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Abstract

Let M be a regular matroid. The Jacobian group Jac(M) of M is a finite abelian group whose
cardinality is equal to the number of bases of M . This group generalizes the definition of the
Jacobian group (also known as the critical group or sandpile group) Jac(G) of a graph G (in
which case bases of the corresponding regular matroid are spanning trees of G). There are many
explicit combinatorial bijections in the literature between the Jacobian group of a graph Jac(G) and
spanning trees. However, most of the known bijections use vertices of G in some essential way and
are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe
bijections between the Jacobian group of a regular matroid M and bases of M , many instances of
which are new even in the case of graphs. We first describe our family of bijections in a purely
combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of
M admits a canonical simply transitive action on the set G(M) of circuit–cocircuit reversal classes
of M , and then define a family of combinatorial bijections βσ,σ ∗ between G(M) and bases of M .
(Here σ (respectively σ ∗) is an acyclic signature of the set of circuits (respectively cocircuits) of
M .) We then give a geometric interpretation of each such map β = βσ,σ ∗ in terms of zonotopal
subdivisions which is used to verify that β is indeed a bijection. Finally, we give a combinatorial
interpretation of lattice points in the zonotope Z ; by passing to dilations we obtain a new derivation
of Stanley’s formula linking the Ehrhart polynomial of Z to the Tutte polynomial of M .

2010 Mathematics Subject Classification: 52C40 (primary); 05C31, 05E18, 52B20, 52B40
(secondary)

c© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the
original work is properly cited.

https://doi.org/10.1017/fms.2019.40 Published online by Cambridge University Press

http://journals.cambridge.org/action/displayJournal?jid=FMS
mailto:spencer.backman@uvm.edu
mailto:mbaker@math.gatech.edu
mailto:Chi_Ho_Yuen@Brown.edu
https://doi.org/10.1017/fms.2019.40


S. Backman, M. Baker and C. H. Yuen 2

1. Introduction

1.1. The main bijection in the case of graphs. Let G be a connected finite
graph. The Jacobian group Jac(G) of G (also called the sandpile group, critical
group, and so forth) is a finite abelian group canonically associated to G whose
cardinality equals the number of spanning trees of G. Since in most cases there
is no distinguished spanning tree to correspond to the identity element, there
is no canonical bijection between Jac(G) and the set T (G) of spanning trees
of G. However, many constructions of combinatorial bijections starting with
some fixed additional data are known. We mention, for example: the Cori–Le
Borgne bijections that use an ordering of the edges as well as a fixed vertex [14],
Perkinson, Yang and Yu’s bijections that use an ordering of the vertices [30],
and Bernardi’s bijections that use a cyclic ordering of the edges incident to each
vertex [9].

In this paper, we describe a new family of combinatorial bijections between
Jac(G) and T (G). Our bijections are very simple to state, though proving that
they are indeed bijections is not so simple. Another feature is that our bijections
are formulated in a ‘purely matroidal’ way, and in particular they generalize from
graphs to regular matroids. We first state the main result of this paper in the
language of graphs, and then give the generalization to regular matroids.

What we in fact do is establish a family of bijections between T (G) and the set
G(G) of cycle–cocycle equivalence classes of orientations of G. The latter was
introduced by Gioan [21, 22] and by definition is the set of equivalence classes of
orientations of G with respect to the equivalence relation generated by directed
cycle reversals and directed cut reversals. We write [O] to denote the equivalence
class containing an orientation O. G(G) is known to be a torsor for Jac(G) in
a canonical way (that is, there is a canonical simply transitive group action of
Jac(G) on G(G)) [3]. By fixing a class in G(G) to correspond to the identity
element of Jac(G), we then obtain a bijection between Jac(G) and T (G).

To state our main bijection for graphs, let C(G) (respectively C∗(G)) denote the
set of simple cycles (respectively minimal cuts, that is, bonds) of G, and define a
cycle signature (respectively cut signature) on G to be a choice, for each C ∈
C(G) (respectively C ∈ C∗(G)), of an orientation of C . By fixing a reference
orientation for each edge, we can identify directed cycles (respectively directed
cuts) with elements of ZE(G). Now we call a cycle signature σ (respectively cut
signature σ ∗) acyclic if whenever aC are nonnegative reals with∑

C∈C(G)

aCσ(C) = 0

in ZE(G) (respectively
∑

C∈C∗(G) aCσ
∗(C) = 0) we have aC = 0 for all C .
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EXAMPLE 1.1.1. Fix a total order e1 < · · · < em and a reference orientation
O of E(G), and orient each simple cycle C compatibly with the reference
orientation of the minimum element in C . This gives an acyclic signature of C(G).
Indeed, suppose the signature is not acyclic and take some nontrivial expression∑

C∈C(G) aCσ(C) = 0. Let e be the minimum element appearing in some cycle
in the support of this expression. Then the element e must appear with different
orientations in at least two different cycles, and thus one of these cycles is not
oriented according to σ , a contradiction. One can, in an analogous way, use O to
define an acyclic signature of C∗(G).

Recall that if T is a spanning tree of G and e 6∈ T (respectively e ∈ T ), there is a
unique cycle C(T, e) (respectively cut C∗(T, e)) contained in T∪{e} (respectively
contained in (E(G) \ T ) ∪ {e}), called the fundamental cycle (respectively
fundamental cut) associated to T and e. With this notation in place, we can now
state our main bijection in the case of graphs:

THEOREM 1.1.2. Let G be a connected finite graph, and fix acyclic signatures
σ and σ ∗ of C(G) and C∗(G), respectively. Given a spanning tree T ∈ T (G),
let O(T ) be the orientation of G in which we orient each e 6∈ T according to
its orientation in σ(C(T, e)) and each e ∈ T according to its orientation in
σ ∗(C∗(T, e)). Then the map T 7→ [O(T )] is a bijection between T (G) and G(G).

The bijection in Theorem 1.1.2 appears to be new even in the special case where
σ and σ ∗ are defined as in Example 1.1.1.

EXAMPLE 1.1.3. Suppose that G is a plane graph and define σ by orienting each
simple cycle of G counterclockwise. Similarly, define σ ∗ by orienting each simple
cycle of the dual graph G∗ clockwise and composing with the natural bijection
between oriented cuts of G and oriented cycles of G∗. By [38, Theorem 15], the
simply transitive action of Jac(G) on T (G) afforded by Theorem 1.1.2 in this
case coincides with the ‘Bernardi torsor’ defined in [8] and a posteriori with the
‘rotor-routing torsor’ defined in [12, 13]. In particular, we get a new ‘geometric’
proof of the bijectivity of the Bernardi map.

This example is in fact a special case of Example 1.1.1. Indeed, let q∗ be the
vertex of G∗ corresponding to the unbounded face of G, and fix a spanning tree
T ∗ of G∗. Let O∗ be any orientation of G∗ in which the edges of T ∗ are oriented
away from q∗, and fix any total order on E(G∗) in which every edge of the rooted
tree T ∗ has a larger label than its ancestors while being smaller than all the edges
outside T ∗. Using the natural bijection between oriented edges of G and of G∗,
this gives an orientation O of G and a total order < on E(G). (If e and e∗ are
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dual edges of G and G∗, respectively, then given an orientation for e∗ we orient e
by rotating the orientation of e∗ clockwise locally near the crossing of e and e∗.)
Then the cycle signature σ associated to (O, <) by the rule in Example 1.1.1 will
orient every simple cycle of G counterclockwise.

1.2. Generalization to regular matroids. As mentioned previously, an
interesting feature of the bijection given by Theorem 1.1.2 is that it admits a
direct generalization to regular matroids.

Regular matroids are a particularly well behaved and widely studied class of
matroids which contain graphic (and co-graphic) matroids as a special case. More
precisely, a regular matroid can be thought of as an equivalence class of totally
unimodular integer matrices. See Section 2.1 for further details.

If G is a graph, one can associate a regular matroid M(G) to G by taking the
(modified) adjacency matrix of G. By a theorem of Whitney, the equivalence class
of A determines the graph G up to ‘2-isomorphism’ (and in particular determines
G up to isomorphism if G is assumed to be 3-connected).

Let M be a regular matroid. One can define the set C(M) of signed circuits
of M (respectively the set C∗(M) of signed cocircuits of M) in a way which
generalizes the corresponding objects when M = M(G). Similarly, one has a set
B(M) of bases of M , generalizing the notion of spanning tree for graphs, and a
set G(M) of circuit–cocircuit equivalence classes generalizing the corresponding
set for graphs.

In Section 4.3 of his Ph.D. thesis, Criel Merino defined the critical group
(which we call the Jacobian) Jac(M) of M , generalizing the critical group of
a graph [28]. By results of Merino and Gioan, the cardinalities of Jac(M), B(M),
and G(M) all coincide. (The fact that these cardinalities are equal is essentially a
translation of the natural extension of Kirchhoff’s Matrix-Tree theorem to regular
matroids [27], [28, Theorem 4.3.2]. A ‘volume proof’ of the Matrix-Tree theorem
for regular matroids based on zonotopal subdivisions is given in [16]. These
authors do not consider the problem of giving explicit combinatorial bijections
between bases of M and the Jacobian group.)

Generalizing the known case of graphs [3], we prove:

THEOREM 1.2.1. G(M) is canonically a torsor for Jac(M).

In view of this result, in order to construct a bijection between elements of
Jac(M) and bases of M , it suffices to give a bijection between B(M) and G(M):
if we fix an arbitrary element of G(M) (for example, by fixing a reference
orientation of M), our torsor induces a bijection between Jac(M) and G(M).
One can generalize the notion of acyclic signature and fundamental cycles
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(respectively cuts) in a straightforward way from graphs to regular matroids.
Theorem 1.1.2 then admits the following generalization to regular matroids:

THEOREM 1.2.2. Let M be a regular matroid, and fix acyclic signatures σ and
σ ∗ of C(M) and C∗(M), respectively. Given a basis B ∈ B(M), let O(B) be the
orientation of M in which we orient each e 6∈ B according to its orientation in
σ(C(B, e)) and each e ∈ B according to its orientation in σ ∗(C∗(B, e)). Then
the map B 7→ [O(B)] gives a bijection β : B(M)→ G(M).

