{l}(y'_{1}) \leq_{r} f^{l}(z_{1}),$$

for $f^k(x_1) \in [x]_f$ and $f^l(z_1) \in [z]_f$, so $[x]_f \triangleleft_r [z]_f$.

(2) Suppose that $[x]_f \triangleleft_r [y]_f \triangleleft_r [x]_f$, $[x]_f \neq [y]_f$ and, without loss of generality, $c \in [x]_f$ is a cyclic element of period $n \geq 1$. There exist $x_1, x_2 \in [x]_f$ and $y_1, y_2 \in [y]_f$ with the properties $x_1 \leq_r y_1$ and $y_2 \leq_r x_2$. By part (1) of Proposition 2.1,

$$f^{t_1}(x_1) = c = f^{t_2}(x_2)$$

for some integers $t_1 \ge 0$ and $t_2 \ge 0$. Since $f^{t_1}(y_1) \sim_f f^{t_2}(y_2)$, we can find integers $k \ge 0$ and $k \ge 0$ such that

$$f^k(f^{t_1}(y_1)) = f^l(f^{t_2}(y_2)).$$

The compatibility of \leq_r gives

$$f^k(c) = f^k(f^{t_1}(x_1)) \le_r f^k(f^{t_1}(y_1)) = f^l(f^{t_2}(y_2)) \le_r f^l(f^{t_2}(x_2)) = f^l(c),$$

where $f^k(c)$ and $f^l(c)$ are cyclic elements. Applying part (1) of Proposition 2.2, we obtain that $f^k(c) = f^k(f^{t_1}(y_1)) = f^l(c)$ in contradiction with $[x]_f \cap [y]_f = \emptyset$. \square

The relation \equiv_r is defined on $B = A / \sim_f$ as follows: for $x, y \in A$ let $[x]_f \equiv_r [y]_f$ if $[x]_f \triangleleft_r [y]_f$ and $[y]_f \triangleleft_r [x]_f$. It is well-known that starting from the quasiorder \triangleleft_r , the above definition provides an equivalence on B. We define the *order component* of x in (A, f, \leq_r) by

$$\langle x \rangle = \bigcup_{y \in A \text{ and } [y]_f \equiv_r [x]_f} [y]_f.$$

Clearly, $[x]_f \subseteq \langle x \rangle \subseteq A$ and $\langle x \rangle$ is a subalgebra in (A, f), which corresponds to the \equiv_r equivalence class $[[x]_f]_{\equiv_r}$ of $[x]_f$ in B. It is easy to see that $\{\langle x \rangle \mid x \in A\}$ is a partition of A.

If $c \in \langle x \rangle$ is a cyclic element, then part (2) of Proposition 3.1 gives that $\langle x \rangle = [x]_f$. We make use of the partial order \ll_r on B/\equiv_r , which can be derived from \vartriangleleft_r in a natural way: $\langle x \rangle \ll_r \langle y \rangle$ if $[x]_f \vartriangleleft_r [y]_f$.

LEMMA 3.2. Let (A, f, \leq_r) be a partially ordered mono-unary algebra. If $x \in A$ and there is no cyclic element in $\langle x \rangle$, then there exists a linear order ρ on $\langle x \rangle$ with the following properties:

- (1) ρ is compatible on $(\langle x \rangle, f)$,
- (2) ρ is an extension of \leq_r on the elements of $\langle x \rangle$.

PROOF. The absence of cyclic elements ensures that $f: \langle x \rangle \longrightarrow \langle x \rangle$ is acyclic, preserving the partial order $r \cap (\langle x \rangle \times \langle x \rangle)$. A straightforward application of the Main Theorem in [8] gives the existence of the desired ρ .

