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Greater accelerometer-measured physical activity is associated with
better cognition and cerebrovascular health in older adults
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Abstract

Objectives: Physical activity (PA) may help maintain brain structure and function in aging. Since the intensity of PA needed to effect cognition and
cerebrovascular health remains unknown, we examined associations between PA and cognition, regional white matter hyperintensities (WMH), and
regional cerebral blood flow (CBF) in older adults. Method: Forty-three older adults without cognitive impairment underwent magnetic resonance
imaging (MRI) and comprehensive neuropsychological assessment.Waist-worn accelerometers objectivelymeasured PA for approximately one week.
Results:Higher time spent inmoderate to vigorous PA (MVPA)was uniquely associatedwith bettermemory and executive functioning after adjusting
for all light PA.HigherMVPAwas also uniquely associatedwith lower frontalWMHvolume although the findingwas no longer significant after addi-
tionallyadjusting forageandaccelerometerwear time.MVPAwasnotassociatedwithCBF.Higher timespent inall lightPAwasuniquelyassociatedwith
higherCBFbutnotwithcognitiveperformanceorWMHvolume.Conclusions:Engaging inPAmaybebeneficial forcerebrovascularhealth,andMVPA
inparticularmayhelppreservememoryandexecutive function inotherwisecognitivelyhealthyolderadults.Theremaybedifferential effectsof engaging
in lighter PA andMVPA onMRI markers of cerebrovascular health although this needs to be confirmed in future studies with larger samples. Future
randomized controlled trials that increase PA are needed to elucidate cause-effect associations between PA and cerebrovascular health.
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Introduction

The aging population in the United States is predicted tomore than
double by the year 2050 (Vincent & Velkoff, 2010). This unprec-
edented growth will result in increased numbers of individuals liv-
ing with Alzheimer’s disease (AD) and related dementias (ADRD).
Compared to 2020, it is projected that the number of people aged
65 and older diagnosed with AD will increase by 22% by the year
2025 (“2020 Alzheimer’s Disease Facts and Figures,” 2020).
Research suggests that approximately 30% of AD cases can be pre-
vented by modifiable behaviors (Livingston et al., 2020), with 21%
of AD cases in the US being linked to physical inactivity (Barnes &
Yaffe, 2011). In recent decades, physical activity (PA) has been
consistently found to bolster cognitive abilities in healthy older
adults (Ahlskog et al., 2011; Beckett et al., 2015; Colcombe et al.,
2006; Domingos et al., 2021; Haeger et al., 2019; Spartano et al.,
2019; Voelcker-Rehage et al., 2011; Zlatar, Godbole, et al., 2019).
Supervised intervention studies have shown that PA targeting
60–80% of maximum heart rate are most favorable in changing
cognitive performance, brain structure, and brain function

(Colcombe et al., 2004; Sanders et al., 2019; Vidoni et al., 2015).
A study involving older participants without dementia found that
moderate intensity aerobic exercise can increase hippocampal vol-
ume by 2% and improve memory function (Erickson et al., 2011).
Furthermore, a 3-month intervention consisting of 30-min aerobic
exercise intervals three times per week, with a target heart rate
starting at 65% of maximum heart rate and increasing by 5% every
week, induced neurovascular plasticity among older adults (Maass
et al., 2015). These findings suggest that changes in moderate to
vigorous intensity physical activity (MVPA) may be necessary to
affect cognitive health (Zlatar, Godbole, et al., 2019).

Despite the abundance of literature that supports the benefits of
PA on brain structure, function, and cognition in aging, the mecha-
nisms by which PA may preserve cerebrovascular health remain
understudied. Both cerebral blood flow (CBF) and white matter
hyperintensity (WMH) volume are indicators of cerebrovascular
health that have rarely been studied together as a function of acceler-
ometer-measured PA. Zlatar, Hays, et al., (2019) previously showed
that accelerometer-measured light PA andMVPA are associated with
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greater CBF in the frontal lobe of older adults with normal cognition,
whereas sedentary time had an inverse association with CBF (Zlatar,
Hays, et al., 2019). Similarly, a small intervention study with healthy,
sedentary older men demonstrated that aerobic exercise training
improves CBF by 27% in the frontal lobe (Kleinloog et al., 2019), while
fitness has been associated with CBF in cognitively healthy adults at
risk for AD (Dougherty et al., 2020). As such, increased CBF through
long-term exercise trainingmay be amechanism to improve cognitive
functioning (Joris et al., 2018).

