
/ Aust. Math. Soc. 77 (2004), 425-436

ON THE PSEUDORANDOMNESS OF THE SIGNS OF
KLOOSTERMAN SUMS

ETIENNE FOUVRY, PHILIPPE MICHEL, JOEL RIVAT and ANDRAS SARKOZY

(Received 17 February 2003; revised 29 September 2003)

Communicated by W. W. L. Chen

Abstract

In this paper we study the pseudorandom properties of the signs of Kloosterman sums.
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1. Introduction

Throughout this paper we use the following notation: N, 2, R, C denote the set of the
positive integers, respectively integers, real numbers, complex numbers.

In a series of papers Mauduit, Rivat and Sarkozy (partly with other coauthors)
studied finite pseudorandom binary sequences

In particular, in [8] Mauduit and Sarkozy first introduced the following measures of
pseudo-randomness: the well-distribution measure of EN is defined by

/-i

W(EN) = max V
a,b,t ^-~'
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w h e r e t h e m a x i m u m i s t a k e n o v e r a l l a , b , t e N s u c h t h a t i ^ a ^ a + (t— \ ) b ^ A ' ,
and the correlation measure of order I of EN is defined as

M

Q(EN) = max
M,D

where the maximum is taken over all D = (d\, . . . , d{) and M such that 0 ^ d\ <
• • • < dt ^ N — M. Then the sequence is considered as a 'good' pseudo-random
sequence if both these measures W(EN) and Ci(EN) (at least for 'small' /) are 'small'
in terms of N (in particular, both are o(N) as N -> oo). Indeed, later Cassaigne,
Mauduit and Sarkozy [1] showed that this terminology is justified since for almost all
EN e {-1, + 1 } \ both W(EN) and C,(EN) are less than A"/2(log A0c.

The aim of this paper is to give new examples of pseudorandom sequences. These
examples come from the theory of exponential sums.

For x e R, we write e(x) = exp(2i7rjt) and we denote by S(l, m; n) the Klooster-
man sum

S(l,m;n)=
k mod n \ /

where k is the multiplicative inverse of k modulo n.
By Weil 's theorem, if p is a prime number, n e Z and (n, p) = 1, then we have

\S(l,n;p)\^2pl/2.

The Kloosterman sum 5(1, n; p) is a real non zero number, thus there is a unique real
number 0p<n with

2 ' " / = cos0p,n, 0 ^ 9p,n ^ n, 9p,n £ n/2.

It follows from results of Deligne and Katz that for p -> + o o , 0 ^ a < / S ^ 7 T t h e
numbers 0pn with 1 ^ n ^ p — 1 satisfy the asymptotic formula

- 1, o
2 [P

/ sisin2 tdt.

The angle 6Pin has been studied in several papers, in particular, by Fouvry and Michel
in [4]. Their work suggests that the signs of Kloosterman sums

(1) 5(1, l;p), 5(1,2;p), . . . , S(l,p-Up)

(that is, the fact whether 0 ^ 9pn < n/2 or n/2 < 6pn < n holds) may have certain
'random' behaviour. More specifically, do the signs of the numbers in (1) form a
'good' pseudorandom binary sequence in terms of the measures introduced above? In
this paper our goal is to show that the answer to this question is affirmative.
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THEOREM 1.1. If p is a prime number, I e N, and the binary sequence Ep_\ =
{eu ... , ep_i} is defined by

J + l, if S(l,n;p)>0;
e" j - 1 , if S(l,n;p) <0

then we have

' / M " 2 C,(£p_,)

(where c2(/) is a constant which may depend on I).

2. Kloosterman sums

If k € 2, k ^ 0, we denote by symt 9 the function

sin (it + 1)6>
syn\ 0 = : ,

and by Symi(SL2) the ifc-th symetric power representation of SL2(C) (see [9] for
further details).