LEMMA 3.3. Let (A, f, \leq_r) be a partially ordered mono-unary algebra, $x \in A$ and $c \in \langle x \rangle$ a cyclic element of period $n \geq 1$. Then there exists a partial order ρ on $\langle x \rangle = [x]_f$ with the following properties:

- (1) ρ is compatible on $([x]_f, f)$,
- (2) ρ is an extension of \leq_r on the elements of $[x]_f$,
- (3) $[x]_f = E_0 \cup E_1 \cup \cdots \cup E_{n-1}$ is a pairwise disjoint union, where each set

$$E_i = \{u \in [x]_f \mid d(u, c) - i \text{ is divisible by } n\}, \quad 0 \le i \le n - 1,$$

is a chain with respect to ρ , and for $i \neq j$ the elements of $E_i \times E_j$ are f-prohibited pairs.

PROOF. Let $E = [x]_f$ and consider the equivalence relation $\varepsilon = \Delta_E \cup (C \times C)$ on E, where Δ_E is the diagonal of $E \times E$ and $C = \{c, f(c), \ldots, f^{n-1}(c)\}$ is the set of cyclic elements in E. Clearly, $[u]_{\varepsilon} = \{u\}$ if $u \in E \setminus C$ and $[u]_{\varepsilon} = C$ if $u \in C$. Using the factor set $E^* = E/\varepsilon$, define a function $f^* : E^* \to E^*$ and a relation $r^* \subseteq E^* \times E^*$ as follows: $f^*([u]_{\varepsilon}) = [f(u)]_{\varepsilon}$ and r^* is the transitive closure of the reflexive relation

$$s = \{([u]_{\varepsilon}, [v]_{\varepsilon}) \mid u, v \in E \text{ and } u' \leq_{r} v' \text{ for some } u' \in [u]_{\varepsilon}, \ v' \in [v]_{\varepsilon}\}.$$

Then f^* is well-defined since $f(C) \subseteq C$. It is immediate from the definitions that f^* preserves s, whence f^* preserves r^* . We claim, that r^* is a partial order on E^* . It is enough to show that there is no proper cycle in E^* with respect to s. If a proper cycle

$$[u_1]_{\varepsilon}s[u_2]_{\varepsilon}s\cdots s[u_k]_{\varepsilon}s[u_1]_{\varepsilon}$$

does not contain C, then we have

$$u_1 \leq_r u_2 \leq_r \cdots \leq_r u_k \leq_r u_1$$

implying that $u_1 = u_2 = \cdots = u_k$, a contradiction. If C appears in a proper cycle, then we can exhibit a segment of it as

$$Cs[v_1]_{\varepsilon}s[v_2]_{\varepsilon}s\cdots s[v_l]_{\varepsilon}sC$$

where $v_1, v_2, \ldots, v_l \notin C$. Now we have

$$c' \leq_r v_1 \leq_r v_2 \leq_r \cdots \leq_r v_l \leq_r c''$$

for some $c', c'' \in C$. Applying part (1) of Proposition 2.2 gives that c' = c''. Thus the elements $v_1 = v_2 = \cdots = v_l = c' = c''$ are in C, a contradiction. The only cyclic element of (E^*, f^*) is C and $f^*(C) = C$, so we can apply the Main Theorem of [8] to the partially ordered algebra (E^*, f^*, r^*) , in order to get a compatible linear order ρ^* on (E^*, f^*) with $r^* \subseteq \rho^*$. We claim that

$$\rho = \{(u, v) \mid u, v \in E, ([u]_{\varepsilon}, [v]_{\varepsilon}) \in \rho^* \text{ and } n \mid d(u, c) - d(v, c)\}$$

is one of the desired relations on E.

The reflexive and transitive properties of ρ can be easily verified. Let $(u, v) \in \rho$ and $(v, u) \in \rho$. Then $([u]_{\varepsilon}, [v]_{\varepsilon}) \in \rho^*$ and $([v]_{\varepsilon}, [u]_{\varepsilon}) \in \rho^*$ imply $[u]_{\varepsilon} = [v]_{\varepsilon}$, whence u = v or $u, v \in C$. If $u, v \in C$, then we also have u = v since $n \mid d(u, c) - d(v, c)$, proving antisymmetry.