WMH are frequently observed on T2 FLAIR magnetic reso-
nance imaging (MRI) in older adults and are considered an indi-
cator of small vessel cerebrovascular disease. It is well established
that greater WMH reflects an increased risk of developing ADRD
(Bangen et al., 2018, 2020; Brickman et al., 2012, 2015; Lee et al.,
2016). Systematic reviews have explored associations between
WMH and PA in cross-sectional and longitudinal studies, but
results have been mixed (Sexton et al., 2016; Torres et al., 2015).
One study, which involved 10 masters athletes and 10 sedentary
older adults matched in age and education, showed that masters
athletes showed an 83% reduction in deep WMH compared to
their sedentary counterparts. In addition, they found an inverse
relationship between deep WMH volume and life-long aerobic
exercise (Tseng et al., 2013). Higher sedentary time was also asso-
ciated with greaterWMH in those with lower levels of kidney func-
tion (Bronas et al., 2019). Another study, however, did not find
significant associations between WMH and PA in healthy older
adults with memory complaints. The study did find that those
who reduced their PA level over 3 years had a trend towards
increased WMH (Moon et al., 2018). Different findings may be
attributable to methodological differences, such as the PA assess-
ment method used (i.e., self-report (Best et al., 2017) versus objec-
tive measures (Arnardottir et al., 2016)) and the time frame under
consideration (PA for the past week, year, lifelong, etc.). Studies
that measure PA objectively can provide a more accurate assess-
ment of PA that is free of recall bias.

This study aimed to advance the literature on PA prescriptions
to promote brain health by investigating if accelerometer-mea-
sured PA is associated with cognitive performance and markers
of cerebrovascular health (WMH and CBF) in a sample of cogni-
tively healthy, community-dwelling older adults. We examined the
associations of continuous measures of two intensities of PA (all
light PA and MVPA) with cognitive and brain health variables
to help eludicate whether MVPA is necessary to observe an asso-
ciation with cognition and brain markers or whether lighter PA is
similarly associated with these variables. We examined WMH and
CBF in frontal and temporal regions, which have been implicated
in cerebrovascular dysfunction in aging and dementia risk (Bangen
et al., 2018; Yew et al., 2017). We examined executive functioning
and memory performance, which are subserved by frontal and
temporal regions, respectively. We hypothesized that higher
MVPA would be associated with better cognition, lower WMH
volume, and higher CBF, and would have stronger associations
with these variables than less intense PA (i.e., all light PA), given
evidence that moderate levels of PA may be necessary to influence
brain health (Chapman et al., 2013; Hayes et al., 2013).

Method

Participants

Participants were 43 community-dwelling, English-speaking older
adults. Participants were recruited from ongoing studies at the
University of California San Diego’s WISE lab and Shiley-

Marcos Alzheimer’s Disease Research Center, from
ResearchMatch (https://www.researchmatch.org), flyers, commu-
nity engagement talks, and by word of mouth. Participants were
included if they were aged 65þ, had no contraindications for
MRI, were able to walk independently, had no mild cognitive
impairment or dementia based on standard neuropsychological
testing (Jak et al., 2009), had no history of head injury with loss
of consciousness within the past 6 months or moderate-severe
head injury in the past, had nomajor neurologic or psychiatric dis-
orders, had no history of major vascular events, had no diabetes,
had no poorly controlled medical conditions, and had no history
of falls in the past year resulting in hospitalization. All participants
provided written informed consent. The University of California
San Diego’s Institutional Review Board approved the protocols.
Data included in this manuscript was obtained in compliance with
the Helsinki Declaration.

