Is Amalthea a Captured Trojan Asteroid of Jupiter?

Andrew J. R. Prentice

School of Mathematical Sciences, Monash University, Victoria 3800, Australia

Abstract. The Galileo spacecraft has found Jupiter's inner regular moon Amalthea to be a porous assemblage of rock and ice. This and other factors point to Amalthea having first condensed in a solar orbit.

In 2002, the Galileo spacecraft discovered that Amalthea has an unexpectedly low mean density $\bar{\rho} \sim 0.9 \text{ g/cm}^3$. This value is much less than the value ~ 3.87 g/cm³ expected at Amalthea's orbital distance, namely $2.539R_{\rm H}$ $(R_{\rm J} = 71492 \text{ km})$, had this body formed as a native Jovian satellite. The latter density follows from a gas ring condensation model which successfully accounts both for the broad distributions of mass and orbital radius, and the bulk chemical compositions of the four large Galilean moons (Prentice & ter Haar 1979, Prentice 2001a). This model provides a condensation temperature and gas pressure at Amalthea's orbit of ~ 880 K and ~ 45 bar, respectively. It produces a condensate that is 32% metal and 68% rock, and has mass that is $\sim 10^4$ larger than that of Amalthea. The absence of another native satellite at $\sim 3.5 R_{\rm J}$ thus makes it much more likely that Amalthea formed outside the Jupiter system. Prentice & ter Haar (1979) had predicted Amalthea to be a C-type asteroid. Main belt stony asteroids have a predicted zero-porosity density ~ 3.67 g/cm³ (Prentice 2001b). Galileo has found Amalthea to be less dense than the highly porous, ice-free, main belt asteroid Mathilde ($\overline{\rho} = 1.3 \pm 0.2$ g/cm³), despite being ~ 30 times more massive. This suggests the presence of some ice, as well as rock. Most likely, therefore, Amalthea originally condensed as a planetesimal from the gas ring shed by the proto-Solar cloud at Jupiter's orbit, prior to dynamical capture by this planet. The predicted bulk chemical composition, by mass, of such condensate is asteroidal rock (65%), graphite (1%), and water ice (34%) (Prentice 2001b). The zero-porosity density is 1.83 g/cm³. Amalthea is simply a first cousin of the Trojan asteroids of Jupiter. This interpretation is consistent with the Galileo spacecraft findings and implies a porosity of 50%. I thank John D. Anderson [NASA/JPL] and David Warren [Hobart] for support.

References

Prentice, A. J. R. 2001a, Earth Moon & Planets, 87, 11

Prentice, A. J. R. 2001b in LPI Contribution No. 1097, Workshop on Mercury: Space Environment, Surface, and Interior, ed. M. S. Robinson & G. J. Taylor (Houston: Lunar & Planetary Institute), 81

Prentice, A. J. R., & ter Haar, D. 1979, Nature, 280, 300