Most known combinatorial bijections between elements of Jac(G) and
spanning trees of a graph G do not readily extend to the case of regular matroids,
as they use vertices of the graph in an essential way. The only other work we
are aware of giving explicit bijections between elements of Jac(M) and bases of
a regular matroid M are the papers of Gioan and Gioan–Las Vergnas [20, 23]
and the as-yet unpublished recent work of Shokrieh [33]. (Technically speaking,
Gioan and Las Vergnas do not produce a bijection between bases and elements
of Jac(M); they produce a bijection between B(M) and X (M; σ, σ ∗), where σ
and σ ∗ are determined by a total order on the elements of M and a reference
orientation as in Example 1.1.1; see Section 1.3 for the definition of X (M; σ,
σ ∗).) Our family of combinatorial bijections appears to be quite different from
those of Gioan–Las Vergnas.

1.3. Brief overview of the proof of the main combinatorial bijections.
Although the statement of Theorem 1.1.2 and its generalization Theorem 1.2.2
to regular matroids M are completely combinatorial, we do not know any simple
combinatorial proof. Our proof involves the geometry of a zonotopal subdivision
associated to a matrix A realizing M .

Concretely, fix a totally unimodular r ×m matrix A realizing M , where r is the
rank of A, and the columns of A are indexed by a set E of cardinality m. Denote
by V ∗ ⊆ RE the row space of A and by πV ∗ the orthogonal projection from RE

to V ∗. Let ue ∈ RE be the standard coordinate vector corresponding to e ∈ E .
The column zonotope Z A ⊂ Rr (respectively row zonotope Z̃ A ⊂ RE ) associated
to A is defined to be the Minkowski sum of the columns of A (respectively the
Minkowski sum of the orthogonal projections πV ∗(ue) for e ∈ E). The linear
transformation L : v 7→ Av gives an isomorphism from V ∗ to Rr taking Z̃ A to
Z A and preserving lattice points (cf. Lemma 3.5.1). The reason that we introduce
two versions of essentially the same object is mostly for the sake of notational
convenience.

An orientation O of M is a function E → {−1, 1}. An orientation O is
compatible with a signed circuit C of M if O(e) = C(e) for all e in the support
of C .
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If O is an orientation and C is a signed circuit compatible with O, we can
perform a circuit reversal taking O to the orientation O′ defined by O′(e) =
−O(e) if e is in the support of C and O′(e) = O(e) otherwise.

Let σ be an acyclic signature of C(M). We say that O is σ -compatible if
every signed circuit C of M compatible with O is oriented according to σ . By
Proposition 4.1.4, every circuit reversal equivalence class of orientations contains
a unique σ -compatible orientation.

The connection between σ -compatible orientations and the zonotopes defined
above is given by the following result. For the statement, given an orientation O
of M and e ∈ E , define we ∈ Rr to be 0 if O(e) = −1 and to be the eth column
of A if O(e) = 1. Define ψ(O) ∈ Z A by

ψ(O) :=
∑
e∈E

we ∈ Z A. (1.1)

Then the map ψ induces a bijection between circuit reversal classes of
orientations of M and lattice points of the zonotope Z A (cf. Proposition 4.1.3).

Fix a reference orientation O0 of M . Each acyclic signature σ of C(M) gives
rise to a subdivision of Z A into smaller zonotopes Z(B), one for each basis B of
M , in the following way.

Let B be a basis of M . For each e 6∈ B, define ve ∈ V ∗ to be 0 if the reference
orientation of e coincides with the orientation of e in σ(C(B, e)), and to be the
eth column of A otherwise. Define

Z(B) :=
∑
e∈B

[0, Ae] +
∑
e 6∈B

ve ⊆ Z A ⊂ Rr .

By Proposition 3.4.1, the collection of Z(B)’s gives a zonotopal subdivision
(also known in the literature as a tiling) Σ of Z A. Similarly, via the map L , the
various Z̃(B) := L−1(Z(B))’s give a zonotopal subdivision Σ̃ of Z̃ A.

We now explain briefly how these results are used to prove Theorem 1.2.2.
Let σ, σ ∗ be acyclic signatures of C(M) and C∗(M), respectively. An

orientation is called (σ, σ ∗)-compatible if it is both σ -compatible and σ ∗-
compatible, and we denote the set of such orientations by X (M; σ, σ ∗).

THEOREM 1.3.1. Let β̂ be the map which sends a basis B to the orientation O(B)
defined in Theorem 1.2.2. Let χ be the map which sends an orientation O to its
circuit–cocircuit reversal class [O], so that β = χ ◦ β̂.

(1) The image of β̂ is contained in X (M; σ, σ ∗), and β̂ gives a bijection between
B(M) and X (M; σ, σ ∗).

(2) The map χ restricted to X (M; σ, σ ∗) induces a bijection between X (M; σ,
σ ∗) and G(M).
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REMARK 1.3.2. The proofs of Theorem 1.2.1 and Theorem 1.2.2 do not assume a
priori that |B(M)| = |X (M; σ, σ ∗)| = |G(M)| = |Jac(M)| for a regular matroid
M , thus our work provides an independent proof of these equalities. Furthermore,
we show in Theorem 1.4.1 below that the equality |B(M)| = |X (M; σ, σ ∗)|
continues to hold under the weaker assumption that M is realizable over R.

By Lemma 3.1.1, we may choose a vector w′ ∈ V ∗ which is compatible with
σ ∗, in the sense that w′ · σ ∗(C) > 0 for each cocircuit C of M . Note that the
zonotopal subdivision Σ̃ of Z̃ A depends only on σ (and the reference orientation
O0) and the vector w′ depends only on σ ∗.

The following theorem shows that the combinatorially defined map β̂ :

B(M)→ X (M) can be interpreted geometrically as first identifying a basis with
a maximal cell in our zonotopal subdivision and then applying a ‘shifting map’.

THEOREM 1.3.3. (1) Let B be a basis of M. For all sufficiently small ε > 0
the image of Z̃(B) under the map v 7→ v + εw′ contains a unique lattice
point z̃B of Z̃ A, which corresponds to a unique (σ, σ ∗)-compatible discrete
orientation O′B .

(2) The map φ which takes each basis B to the orientation O′B coincides with
the map β̂ appearing in the statement of Theorem 1.2.2, and hence β̂ gives a
bijection between B(M) and X (M; σ, σ ∗).

Theorem 1.2.2 is a simple consequence of Theorem 1.3.1 and Theorem 1.3.3.

EXAMPLE 1.3.4. Let G be a graph, and fix a vertex q of G. In [1], the authors
prove that the break divisors of G are the divisors associated to q-connected
orientations offset by a chip at q . In other words (in the notation of [1, Lemma
3.3]), a divisor D is a break divisor if and only if D = (q) + νO for some q-
connected orientation O. They also show that break divisors of the corresponding
metric graph Γ induce a canonical subdivision of the g-dimensional torus Picg(Γ )

into parallelotopes indexed by spanning trees of G, with the vertices of the
subdivision corresponding to the break divisors of G. By applying a small generic
shift to the vertices, this yields a family of ‘geometric bijections’ between break
divisors and spanning trees (cf. [1, Remark 4.26]).

We claim that the geometric bijections defined in [1] can be thought of as
special cases of the bijections afforded by Theorem 1.2.2. By [38, Theorem 10],
each such geometric bijection gives rise in a natural way to an acyclic orientation
σ of the cycles of G. On the other hand, we can use the recipe described in
Example 1.1.3 to produce a cut signature σ ∗ such that every cut is oriented away
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from q . Given a spanning tree T , the orientation OT associated to the pair (σ,
σ ∗) by Theorem 1.2.2 will have the property that every edge e in T (considered
as a tree rooted at q) is oriented away from q , and therefore OT is q-connected
[4, Section 3]. Let DT = νOT + (q) be the corresponding break divisor. Then
T 7→ DT will be the geometric bijection we started with.

1.4. A partial extension to matroids realizable over R. Although the
equality |B(M)| = |G(M)| = |Jac(M)| does not hold for general oriented
matroids (indeed, Jac(M) is not even well defined in the general case), the
notions of acyclic circuit/cocircuit signatures and (σ, σ ∗)-compatible orientations
continue to make sense whenever M is realizable over R. Furthermore, the
geometric setup used to prove Theorem 1.3.3, as well as the first half of
Theorem 1.3.1, does not require M to be regular but only realizable. Therefore,
we have the following result, which will be proved in Section 3:

THEOREM 1.4.1. Let M be an oriented matroid which is realizable over R, and
let σ, σ ∗ be acyclic signatures of C(M),C∗(M), respectively. Then the map β̂ :
B(M)→ X (M; σ, σ ∗) is a bijection.

An ingredient in the proof of Theorem 1.4.1 is a continuous analogue of
orientations (which we refer to as discrete orientations whenever there is a risk
of confusion), hence continuous analogues of acyclic signatures and circuit–
cocircuit reversal systems. Using these notions, we can provide a combinatorial
interpretation of all points of the zonotope Z A (not just the lattice points), thereby
giving an alternate description of the zonotopal subdivision Σ (respectively Σ̃)
of Z A (respectively Z̃ A), which was defined above.

1.5. Random sampling of bases. As in [7], any computable bijection between
bases and elements of Jac(M) gives rise to an algorithm for randomly sampling
bases of M . The idea is simple: it is easy to uniformly sample random elements
from Jac(M), and applying the bijection yields a random spanning tree.

In order to make this into a practical method, one needs efficient algorithms
for computing the basis associated to an element of Jac(M). In Section 3.6 and
Proposition 4.6.1, we provide polynomial-time algorithms for such a task with
respect to the family of bijections given by Theorem 1.2.1 and Theorem 1.2.2.
We note that while our map from Jac(M) to B(M) has a strong combinatorial
flavour, our inverse algorithm uses ideas from linear programming.