Procedure

All participants were pre-screened via telephone to ensure theymet
study criteria. This included administration of the modified
Telephone Interview for Cognitive Status (m-TICS) as a first pass
screening of cognitive impairment. Those with m-TICS scores≤34
were disqualified from further participation (Cook et al., 2009). For
those who met basic criteria, an Actigraph accelerometer was
mailed to measure PA, and participants were instructed to wear
it for 7 days, during waking hours, in their natural environments.
After the measurement period, participants brought the acceler-
ometer to their in-person appointment, at which time neuro-
psychological testing was administered. If participants met our
cognitive criteria (no more than two scores <1 standard deviation
from age-appropriate norms within one or more cognitive
domains (Jak et al., 2009)) they were scheduled for a brain MRI
appointment within 1 week.

Physical activity measurement

PA was objectively measured using tri-axial accelerometers (GT3X
þ and GT3X-BT, ActiGraph, LLC, Pensacola, FL). Consistent with
recent studies (Dohrn et al., 2018; Kerr et al., 2018), participants
were instructed not to change their regular activities and to wear
the accelerometer on a belt on their hip, during waking hours only,
for a minimum of 12 hours per day for 1 week. To ensure compli-
ance, all participants received two phone calls from study staff (on
days 2 and 5 of the monitoring period). Participant data were con-
sidered valid at the day level only if they attained aminimum of 600
minutes of wear, consistent with National Health and Nutrition
Examination Survey (NHANES) best practices (Troiano et al.,
2008). Participants were included only if they wore the device a
minimum of 3,000 total minutes spread across at least 4 valid days
(Hart et al., 2011; Jerome et al., 2009; Trost et al., 2005). Data were
processed using the ActiLife version 6 software (Pensacola, FL).
The unit of measurement for accelerometers is counts per minute
(CPM), with higher counts indicating greater intensity of move-
ment. Non-wear time was determined using a modified Choi algo-
rithm (Choi et al., 2011) in which 90 consecutive minutes of 0
counts with a 2-minute spike tolerance was screened as non-wear.
Data were aggregated to 60-second epochs so published cut points
could be applied. Consistent with standard practice, sedentary time
was defined as time spent at< 100 CPM, all light PA as 100-1951
CPM, and MVPA as≥ 1952 CPM (Copeland & Esliger, 2009). For
the PA variables used in analyses, minutes within each intensity
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level were averaged across days worn, reflecting the average time in
minutes per day spent at each intensity level.

Participants were instructed to wear accelerometers during wak-
ing hours only. If sleep was observed (i.e., >20-hour wear periods)
datawere visually inspected to ensure that behavior was indicative of
sleep (i.e., short periods of small amounts of movement consistently
through the night with only very brief periods of larger amounts of
movement). Data were removed using a method developed by Full
et al., (2018) that involves looking for the last period of substantial
movement to establish go-to-bed time, and the first period of mod-
erate amounts ofmovement to establish wake up time and removing
the time in between from consideration (i.e., it was converted to
“non-wear” time) (Full et al., 2018).

Cognitive assessment

Participants completed the Mattis Dementia Rating Scale (DRS),
the NIH Toolbox Cognition Battery (Casaletto et al., 2015), Rey
Auditory Verbal Learning Test (RAVLT), the Golden Stroop
Color Word Interference Test, the Wechsler Memory Scale-
Revised (WMS-R) Logical Memory I and II, Trail Making test
Parts A and B, and verbal fluency tests (FAS and animals). To
ensure participants included in the study were cognitively unim-
paired, we applied the comprehensive mild cognitive impairment
(MCI) diagnostic criteria proposed by Jak et al., (2009), which
requires at least two impaired test scores (>1 SD below normative
means) within a cognitive domain. These diagnostic criteria are
more strongly related to AD biomarkers and have greater diagnos-
tic stability than typical diagnostic criteria requiring impaired per-
formance on one cognitive test (>1.5 SD) (Wong et al., 2019).
Individuals classified as MCI were excluded from this study (Jak
et al., 2009). Normative scores were derived from the respective
testing manuals and available published norms (Heaton et al.,
2004; Ivnik et al., 1996).