LEMMA 2.1. For every integer r ^ 1, there exists a constant C(r) such that

• for every r-tuple of polynomials (f\,... ,fr) of the form fi(X) = atX + bit

with at, bj e Z, (1 ^ i ^ r), satisfying Y[i^i^r
a> ^ 0 and (ah bt) ^ (aj,bj)

• for every prime p, for every r + l-tuple of integers (k\,..., kr, h), such that
ki > 0 (1 ^ i ^ r) and ( i t , , . . . , itr, h (mod p)) ^ ( 0 , . . . , 0),

we have the inequality

where, in ^ * , the asterisk indicates that only the terms with

(2) / i ( « ) - - - / r ( « ) # 0 m o d p

are considered.

PROOF. This lemma shows the independence of the distribution of the sets of angles
$p,fj(n)'< n (mod p)} for 1 ^ j ^ r. The additive character n h+ e(hn/p) will be
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used to detect n in an interval modulo p. A similar result of independence appears in
[9, Proposition 2.8], where the following equality

m=\

is proved uniformly for a / O , ± l (modulo p) and (ku k2, h (mod p)) £ (0, 0, 0).
Our proof of the lemma follows the same lines so we give a sketch of the proof only.
It is based on the important works of Katz on the computation of some geometric
monodromy groups and its diophantine consequences [6, 7].

Let j£?^ be the rank 1 lisse sheaf on Aj associated to the (possibly trivial) additive
character of Fp, yj/(x) = e(hx/p); let J(fl be the (rank 2 sheaf, lisse on Gmj )
Kloosterman sheaf (which satisfies tr(Frobx, JVI) = —5(1, m\p)j\fp), a n d / ; the
morphisms x (->• f} (x) = ajX + bj; by the Lefshetz trace formula, Deligne's theorem
on the weight and a computation of an Euler characteristic, it is sufficient to prove that
the sheaf

• • • ® Symkr([fr]*XI) ® if,

is geometrically irreducible. This in turn follows from the fact that the geometric
monodromy group of the sheaf

is as large as possible (that is, is SL2x • • • x SL2). The latter fact is proved as in [3, 9]
using the Goursat-Kolchin-Ribet criterion and the computation by Katz, of the local
monodromy of JVl at 0 and oo.

This technique of independence of sheaves also appears (even in a more complicated
context) in other works: [4, 10, 11], for instance, with applications to the study of
exponential sums. D

To switch from the complete sums in Lemma 2.1 to incomplete sums, we need a
principle coming at least from Vinogradov which is based on the following inequality.

LEMMA 2.2. Ifm e N, the function g(x) : Z
are real numbers with Y > 0, then

C is periodic of period m, andX, Y

E Sin)
X<n<X+Y

Y+l
m n=l

£ 1-1

PROOF. This is implicit in [14] and explicitly stated in [2, formula (6.4)] and
in [8]. •
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LEMMA 2.3. For every r e M, there exists a constant C'(r) such that under the
conditions of Lemma 2.1 and also assuming (k\,..., kr) ^ ( 0 , . . . , 0), we have

max

where, in 2^*, the asterisk has the same meaning as in Lemma 2.1.

PROOF. We apply Lemma 2.2 with the function g(x) defined by

g(n) = symtl (0PJlM) • • • symk(9pjr(n))

if n satisfies (2) and g(n) = 0 otherwise.
We obtain

0<n<M

M + 1 r
E 1-1 \ (nn

Op./^je ( —
\ P

Applying now Lemma 2.1 first with h = 0 and then for all h with 1 ^ \h\ ^ p/2, we
obtain that this upper bound is

D

3. Trigonometric approximation

In 1974, A. Selberg proved the optimal form of the large sieve, using some entire
functions with extremal properties. These functions, already studied by Beurling in
the 193O's (unpublished), have many applications in analysis and in number theory,
see, for example, Vaaler [13], Montgomery [12] and Graham-Kolesnik [5].

https://doi.org/10.1017/S1446788700014543 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700014543


430 Etienne Fouvry, Philippe Michel, Joel Rivat and Andras Sarkozy [6]

In this section we apply the method described in [13, Theorem 19] to approximate a
function of bounded variation by trigonometric polynomials. For the sake of clarity, the
notations in this section are adopted from Vaaler's paper and are therefore independent
of the rest of this paper.