We also remark that there are other algorithms for sampling random bases of a
regular matroid, such as the random walk based method by Dyer and Frieze [18]
(whose analysis also makes use of zonotopes). Since our algorithm requires
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solving multiple linear programs, its runtime is probably slower than some
other known algorithms. However, our method can generate an exact uniform
distribution using an information theoretical minimum amount of randomness, cf.
the discussion by Lipton [26].

1.6. Connections to Ehrhart theory and the Tutte polynomial. Every
matroid M of rank r has an associated Tutte polynomial TM(x, y), and every
lattice polytope P (for example, the zonotope Z A) has an associated Ehrhart
polynomial EP(q) which counts the number of lattice points in positive integer
dilates of P . Using the relationship between Z A and σ -compatible (discrete or
continuous) orientations of M , we obtain a new proof of the following identity
originally due to Stanley:

EZ (q) = qr TM(1+ 1/q, 1). (1.2)

The proof involves defining a ‘dilation’ q M of M for each positive integer q , with
associated zonotope q Z A.

We also describe a direct bijective proof (without appealing to Ehrhart
reciprocity) of the fact that the number of interior lattice points in q Z A is

qr TM(1− 1/q, 1).

1.7. Related literature. The study of zonotopal tilings, that is, tilings of a
zonotope by smaller zonotopes, is a classical topic in the theory of oriented
matroids first initiated by Shephard [32]. The central theorem in this area is the
Bohne–Dress theorem [11, 17], which states that the poset of zonotopal tilings
ordered by refinement is isomorphic to the poset of single-element lifts of the
associated oriented matroid. For instance, it can be shown that the subdivisions
we consider in the paper correspond to precisely the generic, realizable single-
element lifts of realizable oriented matroids; we will not further elaborate on this
connection as it does not play a significant role in this paper.

2. Background

2.1. Regular matroids. In this section, we recall the definition of regular
matroids and related objects. We assume that the reader is familiar with the basic
theory of matroids; some standard references include the book on matroids by
Oxley [29] and the book on oriented matroids by Björner et al. [10].

An r ×m matrix A of rank r with integer entries is called totally unimodular if
every k × k submatrix has determinant in {0,±1} for all 1 6 k 6 r . A matroid is
called regular if it is representable over Q by a totally unimodular matrix.
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The following lemma (see [35]) is the key fact used to show that various
definitions in the subject are independent of the choice of a totally unimodular
matrix A representing M :

LEMMA 2.1.1. If A, A′ are totally unimodular r × m matrices representing M,
one can transform A into A′ by multiplying on the left by an r × r unimodular
matrix U, then multiplying some columns by −1.

If M is a regular matroid of rank r on E and A is any r × m totally
unimodular matrix representing M over Q, we define ΛA(M) := ker(A) ∩ ZE .
By Lemma 2.1.1, the isometry class of this lattice depends only on M , and not on
the choice of the matrix A. It is denoted by Λ(M) and called the circuit lattice
of M .

Similarly, we define Λ∗A(M) to be the intersection of the row space of A with
ZE , or equivalently the Z-span of the rows of A. The isometry class of this lattice
also depends only on M . It is denoted byΛ∗(M) and called the cocircuit lattice of
M . (For proofs of all these statements, see [28, Section 4.3] or [35, Section 2.3]).

The Jacobian group Jac(M) is defined to be the determinant group of Λ(M),
that is, Jac(M) = Λ(M)#/Λ(M) where Λ# is the dual lattice of Λ, that is,

Λ#
= {x ∈ Λ⊗Q : 〈x, y〉 ∈ Z,∀ y ∈ Λ}.

There are canonical isomorphisms

Λ(M)#/Λ(M) ∼= Λ∗(M)#/Λ∗(M) ∼=
ZE

ΛA(M)⊕Λ∗A(M)
(2.1)

for every totally unimodular matrix A representing M (cf. [2, Lemma 1 of
Section 4]).

The order of Jac(M) is equal to the number of bases of the matroid M (cf. [28,
Theorem 4.3.2]). Moreover, we have |Jac(M)| = |det(AT A)| (cf. [24, p. 317]),
and in fact Jac(M) can naturally be identified with the cokernel of AT A:

PROPOSITION 2.1.2. The map ZE

ΛA(M)⊕Λ∗A(M)
→ coker(AAT ) given by [γ ] 7→

[Aγ ] is well defined and is an isomorphism.

Proof. The map is well defined because A(ΛA(M) ⊕ Λ∗A(M)) = A(Λ∗A(M)) =
A(ColZ AT ) = ColZ AAT , the equality also shows the map is injective. It is
surjective because Ax = b has a solution in ZE for every b ∈ Zr , using the total
unimodularity of A.

We now discuss regular matroids from an oriented matroid point of view. By
[10, Corollary 7.9.4], every oriented matroid structure on a regular matroid is
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realizable by some totally unimodular matrix, hence any two such structures differ
by reorientations.

Let C(M) (respectively C∗(M)) be the set of circuits (respectively cocircuits)
of M . Let A be any r × m totally unimodular matrix realizing M over Q. An
element α ∈ ΛA(M) (respectivelyΛ∗A(M)) is called a signed circuit (respectively
signed cocircuit) of M if α 6= 0, all coordinates of α are in {0,±1}, and the
support of α is a circuit (respectively cocircuit) of M . We let CA(M) (respectively
C∗A(M)) denote the set of signed circuits (respectively signed cocircuits) of M .
The notion of signed circuit (respectively signed cocircuit) is in fact intrinsic to
M , independent of the choice of A, and thus it makes sense to speak of C(M)
and C∗(M) as subsets of Λ(M) and Λ∗(M), respectively (cf. [35, Lemma 10 and
Proposition 12] and [28, Theorem 4.3.4]).

There is a natural map C(M)→ C(M) taking α ∈ CA(M) to its support (with
respect to any choice of A). This map induces a bijection C(M)/〈±1〉 → C(M),
that is, for every circuit C of M there are precisely two signed circuits ±C with
supp(C) = C (cf. [35, Lemma 8] and [28, Theorem 4.3.5]). The same holds for
cocircuits.

2.2. Equivalence classes of orientations, and signatures. An (discrete)
orientation of a regular matroid M is a map from the ground set E of M to {−1,
1}. An orientation O is compatible with a signed circuit C of M if O(e) = C(e)
for all e in the support of C .

The circuit reversal system is the equivalence relation on the set O(M) of all
orientations of M generated by circuit reversals, in which we reverse the sign of
O(e) for all e in (the support of) some signed circuit C compatible with O. We
can make the same definitions for cocircuits by replacing M with its dual.

The circuit–cocircuit reversal system is the equivalence relation generated
by both circuit and cocircuit reversals. It is a theorem of Gioan [22, Theorem
10(v)](originally proved by a deletion–contraction argument) that the number of
circuit–cocircuit equivalence classes of orientations is equal to the number of
bases of M ; Theorem 1.2.1 gives a bijective proof of this fact.

A signature of C(M) is a map σ : C(M)→ C(M) that picks an orientation for
each (unsigned) circuit of the matroid underlying M .

A signature σ of C(M) is called acyclic if the only solution to∑
Ci∈C(M) aiσ(Ci) = 0 with the ai nonnegative numbers is the trivial solution

where all ai are equal to zero. Signatures for C∗(M) are defined analogously.

3. Matroids over R and the main combinatorial bijection

Throughout this section, M will denote an oriented matroid which is realizable
over R. Note in particular that every regular matroid has this property.
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3.1. Continuous circuit reversals and the zonotope associated to a
realization of M. The main goal of this section is to prove Theorem 1.4.1,
which (when specialized to regular matroids) is a major component in the proof
of Theorem 1.2.2.

Our proof is geometric. In order to explain the basic idea, we fix once and for
all a real r × m matrix A realizing M , where r is the rank of M and the columns
of A are indexed by the elements of the ground set E of M (which we sometimes
regard as {1, 2, . . . ,m}).

We first briefly explain how certain important notions that we introduced for
regular matroids extend more generally to matroids realizable over R.

For every circuit C of M , the elements in ker(A) whose support is C , together
with the zero vector, form a one-dimensional subspace UC in ker(A). Conversely,
the support of any support-minimal nonzero element of ker(A) corresponds to a
circuit of M . The two rays of UC correspond to the two orientations of C . Hence
we may identify a signed circuit C with an arbitrary vector vC in the ray. The same
holds for cocircuits if we replace ker(A) by the row space of A.

The definition of an acyclic circuit (respectively cocircuit) signature follows
verbatim from the discussion in Section 2.2, except that we now have the equation∑

Ci∈C(M) aivσ(Ci ) = 0, which is well defined as different choices of vσ(Ci ) differ
by a positive scalar multiple.

As a simple consequence of Gordan’s alternative in the theory of linear
programming [10, p. 478], we have the following criterion/alternative description
of an acyclic signature.

LEMMA 3.1.1. Let σ be a signature of C(M). Then σ is acyclic if and only if
there exists w ∈ RE such that w · vσ(C) > 0 for each circuit C of M.

In the situation of Lemma 3.1.1, we say that w induces σ . By the orthogonality
of vectors representing signed circuits and cocircuits, given any pair of acyclic
signatures σ, σ ∗ of C(M) and C∗(M), respectively, there exists w ∈ RE that
induces both σ and σ ∗.

We state an elementary lemma for realizable oriented matroids. In abstract
oriented matroid terms, it is to say that every signed vector of an oriented matroid
is a conformal composition of signed circuits.

LEMMA 3.1.2. [39, Lemma 6.7] Let u ∈ RE be a vector in ker(A). Then u can be
written as a sum of signed circuits

∑
vC where the support of each C is inside the

support of u, and for each e in the support of C, the signs of e in C and u agree.
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A continuous orientation O of M is a function E → [−1, 1], and the eth
coordinate of O is the value O(e). If O(e) ∈ {−1, 1} for all e ∈ M , we say
that O is a discrete orientation.

A continuous orientation O is compatible with a signed circuit C of M if
O(e) 6= − sign(C(e)) for all e in the support of C . Given a continuous orientation
O compatible with a signed circuit C , a continuous circuit reversal with respect
to C replaces O by a new continuous orientation O − εvC for some ε > 0. (In
particular, we require ε to be small enough so that (O− εvC)(e) ∈ [−1, 1] for all
e ∈ E .)