Since executive and episodic memory performance scores are
most responsive to exercise in intervention trials (Kennedy
et al., 2016), we created executive and memory composite scores
by converting raw scores into z-scores based on the entire sample,
and then averaging across z-scores for the following tests:
Executive Composite Score = Trail Making Test Part B minus
Trail Making Test Part A (scores were reversed prior to averaging
to reflect higher scores=better performance), Stroop Color Word
Trial, and verbal fluency FAS. Note that for the Trail Making Test,
a difference score (B-A) was used because it may reflect a purer
measure of the executive functions required to complete Part B
by subtracting sequencing, visual scanning, and psychomotor
components common to both Parts A and B (R. K. Heaton
et al., 1985). Memory Composite Score=WMS-R Logical Memory
I and II, RAVLT Trials 1-5, RAVLT Trial 6 (short delay free recall)
and RAVLT delayed recall. The executive and memory composite
scores were used as cognitive outcomes in analyses.

Brain image acquisition

Imaging data was acquired on a GE Discovery MR 750 3T whole
body system with a body transmit coil and an 8-channel receive-
only head coil at the University of California, San Diego’s Center
for Functional MRI. The structural brain sequence consisted of (1)
a high-resolution T1-weighted Fast Spoiled Gradient Recall
(3DFSPGR) scan for anatomy and registration purposes:
172 1mm contiguous sagittal slices, field of view (FOV) = 25
cm, repetition time (TR) = 8 ms, echo time (TE)= 3.1 ms, flip
angle= 12, inversion time (TI)=600 ms, 256 × 192 matrix,

Bandwidth = 31.25 kHz, frequency direction = S-I, NEX= 1, scan
time= 8 min and 13 s and (2) a T2-weighted fluid attenuated
inversion recovery (FLAIR) scan to detect WMH: 36 axial slices
with no interslice gap at a voxel size of .47×.47 × 4.00 mm3,
FOV= 24 cm, TR = 8650 ms, TE= 136 ms, flip angle= 111,
TI=2250ms, 256× 256matrix, Bandwidth = 31.25 kHz, frequency
direction = A/P, NEX= 1, scan time = 6 min and 40 s. CBF was
quantified with a 2D Pseudo Continuous Arterial Spin Labeling
(ASL) MRI (2DPCASL) sequence; TR = 4500 ms, TE= 3.2 ms,
FOV= 24 cm, labeling duration= 1800 ms, post-labeling delay
= 2000 ms, with a single shot spiral acquisition and a total scan
time of 4:30 min plus a 40.5 s calibration scan. The calibration scan
was acquired immediately after the ASL scan using a spiral readout
with TR= 4.5 s and TE= 3.2 ms with 8 dummy radiofrequency
(RF) pulses (amplitude set to zero) to generate a 36 s delay followed
by a 90-degree RF pulse in the last repetition interval to generate
proton density-weighted contrast. Field map scans were collected
for off-line field map correction for signal bunching and dropouts
in the frontal/medial temporal lobes.

Brain image processing

T1-weighted anatomical images

T1-weighted anatomical images were processed using FreeSurfer
6.0 software. Briefly, images underwent skull stripping, B1 bias
field correction, gray matter-white matter segmentation,
reconstruction of cortical surface models, and parcellation and
labeling of regions on the cortical surface as well as segmentation
and labeling of subcortical structures (Dale et al., 1999; Fischl et al.,
2002). FreeSurfer was used to generate intracranial volume and
anatomical regions of interest (ROIs) for the CBF data.

T2-weighted FLAIR images

Methods for processing the T2-weighted FLAIR images were sim-
ilar to those previously described (Hoagey et al., 2021). White mat-
ter hyperintense voxels were identified on T2-weighted FLAIR
images. Lesions were segmented using the lesion prediction
algorithm (LPA) (Schmidt, 2017) as implemented in the lesion seg-
mentation toolbox (LST) version 2.0.5 (www.statisticalmodelling.
de/lst.html) for SPM12. This algorithm consists of a binary classi-
fier in the form of a logistic regression model trained on the data of
53 individuals with multiple sclerosis who had severe lesion pat-
terns. Covariates in the model include a lesion belief map as well
as a spatial covariate considering voxel specific changes in lesion
probability. Parameters of this model fit are used to segment
lesions in new images producing a lesion probability map wherein
each voxel value represents an estimated probability that it is a
white matter lesion.