Let/ be the even and 1-periodic function defined by

/(*) =

+ 1 if |JC | < 1/4;

0 if |x| = 1/4;

- 1 if 1/4 < |JC j ^ 1/2.

According to inequality (7.24) of [13, Theorem 19], for all integer N > 1, we have

where j N and kN are defined by (7.2) and (7.3) of Vaaler [13]: »

N N

JN(X)= ^T JN+i(n)e(nx), kN(x) = ^ KN+](n) e(nx),

n=-N n=-N

and the convolutions/ *jN and (dV/) * kN are denned by

N

f *JN(X) = 2_. /fa) JN+\(H) t(nx),
n=-N

N

(dVf)*kN(x) = Y, dVfW KN+l(n) e(/uc).
n=-N

For n 6 2, we compute the Fourier coefficients

•1/2 ,1/2

/ ( » ) = / / (0 e(-nt) dt = 2 f(t)ca&(2rcnt)dt
J-l/2 JO

/

1/4 ,1/2

cos(2nnt) dt-2 cos(2nnt) dt,
Jl/4

M/4

hence f(0) = 0 and for n ^ 0,

i» sin(7rn/2) sin(7rn) sin(7r«/2)
f (n) ^ = .

nn/2 itn nn/2
The variation Vf of the function/ is piecewise constant, with jumps of +2in—1/4

and +1/4, so that with the help of Dirac measures we can write dVf = 2 <5_1/4 + 2 <5i/4,
thus

.1/2/.1/2

dVf(n)= I
J-l/2
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According to the notations of Vaaler, by definition

where, from [13, Theorem 6], we know that J is even, non negative, continuously
differentiate, steadily decreasing over [0, 1], and non zero only over ] — 1, +1[.
Furthermore, we have

K(t) = m a x ( l - | r | , 0 ) .

Finally,

(5) dVf *kN(x) = 4 + 8
n = l

/ n \
K( )

4. Exponential sums

Let £ be the even and 2n periodic function defined by

+1 if |;t| <TT/2;

0 if |*| =;r /2;

- 1 if n/2< \x\ ^TT.

LEMMA 4.1. For any K 6 N, there exist real coefficients aK{k) and bK(k) k
0,...,K with

(6) aK(0) = 0,

and for k = 0 , . . . , K,

(7) aK(k)=O((k+iyl), bK(k) =

such that the trigonometric polynomials

(8)

(9) VK (x) : = / J ĵf (^) cos (kx)
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satisfy for all x 6 R,

(10) l£OO-0jr(*)l^iM*).

PROOF. It follows from (3), (4) and (5) with $(*) = / (x/2n). D

LEMMA 4.2. The functions </>*(*) and ̂ KM in Lemma 4.1 can be written in the
form

K K

(11) 4>K(x) = Y^cK(k)symk(x); x/rK(x) = J^ CK(k) symk(x)
*=0 k=0

with

(12) CK(0) = 0 and

(13) cK(k)=O((k+l)-1), CK(k)=O(K-1) for k = 0 K.

PROOF. AS in [4], the coefficients in (11) can be computed in the following way:

(14) cK(k) = - [ <t>K(t)symk(t)sin2(t)dt

= - [ <t>K(t)cos(kt)dt-- f <pK(t)cos((k
n Jo * Jo

= (aK(k)-aK(k +2))/2

and similarly,

(15) CK(k)

Then (13) follows from (7), (14) and (15).
Concerning the value of cK(0), we use the value obtained for aK(k) from [13,

Theorem 19], namely

sin(7r/t/2)

where J is a continuous function over [0, 1]. For k = 2, the first factor is 0. Therefore,
aK(2) = 0 and (12) follows from (6). •

LEMMA 4.3. Let Z\, • • • , zr, z[, •. • , z'r be complex numbers of modulus at most 1.

Then\Zl---zr-z\---z'r\ ^ |z, - z\\ + • • • + \zr - z'r\.