The continuous circuit reversal system is the equivalence relation on the set
CO(M) of all continuous orientations of M generated by all possible continuous
circuit reversals. We can make the same definitions for cocircuits by replacing M
with its dual.

Next we define the (column) zonotope Z A associated to A to be the Minkowski
sum of the columns of A (thought of as line segments in Rr ), that is,

Z A =

{
m∑

i=1

civi : 0 6 ci 6 1

}

where v1, . . . , vr are the columns of A. (Some authors consider variations on
this zonotope, for example,

∑m
i=1[−vi , vi ],

∑m
i=1[−vi/2, vi/2], or

∑m
i=1[v

−

i , v
+

i ],
where v− and v+ are the negative and positive parts of v, respectively.)

REMARK 3.1.3. When M = M(G) is a graphic matroid, it is usually more
convenient to take A to be the full adjacency matrix of G, rather than a modified
adjacency matrix with one row removed, when defining the corresponding
zonotope. This has the advantage of producing a canonically defined object, and
since all of these different zonotopes are isomorphic, there is little harm in doing
this.

There are several important connections between the zonotope Z A and
equivalence classes of orientations of M . For the statement, given α ∈ [−1,
1] we denote by α̂ the real number 1

2 (α+ 1) ∈ [0, 1]. Define ψ : O(M)→ Z A be
the map taking an orientation O (thought of as an element of [−1, 1]E ) to

ψ(O) :=
m∑

i=1

Ô(ei)vi ∈ Z A. (3.1)

PROPOSITION 3.1.4. The map ψ gives a bijection between continuous circuit
reversal classes of continuous orientations of M and points of the zonotope Z A.
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Proof. By definition, ψ sends every continuous orientation to some point in Z A,
andψ is surjective. By the orthogonality of circuits and cocircuits, two continuous
orientations in the same circuit reversal class map to the same point of Z A, so
it remains to show the converse. Suppose ψ(O) = ψ(O′). By Lemma 3.1.2,
O − O′ can be written as a sum of signed circuits in which each signed circuit
is compatible with O, and O can be transformed to O′ via the corresponding
continuous circuit reversals in any order.

3.2. Distinguished orientations within each equivalence class. If we fix an
acyclic signature σ of C(M), there is a natural way to pick out a distinguished
continuous orientation from each continuous circuit reversal class.

Define a continuous orientation O to be σ -compatible if every signed circuit C
of M compatible with O is oriented according to σ .

PROPOSITION 3.2.1. Let σ be an acyclic signature of C(M). Then each
continuous circuit reversal class M contains a unique σ -compatible continuous
orientation.

Proof. By Lemma 3.1.1, there exists w ∈ RE such that w · vσ(C) > 0 for every
circuit C of M . Consider the function P(O′) := w ·O′. If −σ(C) is compatible
with O for some circuit C , then performing a continuous circuit reversal with
−σ(C) strictly increases the value of P , so every maximizer of P inside a class (if
exists) must be σ -compatible. The set of continuous orientations in a continuous
circuit reversal class is the fibre of ψ over a point in Z A, which is a closed subset
of the hypercube, so such maximizer must exist as P is continuous.

For uniqueness, suppose there are two distinct σ -compatible continuous
orientations O,O′ in a continuous circuit reversal class. By Lemma 3.1.2, O can
be transformed to O′ via a series of continuous circuit reversals in which each
signed circuit involved is compatible with O, hence agrees with σ . If the last
signed circuit involved in the series of reversals is C , then −C is a signed circuit
compatible with O′, hence it agrees with σ as well, which is a contradiction.

REMARK 3.2.2. By interpreting σ -compatible orientations as maximizers of the
linear function P , it is easy to see that the map µ : Z A → CO(M), which takes a
point z of Z A to the unique σ -compatible continuous orientation in the continuous
circuit reversal class corresponding to z, is a continuous section to the map ψ .
Such a point of view is closely related to the classical theory of zonotopal tilings.

We call orientations that are compatible with both σ and σ ∗ (σ, σ ∗)-compatible
orientations.

https://doi.org/10.1017/fms.2019.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.40


Zonotopal bijections for regular matroids 15

The set of discrete (σ, σ ∗)-compatible orientations will be denoted by X (M; σ,
σ ∗). In Section 4, we establish an analogue of Proposition 3.2.1 for discrete
orientations of regular matroids.

3.3. Biorientations and bases. Let O be a continuous orientation of M . We
call an element e ∈ E bioriented with respect to O if O(e) ∈ (−1, 1).

Note that if we orient any bioriented element e in a σ -compatible continuous
orientation O, that is, we set O(e) equal to either 1 or −1, the new continuous
orientation is still σ -compatible.

PROPOSITION 3.3.1. Let σ be an acyclic signature of C(M).

(1) If O is a σ -compatible continuous orientation then the set of e ∈ E which
are bioriented with respect to O is independent in M.

(2) If B is a basis for M and b : B → (−1, 1) is any function, there is a unique
σ -compatible continuous orientation O = O(B, b) such that O(e) = b(e)
for all e ∈ B and O(e) ∈ {±1} for all e 6∈ B.

Proof. For the first part, suppose the set S of bioriented elements in a continuous
orientation O is not independent. Then S contains some circuit C , and O is
compatible with both orientations of C , so O is not σ -compatible.

For the uniqueness assertion in (2), note that each element not in B must be
oriented in agreement with the orientation of its fundamental circuit given by
σ , as for otherwise the fundamental circuit will be compatible with −σ . Such
unique choice of orientations outside B, together with b itself, gives a continuous
orientation O.

Now we claim that such O is σ -compatible. If not, then O is compatible with
−σ(C) for some circuit C . We choose C such that |C \ B| 6= 0 is minimum
among all such circuits. Pick any e ∈ C \ B and let C ′ be its fundamental circuit
with respect to B. Then O is compatible with σ(C ′) by construction. Pick suitable
v−σ(C), vσ(C ′) such that they agree on the eth coordinate. Using Lemma 3.1.2, we
write v−σ(C) − vσ(C ′) =

∑
D vD with D’s being signed circuits conformal with

the left hand side, hence they do not contain e. Since vσ(C) + vσ(C ′) +
∑

D vD =

0, at least one such D is oriented opposite to σ by acyclicity. Then such D is
compatible with O: each element of D is either in B (which is bioriented in O),
or from C and oriented as in −σ(C) (which is compatible with O). However,
D \ B ⊂ (C \ B) \ e, contradicting the minimality of C .
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3.4. Polyhedral subdivision of the zonotope. Let σ be an acyclic signature of
C(M). For each basis B of M , let CO◦(B) be the set of σ -compatible continuous
orientations of the form O(B, b) as b ranges over all possible b : B → (−1, 1).
Let Z ◦(B) = ψ(CO◦(B)) be the projection of CO◦(B) to Z A, and let Z(B) be the
topological closure of Z ◦(B) in Z A.

PROPOSITION 3.4.1. (1) The union of Z(B) over all bases B of M is equal to
Z A, and if B, B ′ are distinct bases then Z ◦(B) and Z ◦(B ′) are disjoint.

(2) The collection of Z(B) as B varies over all bases B for M gives a polyhedral
subdivision of Z A whose vertices (that is, 0-cells) correspond via ψ to the σ -
compatible discrete orientations of M.

Proof. The only nontrivial part of (1) is the first half. By Propositions 3.1.4 and
3.2.1, every point of Z A is of the form ψ(O) for some σ -compatible continuous
orientation O. Hence by Proposition 3.3.1, it suffices to show that if the set B̂
of bioriented elements in O do not form a basis, then we can biorient some
element in O while maintaining σ -compatibility; by induction, we end up with a
bioriented basis B, which implies that ψ(O) is a limit point of Z ◦(B).

Suppose that for every e 6∈ B̂ such that B̂∪{e} is independent in M , biorienting e
in O will cause the new continuous orientation Oe to no longer be σ -compatible.
Then every such Oe is compatible with −σ(Ce) for some circuit Ce containing
e. Pick, among all such elements e and circuits Ce, the pair that maximizes
w · vσ(Ce), where we always choose the normalized vσ(Ce) whose eth coordinate is
σ(Ce)(e). The circuit Ce must contain another element f 6∈ B̂ such that B̂ ∪ { f }
is independent in M , so there exists some circuit C f containing f such that O f is
compatible with −σ(C f ). The signs of σ(Ce) and σ(C f ) over f are different,
so we can choose a suitable positive multiple v f of vσ(C f ) such that the f th
coordinates of v f and v−σ(Ce) := −vσ(Ce) are equal.

By Lemma 3.1.2, v−σ(Ce) − v f can be written as a sum
∑k

i=1 vCi of signed
circuits. Each such signed circuit Ci that does not contain e must be compatible
with O (hence σ ), while those signed circuits that contain e would at least be
compatible with Oe. Since w · (

∑k
i=1 vCi ) = w · (v−σ(Ce)−v f ) < 0, some Ci is not

compatible with σ (hence O), thus they contain e. In particular, the sign of the eth
coordinate of v−σ(Ce) − v f agrees with −σ(Ce). But as the signs of σ(Ce)(e) and
σ(C f )(e) are different, the absolute value of the eth coordinate of v f is at most
the absolute value of the eth coordinate of v−σ(Ce), which is 1.

Without loss of generality, the circuits containing e are C1,C2, . . . ,C j . We
choose vCi ’s so that their eth coordinates equal −σ(Ce)(e), and rewrite v−σ(Ce) −

v f as
∑k

i=1 λivCi for some λi > 0. By comparing eth coordinate,
∑ j

i=1 λi 6 1.
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Figure 1. The subdivision of the zonotope associated to K3 as described in
Proposition 3.4.1 using σ induced by the total order and reference orientation
on the right as described in Example 1.1.1. The red edges are bioriented.