For quality assurance purposes, trained raters visually inspected
each participant’s lesion probability map overlaid on the partici-
pant’s T2-weighted FLAIR image to ensure that the LST output
optimally minimized false positive voxels (e.g., motion artifacts)
and false negative voxels (i.e., voxels appearing as legitimate white
matter lesions on the FLAIR image that were labeled as 0 in the
lesion probability map). To eliminate false positive voxels in
regions where white matter lesions are not biologically plausible,
multiple regions of avoidance were created and combined to form
an exclusion mask. To remove false positive voxels in the choroid
plexus of the ventricles, the CSF probability map obtained from
processing each participant’s T1-weighted scan using FMRIB’s
Automated Segmentation Tool (FAST) (Zhang 2001) was
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registered to their native FLAIR space using Advanced
Normalization Tools (ANTs) (Avants 2014). The CSF probability
maps in each participant’s FLAIR space were thresholded at 0.5
and then binarized to obtain the CSF exclusion mask. Three addi-
tional regions of avoidance were derived on the Montreal
Neurological Institute (MNI) 1mm space brain and then registered
to each participant’s native FLAIR space using ANTs. The regions
were (1) a 2mm mid-sagittal exclusion mask to remove false pos-
itive voxels in the septum pellucidum, (2) a ventral exclusion mask
(below z= 34) to eliminate false positive voxels from the cerebel-
lum and brainstem, and (3) a dorsal exclusion mask (above
z = 130) to remove false positive voxels from exiting blood vessels.
The four exclusion masks were summed to create one total exclu-
sionmask and then applied to each participant’s thresholded lesion
probability map.

Frontal and temporal lobar masks from the Wake Forest
University PickAtlas (Maldjian et al., 2004; Maldjian et al.,
2003) were registered to each participant’s FLAIR space using
ANTs. The binary WMH segmentation from LST was then multi-
plied by the FLAIR-registered binary lobar mask to obtain WMH
volume for frontal and temporal lobes.

ASL images

ASL data were processed using the Cerebral Blood Flow
Biomedical Informatics Research Network (CBFBIRN) (Shin
et al., 2013) pipeline established at the University of California
San Diego’s Center for Functional Magnetic Resonance Imaging.
CBFBIRN uses a combination of custom MATLAB
(MathWorks, 1996) routines and various functions from
Analysis of Functional Neuroimages (AFNI) (Cox, 1996) and
FMRIB Software Library (FSL) (Smith et al., 2004) to quantify
CBF and adjust for partial volume effects. MATLAB was used to
form a mean ASL image from the average difference of the control
and tag images. Voxelwise CBF calibration was performed using
the proton density image to convert the ASL difference signal into
physiological units (mL/100g/min). In addition, slice timing delays
were accounted for, making the post-labeling delay slice specific.
Skull stripping of the high-resolution T1-weighted image was per-
formed using AFNI’s 3dSkullStrip. Tissue segmentation was per-
formed using FSL’s Automated Segmentation Tool (FAST)
algorithm to define CSF, gray matter (GM), and white matter
(WM) regions. The high-resolution T1-weighted image and partial
volume segmentations were registered to ASL space using AFNI’s
3dAllineate program. To correct for partial volume effects and
ensure that CBF values were not influenced by decreased perfusion
in theWM or increased volume of CSF, we used a linear regression
method (Asllani et al., 2008) with a 5x5 regression kernel to obtain
corrected GM CBF measurements. For each participant’s partial
volume corrected quantified CBF map (in units of mL/100 g tis-
sue/min), voxels with negative intensities were replaced with zero.