PROOF. It suffices to observe that z\ • • • zr — z\ • • • z'r is equal to

(Zl ~ Z\)Z2 •••Zr+Z\ (Z 2 - 4 ) ^ 3 • • • Zr H h Zx • • • Z^_, (Zr ~ O ,

and the triangle inequality gives the result. •
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L E M M A 4 . 4 . If N e N , a , 7 a r e r e a l n u m b e r s w i t h l ^ i ^ r , l ^ j ^ N , a n d

B > 0 i s s u c h t h a t f o r a n y ( k u ••• , K ) e l k , ( i t , , . . . , k r ) ^ ( 0 , . . . , 0 ) , ( / t , ^ 0 ) ,

(16)

then there exists c(r) > 0 (independent of B) such that

(kr + \)B,

PROOF. By (7) and (9) we have IV^OOI < 1- Hence by (10) we get

and using Lemma 4.3, for any integer K > 0 we obtain

N N

7 = 1 ; = i

(where <&r means that the implicit constant may depend on r), and by using Lemma 4.2
and (16) with *, = k, k2 = •• • = kr = 0,

r N

«-££
• = l 7 = 1

(18)
r N

/=! 7=1

r K

i=l k=\ 7 = 1

« — + rKB.
K

By Lemma 4.2 and (16) we have

(19)
7=1

symti

k,=\

By (17), (18) and (19),

and the result follows if we choose K x max(l, (N/B)1/(r+i)). D
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LEMMA 4.5. For any integer r ^ 1, there exists a constant c(r) > 0 such that
under the conditions of Lemma 2.1

max c(r)p (2r+l)/(2r+2)rl._nW/(r+l)Oogp)1

PROOF. By Lemma 2.3, (16) holds with B x pl/2\ogp if (a^j, . . . ,arJ) is an
r-tuple (9pJl(n),..., 0pJAn)) with an n satisfying (2) and thus the result follows from
Lemma 4.4. •

REMARK. Using the same techniques derived from [13, Theorem 19] we can prove
that

1
— #{m:

1

2 C
- - / si

71 Ja

sin2 tdt ,-1/4

for fixed real a and fi satisfying 0 ^ a < fi ^ n. This improves the upper bound
p~1 / 8 obtained by Fouvry and Michel in [4, Lemma 2.3].

5. Completion of the proof of the theorem

It follows from the definitions of £p_i = [e\,... , ep_\) and 6pn that for all
^ n ^ P - 1 we have en = £(0p,n). Thus it follows from Lemma 4.5 that

and

,_i) = max
a.b.t

C/(Ep_i) = max
M, D

(-1

j=o

M

= max
a.b.t

' ' " en+d,

r-1

j=o

= max
M.D

M

n=l

(Note that in both cases, by the definition of the max only 6P,„ values with 1 ^ n < p
occur so that adding the asterisk to the sum does not change its value.)

FINAL REMARK. Of course, the above results could be generalized in several direc-
tions. We could choose a fixed non zero integer a and define en to be the sign of the
Kloosterman sum S(a,n;p). The bounds for W(Ep-\) and C;(£p_i) would be the
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same. We could also deal with en to be the sign of the Kloosterman sum S(n, n;p).
More interesting would be to consider, for instance the cubic trigonometric sum

t m;n) =
k mod n • ( •

This sum is real, satisfies Weil's bound |S(3)(/, m\p)\ ^ 2^/p. We define en to be the
sign of the trigonometric sum S(3)(n, n;p). All the above results would be the same,
since all the techniques of Katz are applicable there. This could be generalized to
other situations where Katz's results are proved, that means to other sums of the form

k mod p

where / is a rational function with integer coefficients satisfying generic properties.
We would define en = ±1 according to the value of the modulus of S(nf \p). The
exponents appearing in the upper bounds of Theorem 1.1 would be different. They
would be obtained after a delicate harmonic analysis on the compact groups SU, (C)
or USp; (C) (for instance, see [4] for an introduction to these techniques).
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