Now we have

w ·

(
j∑

i=1

λivCi

)
= w ·

(
v−σ(Ce) − v f −

k∑
i= j+1

λivCi

)
< −w · vσ(Ce) < 0,

that is, there exists some Ci with i 6 j that is compatible with Oe, disagrees with
σ , and w · vσ(Ci ) > w · vσ(Ce), contradicting our choice of Ce.

For (2), Z ◦(B) can be identified, up to an affine linear transformation of full
rank, with the open parallelotope (0, 1)B , where the eth coordinate of ψ(O) ∈
Z ◦(B) is the value Ô(e). Thus Z(B) can be identified with the parallelotope [0,
1]B in an analogous manner, and restricting to a face of Z(B) of codimension
i can be described as orienting i elements in B. This gives a combinatorial
description of each face as the combinatorial type of any σ -compatible orientation
in its relative interior, and conversely, every combinatorial type of σ -compatible
orientation determines a unique face. Hence if the relative interiors of two faces
intersect, then the two faces must be equal, showing that the collection of Z(B)’s
gives a polyhedral subdivision of Z A.

REMARK 3.4.2. We give a description of the incidence relation between cells in
the polyhedral subdivision; we will not give a proof as we will not make use of
it. Let B be a basis, and let Fe be a facet of Z(B) corresponding to orienting
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some e ∈ B. Let O be a continuous orientation obtained from orienting e in any
continuous orientation of the form O(B, b). Then either (1) C∗(B, e) is a positive
cocircuit in O, in which case Fe lies on the boundary of Z A, or (2) there exists a
unique element f ∈ C∗(B, e) \ e such that the orientation obtained by reversing
f in O is also σ -compatible, in which case Fe is a facet of Z((B \ {e}) ∪ { f }).

3.5. Geometric interpretation of the combinatorial map. Let σ, σ ∗ be
acyclic signatures of C(M) and C∗(M), respectively. By Lemma 3.1.1, there
exists w ∈ RE that induces both σ and σ ∗. Our next goal is to show that the
combinatorially defined basis-to-orientation map β̂ (whose definition depends on
σ and σ ∗) can be interpreted geometrically as a ‘shifting map’.

To present the calculation in our proof more clearly, for the rest of Section 3,
we work in the cocircuit space V ∗(M) of M , which is the R-span of C∗(M) (and
is equal to the row space of A). Let πV ∗(M) be the orthogonal projection from RE

onto V ∗(M) and let {ue : e ∈ E} be the standard basis for RE . Consider the (row)
zonotope Z̃ A := {

∑
e∈E ceπV ∗(ue) : 0 6 ce 6 1} ⊂ V ∗(M). The following lemma

shows that Z̃ A and the previously defined zonotope Z A are essentially equal:

LEMMA 3.5.1. The map L : v 7→ Av is a lattice points preserving isomorphism
between V ∗(M) and Rr taking Z̃ A to Z A.

Proof. Since AAT has full rank, V ∗(M) = {AT z : z ∈ Rr
} is isomorphic

to Rr via L . By simple linear algebra, we have L(πV ∗(ue)) = Ae. Thus
L(
∑

e∈E ceπV ∗(ue)) =
∑

e∈E ce Ae and L(Z̃ A) = Z A. L preserves lattice points
because A is totally unimodular.

In particular, the subdivision of Z A constructed in Section 3.4 induces a
corresponding subdivision of Z̃ A. We denote by Z̃(B) the cell L−1(Z(B)) in Z̃ A.

The key to defining the shifting map is the following lemma:

LEMMA 3.5.2. If w′ is the orthogonal projection of w onto V ∗(M), then for all
sufficiently small ε > 0 the image of Z̃(B) under the map v 7→ v + εw′ contains
a unique point corresponding (via ψ) to a σ -compatible discrete orientation OB .

Proof. By Proposition 3.4.1, the vertices of each Z̃(B) correspond to σ -
compatible discrete orientations. It therefore suffices to prove that w′ does not
lie in the affine span of any facet of Z̃(B). The affine span of a facet of Z̃(B) is
spanned by directions of the form πV ∗(e) for e ∈ B̂ where B̂ ( B. Since |B̂| < r ,
there is a cocircuit K of M avoiding B̂. Any direction v :=

∑
e∈B̂ λeπV ∗(e) in the
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span satisfies 〈v, vσ ∗(K )〉 =
∑

e∈B̂ λe〈e, vσ ∗(K )〉 = 0. On the other hand, since w
induces σ ∗, 〈w′, vσ ∗(K )〉 = 〈w, vσ ∗(K )〉 > 0.

We define φ to be the map that takes a basis B to the orientation OB defined in
Lemma 3.5.2 (cf. Figure 2).

THEOREM 3.5.3. The map φ coincides with the previously defined map β̂.

Proof. Let B be a basis. Then φ(B) can be obtained by orienting each (bioriented)
basis element from a continuous σ -compatible orientation in the interior of
Z̃(B) (which is of the form O(B, b)), so by the greedy procedure described
in Proposition 3.3.1, the elements outside B are oriented according to their
fundamental circuits, hence φ(B) agrees with β̂(B) outside B.

For elements inside B, we work with the basis {πV ∗(ue) : e ∈ B} for V ∗(M)
and writew′ =

∑
e∈B weπV ∗(ue). Identifying Z̃(B)with [0, 1]B and the vertices of

Z̃(B) with {0, 1}B . If a vertex v is identified with (se : e ∈ B), then it corresponds
to a σ -compatible discrete orientation where each element e ∈ B is oriented in
agreement with (respectively opposite to) its reference orientation when se = 1
(respectively se = 0). The cell Z̃(B) will contain v after shifting if and only if the
sign pattern of the se’s agrees with the sign pattern of the we’s, that is, if and only
if se = 1 precisely when we > 0.

Let f ∈ B, and let K be the fundamental cocircuit of f with respect to B. By
a calculation similar to the above,

0 < 〈w′, vσ ∗(K )〉 =
∑
e∈B

we〈ue, vσ ∗(K )〉 = w f 〈u f , vσ ∗(K )〉,

as f is the unique element in B ∩ K . If w f > 0, then 〈u f , vσ ∗(K )〉 > 0 and the
reference orientation of f agrees with σ ∗(K ), that is, the orientation of f in φ(B)
is the same as the reference orientation of f . From the last paragraph, f is oriented
according to its reference orientation in β̂(B) as well, because w f > 0. A similar
analysis in the case where w f < 0 implies also that φ(B)( f ) = β̂(B)( f ).

PROPOSITION 3.5.4. Let B be a basis. Then β̂(B) is (σ, σ ∗)-compatible.

Proof. Since φ(B) is σ -compatible, β̂(B) is also σ -compatible by Theorem 3.5.3.
And since the procedure described in Theorem 1.2.2 is symmetric with respect to
circuits and cocircuits, a dual argument shows that β̂(B) is σ ∗-compatible.

THEOREM 3.5.5 (Theorem 1.4.1). The map β̂ : B(M)→ X (M) is a bijection.
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Figure 2. An example of the bijection for K3 using the pair (σ, σ ∗) induced by the
total order and reference orientation from Figure 1.

Proof. β̂ = φ is injective for the simple geometric reason that a vertex can only
be contained in the interior of at most one cell Z̃(B) after shifting. To prove the
surjectivity part, we need to show that for every (σ, σ ∗)-compatible orientation
O, there exists a continuous orientation O′ such that the displacement from O′ to
O, interpreted as points of Z̃ A, is πV ∗(w) (here we assume w is sufficiently short).
For simplicity, we negate suitable columns of A in order to assume without loss of
generality that O ≡ 1, and we modify w accordingly. For such to be determined
O′, denote by fe > 0 the difference between Ô(e) = 1 and Ô′(e). By simple linear
algebra, our condition on O′ in terms of displacement becomes Af = Aw, hence
O′ exists if and only if the linear program

min{1T f : Af = Aw, f > 0} (3.2)

is feasible. But the σ ∗-compatible condition implies ‘if zT A > 0, then (zT A)w >
0’, which is the same as ‘there exists no z such that zT A > 0, zT (Aw) < 0’, by
the Farkas lemma, the latter condition is equivalent to the existence of some f > 0
such that Af = Aw.

3.6. Computability of the inverse map. We now describe an inverse
algorithm which furnishes an inverse to the map φ, and hence to β̂. Again
we assume the inputted (σ, σ ∗)-compatible discrete orientation O is equal to
1 for simplicity. Suppose O was shifted into the cell Z̃(B) after moving by
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a displacement of −πV ∗(w). By solving the linear program (3.2) we obtain a
continuous orientation O′ (respectively f) in the cell Z(B). Therefore, it remains
to find the σ -compatible continuous orientation O′′ equivalent to O′, and the
desired basis B will then be the set of bioriented elements in O′′.

To do so, we solve the linear program

max{wT y : Ay = 0, fe − 1 6 ye 6 fe,∀e}. (3.3)

Let ỹ be an optimal solution. Consider the continuous orientation O′′ := O′+ 2ỹ,
we claim this is the continuous orientation we are looking for. The conditions
in the linear program guarantee that O′′ is a valid continuous orientation circuit
reversal equivalent to O′′, and it is σ -compatible: indeed, if O′′ is compatible with
some −σ(C), then one can easily check that ỹ+ δvσ(C) is also a feasible solution
for sufficiently small δ > 0, contradicting the optimality of ỹ.

Since linear programming admits a polynomial-time algorithm [31], the linear
program (3.3), together with the dual version of it, imply the following:

PROPOSITION 3.6.1. There is a polynomial-time algorithm to compute the
unique (σ, σ ∗)-compatible continuous orientation circuit–cocircuit equivalent to
a given continuous orientation.

Summarizing the discussion, we have the following theorem:

THEOREM 3.6.2. There is a polynomial-time algorithm to compute the inverse of
β̂.