FreeSurfer was used to generate a priori anatomical ROIs for the
CBF data. Briefly, for each participant, the FreeSurfer formatted
T1-weighted brain volume was registered to the ASL CBF-aligned
T1-weighted anatomical image (the latter was derived as part of the
CBFBIRN pipeline). The resulting co-registration matrix was used
to align the FreeSurfer aparcþaseg segmentation volume to the
ASL CBF-aligned T1-weighted image. The CBF-aligned
FreeSurfer volumes were visually inspected to ensure proper align-
ment and were then downsampled to the resolution of the CBF
ASL image. Mean CBF was then extracted for FreeSurfer ROIs.

Statistical analysis

Multiple linear regression models were used to examine the asso-
ciations of continuous PAwith cognitive functioning andMRI var-
iables. Cognitive variables of interest included the memory and
executive function composite scores described above.
Cerebrovascular brain health variables of interest included a lim-
ited number of a priori ROIs to minimize the number of statistical
analyses in an attempt to reduce susceptibility to type 1 errors. For
WMH, we examined frontal and temporal WMH volumes. For
CBF, we examined four ROIs (two frontal regions and two tempo-
ral regions) including: rostral middle frontal gyrus, medial orbito-
frontal cortex, hippocampus, and inferior temporal cortices. As
described above, we selected these specific ROIs given these regions
have been shown to be implicated in cerebrovascular dysfunction
in aging and dementia risk (Bangen et al., 2018; Yew et al., 2017).

Frontal and temporal WMH volumes were divided by total
intracranial volume to correct for head size. The distribution of
WMH volume (divided by total intracranial volume) was posi-
tively skewed, so a log-transformation was used to improve distri-
bution normality. Each of the dependent variables (memory,
executive function, regional WMH, regional CBF) were assessed
in separate models. Two models were run for each dependent var-
iable: one model including MVPA and all light PA as predictors
and a second model additionally adjusting for age and accelerom-
eter wear time. We selected covariates for inclusion in our models
based on both theoretical and statistical considerations. We con-
sidered including sex and education as covariates in our models
given expected associations with cognition and brain variables.
However, in an effort to maximize statistical power and not over-
adjust our models, we did not include sex and education as cova-
riates given they did not correlate with any of the dependent
variables in our sample (all p-values > .05). Potential multicolli-
nearity of the independent variables was assessed for all models.
All variance inflation factor (VIF) values were< 1.3 and the all
bivariate correlation coefficients between the independent varia-
bles were r’s < .6 (Field, 2009). In order to address potential infla-
tion of type I error due to multiple comparisons, false discovery
rate (FDR) was controlled at 0.05 using the Benjamini-
Hochberg procedure (Benjamini & Hochberg, 1995). Each set of
analyses examining the same category of dependent variable was
treated as an omnibus test with multiple comparisons correction
separately applied for each (i.e., applied separately for the two cog-
nitive measures, two WMH ROIs, and four CBF ROIs). All statis-
tical analyses were conducted using the IBM SPSS Statistics for
Macintosh, Version 28.0.

Results

Participant characteristics and accelerometer assessment

Descriptive data for clinical and demographic characteristics is
shown in Table 1. On average, the sample was approximately 72
years and well-educated. The sample had relatively low vascular
risk burden (i.e., the mean Framingham Stroke Risk Profile
(D’Agostino et al., 1994) score indicated a 7% probability of having
a stroke within the next 10 years). The mean score on a measure of
global cognitive functioning was unimpaired (i.e., Dementia
Rating Scale total score of 140 out of 144).

Participants were compliant with accelerometer wear during
the assessment period. Accelerometer metrics and the amount
of time participants spent on average within different activity cat-
egories are displayed in Table 2.
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Associations of continuous PA with measures of cognition

In models including MVPA and all light PA as predictors, higher
MVPA was uniquely associated with better performance on
memory and executive functioning measures. See Table 3 and
Figure 1. As shown in Table 3, all light PA was not uniquely asso-
ciated with performance on cognitive measures. In models addi-
tionally adjusted for age and accelerometer wear time, findings
remained similar. That is, higher MVPAwas associated with better
memory and executive functioning. These results survived correc-
tion for multiple comparisons.