Suppose $(u, v) \in \rho$. Then $([u]_{\varepsilon}, [v]_{\varepsilon}) \in \rho^*$ and the compatibility of ρ^* provides that

$$([f(u)]_{\varepsilon}, [f(v)]_{\varepsilon}) = (f^*([u]_{\varepsilon}), f^*([v]_{\varepsilon})) \in \rho^*.$$

Using part (2) of Proposition 2.1, we obtain $n \mid d(f(u), c) - d(f(v), c)$ as a consequence of the divisibility $n \mid d(u, c) - d(v, c)$, proving that $(f(u), f(v)) \in \rho$.

Suppose $u, v \in E$ and $u \le_r v$. Then first we get $([u]_{\varepsilon}, [v]_{\varepsilon}) \in s$ and next $([u]_{\varepsilon}, [v]_{\varepsilon}) \in r^* \subseteq \rho^*$. If $n \nmid d(u, c) - d(v, c)$, then (u, v) is f-prohibited by part (5) of Proposition 2.1, contradicting part (2) of Proposition 2.2. Thus we have $n \mid d(u, c) - d(v, c)$ and $(u, v) \in \rho$, proving $r \subseteq \rho$.

For $u, v \in E_i$, the divisibility $n \mid d(u, c) - d(v, c)$ follows from $n \mid d(u, c) - i$ and $n \mid d(v, c) - i$. Since ρ^* is linear, either $([u]_{\varepsilon}, [v]_{\varepsilon}) \in \rho^*$ or $([v]_{\varepsilon}, [u]_{\varepsilon}) \in \rho^*$ holds. Thus we have either $(u, v) \in \rho$ or $(v, u) \in \rho$, proving that E_i is a chain with respect to ρ .

If $i \neq j$ and $(u, v) \in E_i \times E_j$, then $n \mid d(u, c) - i$ and $n \mid d(v, c) - j$ imply that d(u, c) - d(v, c) is not divisible by n, so by part (5) of Proposition 2.1, (u, v) is f-prohibited.

REMARK 3.4. According to [5, Proposition 3.6], the convexity of the antichain C implies that $\varepsilon = \Delta_E \cup (C \times C)$ is an order congruence of $(E, f, r \cap (E \times E))$.

4. The main results

A compatible partial order R on a mono-unary algebra (A, f) is called f-quasilinear, if $(x, y) \in R$ or $(y, x) \in R$ for all non f-prohibited pairs $(x, y) \in A \times A$. In view of part (2) of Proposition 2.2, we have the following simple observation.

PROPOSITION 4.1. If a compatible partial order R on a mono-unary algebra (A, f) is f-quasilinear, then it is maximal (with respect to containment) among the compatible partial orders of (A, f).

THEOREM 4.2. If (A, f, \leq_r) is a partially ordered mono-unary algebra, then there exists a compatible partial order R on (A, f) with the following properties:

- (1) R is an extension of r,
- (2) R is f-quasilinear.

PROOF. Let \ll_{λ} be an arbitrary linear extension of the partial order \ll_r on the set B/\equiv_r of order components in (A, f, \leq_r) , where $B=A/\sim_f$. Let $x\in A$. If there is no cyclic element in $\langle x\rangle$, then fix a compatible linear order $\rho_{\langle x\rangle}$ on $\langle x\rangle$ with the properties described in Lemma 3.2. If there is a cyclic element of period $n\geq 1$ in $\langle x\rangle$, then fix a compatible partial order $\rho_{\langle x\rangle}$ on $\langle x\rangle=[x]_f$ with the properties described in Lemma 3.3. We claim that

$$R = \{(x, y) \in A \times A \mid \langle x \rangle \ll_{\lambda} \langle y \rangle \text{ and } (x, y) \in \rho_{\langle x \rangle} \text{ in case of } \langle x \rangle = \langle y \rangle \}$$

satisfies (1) and (2).