4. The discrete circuit–cocircuit reversal system for a regular matroid and
its Jacobian

We now return to the setting of regular matroids. Throughout this section, M
will denote a regular matroid on E and A will be a totally unimodular matrix
realizing M . We investigate the (original) discrete version of circuit(-cocircuit)
reversal system which was introduced by Gioan [21, 22], and show that the σ -
compatible discrete orientations also give distinguished representatives for this
system. Moreover, we show that discrete circuit reversal classes correspond to
lattice points of the zonotope Z A (which by Proposition 3.4.1 are precisely the
vertices of the zonotopal subdivision Σ). Finally, we show that the discrete
circuit–cocircuit reversal system is canonically a torsor for Jac(M).

4.1. The discrete circuit–cocircuit reversal system. For totally unimodular
matrices, we have the following integral version of Lemma 3.1.2:
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LEMMA 4.1.1. Let u ∈ ΛA(M). Then u can be written as an integral sum of
signed circuits (as elements of ΛA(M))

∑
λCC with λC > 0, such that each C is

conformal to u. In particular, if u is a {0,±1}-vector, then the λC ’s are 1 and the
C’s are disjoint.

Proof. Without loss of generality, we may assume u > 0. We first pick a
signed circuit C conformal to u as in the statement of Lemma 3.1.2. By total
unimodularity, vC can be chosen as a {0, 1}-vector, and we choose λC to be the
maximum number such that u − λCC > 0. In such case λC must be an integer
and the support of u − λCC ∈ ΛA(M) is strictly contained in the support of C .
Proceed by induction to obtain the desired decomposition. The second assertion
follows easily from the first.

A discrete orientation O of M is a function E → {−1, 1}. A discrete
orientation O is compatible with a signed circuit C of M if O(e) 6= −C(e) for all
e in the support of C .

If O is a discrete orientation and C is a signed circuit compatible with O, we
can perform a (discrete) circuit reversal taking O to the orientation O′ defined
by O′(e) = −O(e) if e is in the support of C and O′(e) = O(e) otherwise. The
discrete circuit reversal system is the equivalence relation on the set CO(M) of
all discrete orientations of M generated by all possible discrete circuit reversals.
We can make the same definitions for cocircuits by replacing M with its dual.

We first state a basic fact about orientations (which is true more general for
oriented matroids) [10, Corollary 3.4.6]:

PROPOSITION 4.1.2. Given an orientation O of M and e ∈ E, exactly one of the
following holds:

(1) There is a signed circuit C of M with e ∈ supp(C) such that O( f ) = C( f )
for every f in the support of C. In this case we say that e belongs to the
circuit part of O.

(2) There is a signed cocircuit C∗ of M with e ∈ supp(C∗) such that O( f ) =
C∗( f ) for every f in the support of C∗. In this case we say that e belongs to
the cocircuit part of O.

PROPOSITION 4.1.3. The map ψ from Section 3.1 induces a bijection between
discrete orientations of M modulo discrete circuit reversals and lattice points of
Z A.

Proof. As the columns of A are integral, ψ takes an orientation of M to a lattice
point of Z A; conversely, for any lattice point y ∈ Z A, Aα̂ = y, 0 6 α̂i 6 1 ∀i
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has a solution α̂, which can be chosen to be integral by the total unimodularity
of A, hence it corresponds to an orientation. Thus the image of ψ is precisely
the set of lattice points of Z A. By the orthogonality of circuits and cocircuits,
two orientations in the same circuit reversal class map to the same point of Z A.
Conversely, supposeψ(O)= ψ(O′). By Lemma 4.1.1, (O−O′)/2 can be written
as a sum of disjoint signed circuits in which each signed circuit is compatible with
O, and O can be transformed to O′ via the corresponding circuit reversals in any
order.

PROPOSITION 4.1.4. Each discrete circuit reversal class of discrete orientations
of M contains a unique σ -compatible discrete orientation.

Proof. The uniqueness assertion follows from Lemma 4.1.1 and a similar
argument as in Proposition 3.2.1. For existence, start with any orientation O in
the class and reverse some signed circuit C compatible with O but not compatible
with σ . We claim that the process will eventually stop. Indeed, suppose not: since
the number of discrete orientations of M is finite, the orientation will, without
loss of generality, return to O after reversing some signed circuits C1, . . . ,Ck in
that order (the circuits might not be distinct). Then −C1 − · · · − Ck = 0, which
means that σ(C1)+ · · · + σ(Ck) = 0, contradicting the acyclicity of σ .

COROLLARY 4.1.5. The lattice points of Z A are exactly the vertices of the
subdivision Σ .

Proof. This follows from Propositions 4.1.3, 4.1.4, and 3.4.1.

Let χ : X (M) → G(M) be the map which associates to each (σ, σ ∗)-
compatible orientation the discrete circuit–cocircuit reversal class which it
represents.

THEOREM 4.1.6 (Part (2) of Theorem 1.3.1). The map χ is a bijection.

Proof. This follows directly from Propositions 4.1.4 and 4.1.2.

COROLLARY 4.1.7 (Theorem 1.2.2). The map β : B(M)→ G(M) given by B 7→
[O(B)] is a bijection.

Proof. The map β̂ : B 7→ O(B) is a bijection between B(M) and X (M; σ, σ ∗)
by Theorem 3.5.5. Now compose this map with χ .
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Figure 3. The zonotope associated to K3 and the circuit reversal classes associated
to its lattice points by the map ψ from Proposition 3.1.4. Taking the acyclic
signature σ from Figure 1, the cycle in blue is σ -compatible, while the cycle
in red is not. (Note that we are using the full adjacency matrix of K3 to define the
zonotope, cf. Remark 3.1.3.)

4.2. The circuit–cocircuit reversal system as a Jac(M)-torsor. In this
section, we define a natural action of Jac(M) on the set G(M) of circuit–cocircuit
equivalence classes of orientations of M and prove that the action is simply
transitive. We also discuss an efficient algorithm for computing this action, along
with an application to randomly sampling bases of M .

4.3. Definition of the action. Recall from (2.1) that Jac(M) can be identified
with ZE

ΛA(M)⊕Λ∗A(M)
. Note that such group is generated by [−→e ], e ∈ E (here we use

an overhead arrow to emphasize that we are keeping track of orientations).
The group action Jac(M) � G(M) is defined by linearly extending the

following action of each generator [−→e ] on circuit–cocircuit reversal classes: pick
an orientation O from the class so that e is oriented as −→e in O, reverse the
orientation of e in O to obtain O′, and set [−→e ] · [O] = [O′], cf. Figure 4. This
action generalizes the one defined in terms of path reversals by the first author in
the graphical case [3, Section 5].

Our main goal for the rest of this section will be to prove:

THEOREM 4.3.1. The group action � is well defined and simply transitive.
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Figure 4. Example of the torsor. Here the reference orientations of e, f are the
same as the orientation we begin with.

REMARK 4.3.2. For ease of exposition, in the rest of this section we use the term
positive circuit/cocircuit (with respect to an orientation O) to denote a signed
circuit/cocircuit that is compatible with O. Furthermore, given an orientation O
and a subset X ⊂ E , we denote by −XO the orientation obtained by reversing
elements of X in O. For a circuit/cocircuit C of O, we say that −X C is positive
if C is a positive circuit/cocircuit of −XO. Finally, we denote by χX the {0, 1}-
characteristic vector whose support is X .

4.4. The action is well defined. In order to show that the action of Jac(M)
on G(M) is well defined, we first show that the corresponding action (which by
abuse of notation we continue to write as �) of ZE on G(M) is well defined, then
that the action descends to the quotient by ΛA(M)⊕Λ∗A(M).

LEMMA 4.4.1. Let e ∈ E, and suppose X ⊂ E \ e is a positive cocircuit in O \ e
but not in O. Then Y := X ∪ {e} is a cocircuit in O, and either Y or −eY is
positive.

Proof. By assumption, wT A|E\e = χX for some w. Hence wT A = χX + λχ{e} for
some λ 6= 0. By the dual of Proposition 3.1.2, Y contains a cocircuit D. If D ∩
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X = ∅, then D = {e}, which in turn shows that X itself is a positive cocircuit.
Now we must have X ⊂ D, or otherwise D ∩ X ( X would be a cocircuit in
M \ e. Therefore, Y = D is a cocircuit, and λ = ±1, that is, either Y or −eY is
positive.

LEMMA 4.4.2. Suppose e ∈ M is contained in some positive circuit of O, and
that Y is a subset of E containing e such that −eY is a positive cocircuit. Then any
positive circuit containing e intersects Y in exactly two elements.

Proof. Let C be a positive circuit containing e. By assumption, there exists a
vector v such that vT A = χY\e − χ{e}. Then 0 = vT AχC = |(Y \ e)∩C | − 1, that
is, Y intersects C in e together with exactly one more element.

PROPOSITION 4.4.3. For every [O] ∈ G(M) and oriented element −→e , there
exists Õ ∈ [O] so that e is oriented as −→e in Õ.

Proof. By Proposition 4.1.2, e is either contained in a positive circuit or cocircuit
C . If e is not already oriented as −→e in O, reverse C .

PROPOSITION 4.4.4. The action of−→e on [O] is independent of which orientation
we choose.

Proof. Suppose O ∼ O′ and they agree on e, then O and O′ differ by a disjoint
union of positive circuits and cocircuits which do not contain e by Lemma 3.1.2
and its dual. Thus −eO ∼−e O′ using the same reversals.

PROPOSITION 4.4.5. For any −→e ,
−→
f ∈ ZE and [O] ∈ G(M), −→e · (−→f · [O]) =

−→
f · (−→e · [O]). Hence it is valid to extend · linearly, and � is indeed a group

action of ZE on G(M) .

Proof. The statement is tautological if −→e =
−→
f . If −→e = −

−→
f , then without loss

of generality the orientation of e in O is −→e . Let C be a positive circuit/cocircuit
containing e. Then

−→
f · (−→e · [O]) = [O] = [−CO] = −→e · (

−→
f · [O]).

Otherwise e 6= f . We may again assume that e is oriented as −→e in O. The
statement is easy if there exists some positive circuit/cocircuit in O that contains
f but not e, as we can reverse it and obtain an orientation in which the orientations
of e, f are already−→e ,

−→
f . So without loss of generality e, f are in the circuit part

of O and every positive circuit containing f also contains e; fix any such positive
circuit C . f must be in some positive cocircuit D′ of O \ e, since otherwise f
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is in some positive circuit of O \ e, which is a positive circuit in O avoiding e.
By Lemma 4.4.1, D := D′ ∪ {e} is a cocircuit in O and −e D is positive, and by
Lemma 4.4.2, we know that C ∩ D = {e, f }.