Associations of PA with measures of brain health

In models including MVPA and all light PA as predictors, higher
continuous MVPA was uniquely associated with lower frontal
WMH volume but not temporal WMH volume. See Table 4 and
Figure 2. Inmodels additionally adjusted for age and accelerometer
wear time, findings were attenuated and there was no longer a sig-
nificant association betweenMVPA and frontalWMH volume. All
light PA was not significantly associated with WMH volume.

Higher continuous MVPA was not significantly associated with
regional CBF. In contrast, there was a unique association between
greater all light PA and higher inferior temporal CBF. In models
additionally adjusted for age and accelerometer wear time, findings

remained similar and there was a unique association between
higher all light PA and greater rostral middle frontal and inferior
temporal CBF. See Table 5 and Figure 3. The result for inferior
temporal CBF survived correction for multiple comparisons
although the finding for rostral middle frontal CBF did not. In
addition, there was one CBF outlier (i.e., regional CBF values
>3 standard deviations from the sample mean), however, exclud-
ing this one participant did not change the pattern or significance
of results.

Discussion

This study sought to advance the literature on PA prescriptions to
promote brain health by investigating if objectively measured PA is
associated with cognitive performance and markers of cerebro-
vascular health (regional CBF and WMH volume) in a sample
of cognitively healthy, community-dwelling older adults. Greater
time spent in MVPA was uniquely associated with better perfor-
mance on memory and executive functioning tasks. Higher
MVPA was also associated with lower frontal WMH volume
although the finding was attenuated and no longer significant after
additionally adjusting for age and accelerometer wear time. MVPA
was not associated with CBF. Higher time spent in all light PA was
uniquely associated with higher inferior temporal CBF. However,
higher time spent in light PA was not uniquely associated with cog-
nitive performance or WMH volume. Although findings are pre-
liminary and should be replicated in larger samples with
longitudinal follow-up, the pattern of results suggest that MVPA

Table 1. Participant characteristics for the entire sample (N= 43)

Mean SD

Demographics
Age (years) 71.77 4.19
Education (years) 16.86 2.21
Sex (% female) 74.40% —

Race (% White) 93% —

Framingham Stroke Risk Profile (%) 7.19 4.23
Cognitive measures
Memory Composite z-score 0.00 0.80
Executive Composite z-score 0.00 0.75
MRI measures
Frontal WMH volume (%) 0.16 0.29
Temporal WMH volume (%) 0.12 0.11
Rostral middle frontal gyrus CBF, ml/100g/min 45.87 13.61
Medial orbitofrontal cortex CBF, ml/100g/min 40.80 17.06
Hippocampal CBF, ml/100g/min 40.03 11.52
Inferior temporal CBF, ml/100g/min 36.44 15.21

Note. PA = physical activity; min = minutes; WMH = white matter hyperintensities; CBF =
cerebral blood flow. WMH variables expressed as percent are normalized by total intracranial
volume to correct for head size and then multiplied by 100. Note that analyses were
performed on log transformed WMH variables although descriptive statistics are shown here
for non-transformed data.

Table 2. Accelerometer metrics

Mean
Standard
deviation Minimum Maximum

Variable
Days of wear 7.40 1.28 4.00 10.00
Daily minutes of wear 910.82 74.19 782.50 1105.20
Total accelerometer wear
time (min)

6733.23 1307.11 3913.00 11052.00

Sedentary time min/day
(CPM 0-99)

585.37 109.22 350.12 844.71

All light PA min/day (CPM
100–1951)

301.65 81.50 136.50 524.33

Moderate to vigorous PA
min/day (CPM ≥1952)

23.80 17.36 1.38 60.17

Note. CPM=Accelerometer counts per minute; min = minutes; PA = physical activity.