The reflexive, antisymmetric and transitive properties of R can be easily verified. In order to prove the compatibility of R, it is enough to note that $\langle f(x) \rangle = \langle x \rangle$ and that $\rho_{\langle x \rangle}$ is a compatible partial order on $(\langle x \rangle, f)$.

Suppose $x \leq_r y$. Then $[x]_f \triangleleft_r [y]_f$, whence we obtain $\langle x \rangle \ll_r \langle y \rangle$ as well as $\langle x \rangle \ll_\lambda \langle y \rangle$. In the case of $\langle x \rangle = \langle y \rangle$, the relation $(x, y) \in \rho_{\langle x \rangle}$ follows from $r \cap (\langle x \rangle \times \langle x \rangle) \subseteq \rho_{\langle x \rangle}$. Thus we have $(x, y) \in R$, proving $r \subseteq R$. Therefore (1) holds.

Suppose now $x, y \in A$ are incomparable elements with respect to R. Then the linearity of \ll_{λ} implies that $\langle x \rangle = \langle y \rangle$, $(x, y) \notin \rho_{\langle x \rangle}$ and $(y, x) \notin \rho_{\langle x \rangle}$. Since $\rho_{\langle x \rangle}$ is not linear, the order component $\langle x \rangle$ must contain a cyclic element c of period $n \geq 2$. In view of the properties of $\rho_{\langle x \rangle}$ described in Lemma 3.3, we obtain that $x \in E_i$ and $y \in E_j$ for some $i, j \in \{0, 1, \ldots, n-1\}$ with $i \neq j$. Now the last property of the E_i 's guarantees that (x, y) is an f-prohibited pair. Thus (2) holds.

COROLLARY 4.3. A compatible partial order R on (A, f) is maximal (with respect to containment) if and only if R is f-quasilinear.

Acknowledgement

The final version of this paper was prepared while the first named author was at the Alfred Renyi Institute of Mathematics, Hungarian Academy of Sciences.

References

- [1] R. Bonnet and M. Pouzet, 'Linear extensions of ordered sets', in: Ordered Sets (ed. I. Rival), Proceedings of the Nato Advanced Study Institute Conference held in Banff, August 28-September 12, 1981 (D. Reidel Publishing Co., Dordrecht, 1982) pp. 125-170.
- [2] G. Bosi and G. Herden, 'On a strong continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller', *Order* 22 (2005), 329–342.
- [3] R. G. Downey, D. R. Hirschfeldt, S. Lempp and R. Solomon, 'Computability-theoretic and prooftheoretic aspects of partial and linear orderings', *Israel J. Math.* 138 (2003), 271–289.
- [4] G. Herden and A. Pallack, 'On the continuous analogue of the Szpilrajn theorem I', *Math. Social Sci.* 43 (2002), 115–134.
- [5] P. Körtesi, S. Radeleczki and Sz. Szilágyi, 'Congruences and isotone maps on partially ordered sets', Math. Pannon. 16 (2005), 39-55.
- [6] S. Lahiri, 'A simple proof of Suzumura's extension theorem for finite domains with applications', J. Appl. Math. Decis. Sci. 6 (2002), 183-190.
- [7] V. Novak and M. Novotny, 'Linear extensions of orderings', Czechoslovak Math. J. 50 (2000), 853-864.
- [8] J. Szigeti and B. Nagy, 'Linear extensions of partial orders preserving monotonicity', Order 4 (1987), 31-35.
- [9] E. Szpilrajn, 'Sur l'extension de l'ordre partiel', Fund. Math. 16 (1930), 386-389.

Institute of Mathematics
Tampere University of Technology
PL 553
33101 Tampere
Finnland

e-mail: stephan.foldes@tut.fi

Institute of Mathematics University of Miskolc Miskolc 3515 Hungary

e-mail: jeno.szigeti@uni-miskolc.hu