On one hand we have
−→
f ·(−→e ·[O])=−→f ·[−eO] =

−→
f ·[−(D\e)O] = [−(D\{e, f })O].

On the other hand, −→e · (
−→
f · [O]) = −→e · (−→f · [−CO]) = −→e · [−(C\ f )O] =

−→e · [−(C∪D)\eO] = [−(C∪D)O]. But C is positive in −(C∪D)O, so [−(C∪D)O] =
[−(C∪D)4CO] = [−(D\{e, f })O].

Now we know that ZE � G(M) is well defined, so we show next that this action
descends to a group action Jac(M) � G(M).

PROPOSITION 4.4.6. The stabilizer of the action on any [O] contains ΛA(M)⊕
Λ∗A(M).

Proof. Let
−→
C ∈ ΛA(M) be a signed circuit. Let F be the set of elements in C

whose orientations in O are the same as in
−→
C . Then

−→
C · [O] = (

∑
−→e ∈
−→
C \F
−→e ) ·

[−FO] = (
∑
−→
C \F
−→ei ) · [−(C\F)O] = [O]. The proof for Λ∗A(M) is similar.

4.5. The action is simply transitive.

PROPOSITION 4.5.1. The group action Jac(M) � G(M) is transitive.

Proof. Given any two orientations O,O′, let γ be the sum of the (oriented)
elements in O whose orientation in O′ is different, then [γ ] · [O] = [O′].

By Propositions 4.4.6 and 4.5.1, we know that Jac(M) � G(M) is well
defined and transitive, and we know that |Jac(M)| = |G(M)|, so the action is
automatically simple. However, it seems worthwhile to give a direct proof of the
simplicity of the action which does not make use of the equality |Jac(M)| =
|G(M)|, since this yields an independent and ‘bijective’ proof of the equality. We
begin with the following reduction.

PROPOSITION 4.5.2. The simplicity of the group action Jac(M) � G(M) is
equivalent to the statement that every element of the quotient group ZE

ΛA(M)⊕Λ∗A(M)

contains a coset representative whose coefficients are all 1, 0,−1.

Proof. Suppose such a set of coset representatives exists. We need to show that
whenever [γ ] ∈ ZE

ΛA(M)⊕Λ∗A(M)
fixes some circuit–cocircuit reversal class, [γ ] = [0].

By transitivity, [γ ] will fix every equivalence class in such a case. Without loss
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of generality, the coefficients of γ are all 1, 0,−1 with support F ⊂ E . Pick an
orientation O in which the orientation of every element of F agrees with γ ; then
[O] = [γ ] · [O] = [−FO]. Therefore, O ∼ −FO, meaning that F is a disjoint
union of positive circuits and cocircuits in O, that is, γ ∈ ΛA(M)⊕Λ∗A(M) and
[γ ] = [0]. The proof of the other direction is omitted as it is not being used in this
paper.

PROPOSITION 4.5.3. Every element of ZE

ΛA(M)⊕Λ∗A(M)
contains a coset

representative whose coefficients are all 1, 0,−1.

Proof. We show that there is such a representative in [γ ] for every γ =∑
e∈E cee ∈ ZE by lexicographic induction on |γ |∞ := maxe∈E |ce| and the

number of elements e with |ce| = |γ |∞. The assertion is trivial if |γ |∞ 6 1, so
suppose |γ |∞ > 1. By choosing a suitable reference orientation we may assume
that all coefficients of γ are nonnegative. Pick an element e whose coefficient ce

equals |γ |∞ and pick a positive circuit/cocircuit C containing e. By subtracting
γC :=

∑
f ∈C f from γ , all positive coefficients c f with f ∈ C decrease by 1,

while the zero coefficients become −1. Hence |γ − γC |∞ 6 |γ |∞ and the number
of elements f with |c f | = |γ |∞ strictly decreases. By our induction hypothesis,
there exists a representative with the desired form in [γ − γC ] = [γ ].

COROLLARY 4.5.4. The group action Jac(M) � G(M) is simple.

4.6. Computability of the group action. We now show that the simply
transitive action of Jac(M) on G(M) is efficiently computable.

PROPOSITION 4.6.1. The action of Jac(M) on G(M) can be computed in
polynomial time, given a totally unimodular matrix A realizing M.

Proof. First we show that computing the action of a generator [−→e ] on a circuit–
cocircuit reversal class can be done in polynomial time. To see this, note that
by Proposition 4.4.3, it suffices to find a positive circuit/cocircuit containing a
given element e in O. For positive circuits, this can be done by solving the integer
program min(1Tv : Av = 0, ve = 1, 0 6 vi 6 1, vi ∈ Z) and take the support of
the minimizer (if exists), but it is actually a linear program (thus polynomial time
computable [31]) as A is totally unimodular. The cocircuit case is similar.

It remains to show that it is possible to find, in polynomial time, a coset
representative with small polynomial-size coefficients in each element of
Jac(M) ∼= ZE

ΛA(M)⊕Λ∗A(M)
. For the practical reason of generating random elements
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of Jac(M) (cf. Section 4.7), we often start with a vector y ∈ Zr representing a
coset of Zr

ColZ(AAT )
, before lifting y to a vector γ ∈ ZE . Thus we describe a two-step

algorithm to in fact find a representative in ZE where all coefficients belong to
{−1, 0, 1} (the existence of which is guaranteed by Proposition 4.5.3), starting
with an input vector in y ∈ Zr .

In step 1, replace y by y′ := y − (AAT )b(AAT )−1yc, where b c is the
coordinatewise truncation. The new vector represents the same element in

Zr

ColZ(AAT )
, and it is equal to (AAT )((AAT )−1y−b(AAT )−1yc). Since 06 x−bxc<

1 and each coordinate of AAT is between −m and m, the absolute value of each
coordinate of y′ is at most mr . To work in ZE

ΛA(M)⊕Λ∗A(M)
, we solve the equation

Aγ = y′, which is a simple linear system; since A is totally unimodular, the
absolute value of each coefficient of γ is at most mr 2.

In step 2, starting with an element γ ∈ ZE we obtained in step 1. We apply
the procedure described in Proposition 4.5.3 with some modification, namely that
after choosing a positive circuit/cocircuit C which contains an element e whose
coefficient ce is maximum in γ , we subtract b ce

2 cγC from γ . No new element with
the absolute value of its coefficients being larger than d |γ |∞2 e is created in each
such step, so after every O(m) steps the maximum absolute value of coefficients
is halved, and in a total of O(m log m) steps the maximum absolute value of
coefficients is reduced to at most 1. We remark that step 2 by itself can yield a
polynomial-time algorithm if we work in ZE from the beginning.

4.7. An algorithm for sampling bases of a regular matroid. By mimicking
the strategy from [7], we can now produce a polynomial-time algorithm for
randomly sampling bases of a regular matroid. The high-level strategy is:

(1) Compute the Smith Normal Form of a matrix A realizing M , and decompose
Jac(M) as a direct sum of finite abelian groups.

(2) Use such a decomposition to choose a random element γ ∈ Jac(M).

(3) Given a reference orientation O, compute [O′] := γ · [O] ∈ G(M), where
· is the group action from Theorem 1.2.1.

(4) Compute the basis B corresponding to the (σ, σ ∗)-compatible orientation in
[O′], which can be found in polynomial time by Proposition 3.6.1.

5. Dilations, the Ehrhart polynomial, and the Tutte polynomial

Metric graphs can either be viewed as limits of subdivisions of discrete graphs
or as intrinsic objects. See, for example, Section 2 of [6]. Similarly, one can view
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continuous orientations of regular matroids as a limit of discrete orientations or
as intrinsic objects. So far in this paper we have taken the latter viewpoint, but
in this section we shift towards the former. In doing so, we see that the bridge
between discrete and continuous orientations of regular matroids is intimately
related to Ehrhart theory for unimodular zonotopes. For example, we demonstrate
how this perspective allows for a new derivation of a result of Stanley which states
that the Ehrhart polynomial of a unimodular zonotope is a specialization of the
Tutte polynomial. Stanley’s original proof utilizes a half-open decomposition of a
zonotopal tiling. In contrast, zonotopal tilings will not make an appearance in our
proof, although Corollary 4.1.5 provides a connection to Stanley’s argument.

5.1. The Ehrhart polynomial and the Tutte polynomial. The Tutte
polynomial TM(x, y) is a bivariate polynomial associated to a matroid M
which encodes a wealth of information associated to M . One of its key properties
is that TM(x, y) is ‘universal’ with respect to deletion and contraction, in the
following sense:

PROPOSITION 5.1.1 (see [37, Theorem 1] and [36, Theorem 2.16]). Let M be the
set of all matroids. Suppose a, b, x0, y0 ∈ R and that f : M → R is a function
with f (∅) = 1 and such that for every matroid M and every element e of M,

f (M) = a f (M/e)+ b f (G \ e) if e is neither a loop nor a coloop
f (M) = x0 f (M \ e) if e is a coloop
f (M) = y0 f (M/e) if e is a loop.

Then
f (M) = ark(M)brk(M∗)TM

( x0

a
,

y0

b

)
.

Given an integer polytope P , its Ehrhart polynomial EP(q) counts the number
of lattice points in q P , the qth dilate of P . The fact that such a polynomial exists
for any integer polytope was proven by Ehrhart [19]. Let M be a regular matroid
realized by the totally unimodular r × m matrix A. Given a positive integer q ,
define q A to be the r × qm matrix obtained by repeating each column of A q
times consecutively. Let q M be the corresponding regular matroid. Note that the
zonotope Zq A associated to q A is just the qth dilate q Z A.

Let σq be an acyclic signature of q M . Using the interpretation of lattice points
of Zq A as σq-compatible orientations of q M , we give a new proof of the following
theorem.
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THEOREM 5.1.2 (Stanley [34]). Let A be a totally unimodular matrix with
associated zonotope Z = Z A, and let M be the corresponding regular matroid.
Then

EZ (q) = q rk(M)TM

(
1+

1
q
, 1
)
.

Stanley’s result extends to general integer zonotopes, but a priori our proof does
not. For a calculation of the Ehrhart polynomial of an integral zonotope using the
language of the arithmetic Tutte polynomial, see [15]. Before giving the proof of
Theorem 5.1.2, we need a few definitions.

By a partial orientation of a regular matroid M , we mean a function E → {−1,
0, 1}, where elements mapping to 0 are called bioriented. (In the case of graphs,
Hopkins and the first author would call such objects type B partial orientations,
but we suppress the term ‘type B” here.) Given t ∈ Z>0, a t-partial orientation of
M will be a partial orientation where each bioriented edge receives some integer
weight s with 1 6 s 6 t . (By convention, a 0-partial orientation of M will mean
the same thing as an orientation.)

Fix a reference orientation Oref on M . Setting t + 1 = q , there is a map from
orientations of q M to t-partial orientations as follows. Given e ∈ M , if all q copies
of e are oriented similarly, we map them to the corresponding orientation of e in
M . On the other hand, if s copies of e of are oriented in agreement with Oref and
q − s copies are oriented oppositely, with 1 6 s 6 t , we map this set of edges to
a bioriented element of weight s in M .

A nonempty subset F of E is called a potential circuit in a t-partial orientation
O if F is a circuit of M and there is a choice of orientation of each bioriented
element so that F becomes a positive circuit. We call a t-partial orientation of
M circuit connected if for each e which is the minimum element in a potential
circuit, either e is not bioriented and is oriented in agreement with the reference
orientation, or e is bioriented and replacing it with the opposite orientation of e in
Oref does not produce any potential circuits containing e.

Proof of Theorem 5.1.2. For each positive integer q , we define an acyclic
signature σq on C(q M). By Propositions 3.1.4 and 4.1.4, it will then suffice to
prove that the number of σq-compatible orientations of q M is q rk(M)TM(1+ q−1,

1). As in Example 1.1.1, each σq will come from a total order and reference
orientation of q M . We now explain how given an arbitrary σ1, we can naturally
define σq . Given e ∈ M , let e1, . . . eq be the q copies of e in q M . We orient the
ei in σq similarly to e in σ1, that is, so that together they form a positive cocircuit
in their induced matroid. Let ei be the list of the elements of M according to σ1.
Given ei

k and e j
` in q M , we define σq so that ei

k <q e j
` if i < j , or i = j and k < `.
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We are attempting to count objects associated to q M using the Tutte polynomial
of M , so we would first like to produce a bijective map from σq-compatible
orientations of q M to certain objects associated to M alone. To do this, note that
given a σq-compatible orientation O of q M , a reference orientation Oq

ref, and a
set of parallel elements e1, . . . , eq , there are only q + 1 possible orientations of
these elements: e1 . . . ek will be oriented in agreement with Oq

ref, for some k = 0,
1, . . . , q , and ek+1 . . . eq will be oriented oppositely. (If this were not the case,
we would have a 2-element positive circuit whose minimum edge is oriented in
disagreement with Oq

ref.) Using this observation, it is not difficult to check that the
map defined above from orientations of q M to t-partial orientations of M (where
t = q−1) takes σq-compatible orientations of q M bijectively to circuit connected
t-partial orientations of M .

We first prove that the sets X t,M\e and X t,M/e are the images of X t,M under
deletion and contraction, respectively. Given O ∈ X t,M\e (the case of O ∈ X t,M/e

being similar), suppose that both orientations of e produce t-partial orientations
which are not elements of X t,M . This implies that both orientations of e produce
potential circuits C1 and C2 which are not σq-compatible. For 1 6 i 6 2, we
can choose orientations of the bioriented elements in Ci to produce a circuit C ′i
which is not σq-compatible. The sum C ′1 + C ′2 is in the kernel of A and does not
contain e, therefore we can apply Lemma 3.1.2 and decompose C ′1 + C ′2 into a
sum of directed circuits not containing e such that the signs of the elements are
inherited from C ′1 + C ′2. Let e′ be the minimum labelled element in C ′1 ∪ C ′2. It
is possible that e′ appears in only one of the circuits C ′1 or C ′2, otherwise it must
be oriented similarly in both C ′1 and C ′2 as they are not σq-compatible. Thus e′

is in the support of C ′1 + C ′2, and there exists a circuit C3 containing e′ whose
support is contained in the support of C ′1 + C ′2. Moreover, C3 has size larger
than 2 as e′ was oriented similarly in C ′1 and C ′2, thus it does not correspond
to a bioriented element of O. By assumption, e′ is oriented in disagreement
with its reference orientation, therefore C3 is not σq-compatible. After possibly
rebiorienting some of the elements in C3, we obtain a potential circuit in O which
is not σq-compatible. This contradicts the assumption that O ∈ X t,M\e.

Let X t,M be the set of circuit connected t-partial orientations of M (cf. Figure 5).
Let e be the largest element of M . If e is a loop, then |X t,M | = |X t,M\e|, and if e
is a coloop, then |X t,M | = (t + 2)|X t,M/e|. If e is neither a bridge nor a loop, we
claim that |X t,M | = |X t,M\e|+ (t+1)|X t,M/e|. Given this claim, we conclude from
Proposition 5.1.1 that

|X t,M | = (t + 1)rk(M)TM

(
t + 2
t + 1

, 1
)
= q rk(M)TM

(
q + 1

q
, 1
)

as desired.
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Figure 5. The set X1,K3 associated to the lattice points of 2Z K3 using the acyclic
signature σ from Figure 3. The bioriented edges are coloured red. Taking the
(suitably rescaled) limit of q Z K3 as q goes to infinity, the set Xq−1,K3 induces the
subdivision depicted in Figure 1.

TakeO ∈ X t,M and letOe be the set of t-partial orientations in X t,M which agree
with O away from e. We first observe that Oe includes a t-partial orientation with
e bioriented if and only if it includes t-partial orientations with e oriented in each
direction. Furthermore, this is the case if and only if O/e ∈ X t,M/e. We always
have that O \ e ∈ X t,M\e as deleting e cannot cause a t-partial orientation to stop
being circuit connected. Therefore, |Oe| = 1 if and only if O/e /∈ X t,M/e, and
|Oe| = t + 2 if and only if O/e ∈ X t,M/e. The claim now follows by partitioning
X t,M into maximal sets of t-partial orientations which agree on every element in
M \ e.

REMARK 5.1.3. The realizable part of the Bohne–Dress theorem states that the
regular tilings of Z A by parallelotopes are dual to the generic perturbations of
the central hyperplane arrangement defined by A. Hopkins and Perkinson [25]
investigated generic bigraphical arrangements, that is, generic perturbations of
twice the graphical arrangement, and associated certain partial orientations, which
they called admissible, to the regions in the complement of such an arrangement.
The aforementioned duality induces a geometric bijection between these regions
and the lattice points in the twice-dilated graphical zonotope. This in turn gives a
bijection between the admissible partial orientations and the circuit connected
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partial orientations. The enumeration of these two different classes of partial
orientations both appear as specializations of the 12-variable expansion of the
Tutte polynomial from [5], and the aforementioned duality interchanges a pair of
symmetric variables.

5.2. Ehrhart reciprocity. Ehrhart reciprocity states that if P is an integral
polytope, and EP(q) is its Ehrhart polynomial, then the number of interior points
of the qth dilate of P is |EP(−q)|. Combining Ehrhart reciprocity and Stanley’s
result, one obtains the following corollary:

COROLLARY 5.2.1. The number of interior lattice points in q Z A is

q rk(M)TM(1− 1/q, 1).

REMARK 5.2.2. Our proof of Stanley’s formula also allows for a direct
verification of Corollary 5.2.1 in this setting without appealing to Ehrhart
reciprocity. Each facet of q Z is determined by a positive cocircuit in q M . Thus
a point lies in the interior of q Z if and only if the corresponding σq-compatible
orientation of q M contains no positive cocircuits, or equivalently, if every
element in the corresponding circuit connected (q−1)-partial orientation of M is
contained in a potential circuit. One can verify that these objects are enumerated
by the corresponding Tutte polynomial specialization via deletion–contraction as
illustrated above, although the argument is slightly more involved as one needs to
take care to show that potential circuits and cocircuits can be treated separately.

For the case of graphs, various generalizations of the arguments used in the
proof of Theorem 5.1.2 are given in [5].

5.3. Other invariants of unimodular zonotopes. The following theorem
collects some known connections between evaluations of the Tutte polynomial
and geometric quantities associated to unimodular zonotopes.

THEOREM 5.3.1. Let Z be a unimodular zonotope. Then:

• TM(2, 1) is the number of lattice points in Z.

• TM(0, 1) is the number of interior lattice points in Z.

• TM(1, 1) is the lattice volume of Z.

• TM(2, 0) is the number of vertices of Z.
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Proof. The first two formulae follow from evaluating the Ehrhart polynomial at
q = 1 and q = −1. The third follows from interpreting the lattice volume of Z as

Vol(Z) = lim
q→∞

|Zn
∩ q Z |

q rk(M)
= lim

q→∞
TM(1+ 1/q, 1) = TM(1, 1).

The fourth enumeration follows from the classical observation that the normal
fan of the zonotope is the central hyperplane arrangement defined by A and then
applying Zaslavsky’s theorem which says that the number of such regions is TM

(2,0).

REMARK 5.3.2. Recall that TM(1, 1) is equal to the number of bases of M ,
which is equal to |Jac(M)|. One can show that each maximal cell in our
polyhedral decomposition of Z A has volume 1, which gives an alternate proof
of the third evaluation in Theorem 5.3.1. Taking the limit of q Z A as q goes to
infinity while scaling the lattice by 1

q , the set Xq−1,M approaches the set of σ -
compatible continuous orientations of M and we recover the subdivision from
Proposition 3.4.1 (see Figure 5).
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