Table 3. Multiple linear regression models for association of physical activity
with cognitive performance (N= 43)

Memory Executive function

β t p β t p

Model 1
All Light PA .030 0.200 .843 −.028 −.193 .848
MVPA .356 2.373 .023 .456 3.170 .003
Model 2
All Light PA .067 −.361 .720 −.004 −.027 .979
MVPA .333 2.061 .046 .413 2.536 .015

Note. Abbreviations: PA = physical activity; MVPA = moderate to vigorous physical activity.
Wear time denotes total time the accelerometer was worn. Model 1: All light PA and MVPA as
independent variables. Model 2: Additionally adjusted for age and accelerometer wear time.
Statistically significant (p< 0.05) results appear in bold font. These results survived correction
for multiple comparisons.

Table 4. Multiple linear regression models for association of physical activity
with regional WMH volume (N= 43)

Frontal WMH Temporal WMH

β t p β t p

Model 1
All Light PA −.013 −.089 .930 .029 .187 .852
MVPA −.342 −2.262 .029 −.277 −1.784 .082
Model 2
All Light PA −.122 −.899 .374 −.078 −.535 .596
MVPA −.130 −.907 .370 −.076 −.492 .626

Note. β = standardized coefficient; PA = physical activity; MVPA = moderate to vigorous
physical activity; WMH = white matter hyperintensities. Wear time denotes total time the
accelerometer was worn. Model 1: All light PA and MVPA as independent variables. Model 2:
Additionally adjusted for age and accelerometer wear time. Statistically significant (p< 0.05)
results appear in bold font.
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may be beneficial for cognitive functioning and bothMVPA and all
light PA may be protective against decline in aspects of cerebro-
vascular health.

WMH are often seen as incidental findings on neuroimaging
(Wardlaw et al., 2015). However, growing research clearly demon-
strates their clinical importance. WMH become more common
with advanced aging (DeCarli et al., 2005; Morris et al., 2009)
and until relatively recently were often considered to be part of

normal aging (Wardlaw et al., 2015), although their prevalence
is highly variable and increases with vascular risk factors including
hypertension (Dufouil et al., 2003; Maillard et al., 2012), diabetes
(Werhane et al., 2021) and smoking (Gons et al., 2011). A meta-
analysis of 22 studies found that WMH were associated with a
faster decline in global cognition, executive function, and process-
ing speed as well as a 2-fold increase in the risk of developing
dementia and a 3-fold increase in risk of stroke (Debette &

Table 5. Multiple Linear regression models for association of physical activity with regional CBF (N=43)

rMFG CBF mOFC CBF Hippo CBF InfTemp CBF

β t p β t p β t p β t p

Model 1
All Light PA .291 1.933 .060 .185 1.167 .250 .112 .702 .487 .419 2.861 .007
MVPA .163 1.086 .284 −.107 −.678 .501 −.123 −.774 .444 −.159 −1.088 .283
Model 2
All Light PA .354 2.280 .028 .237 1.581 .122 .031 .192 .849 .477 3.372 .002
MVPA .049 .295 .770 −.239 −1.504 .141 −.030 −.176 .861 −.290 −1.932 .061

Note. Abbreviations: PA = physical activity; MVPA =moderate to vigorous physical activity; rMFG = rostral middle frontal gyrus; CBF = cerebral blood flow; mOFC =medial orbitofrontal cortex;
hippo = hippocampal; InfTemp = inferior temporal gyrus. Wear time denotes total time the accelerometer was worn. Model 1: All light PA and MVPA as independent variables. Model 2:
Additionally adjusted for age and accelerometer wear time. Statistically significant (p< 0.05) results appear in bold font. The results for inferior temporal CBF survived correction for multiple
comparisons although the finding for rostral middle frontal CBF did not.

Figure 1. Partial regression plots for the association of moder-
ate to vigorous physical activity (MVPA) and cognitive perfor-
mance for episodic memory (top panel) and executive
function (bottom panel) adjusting for all light physical activity.
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Figure 2. Partial regression plot for the association of moderate
to vigorous physical activity (MVPA) and frontal white matter
hyperintensity (WMH) volume adjusting for all light physical
activity.

Figure 3. Partial regression plots for the association of all light
physical activity (PA) and cerebral blood flow (CBF) in rostral
middle frontal (top panel) and inferior temporal regions (bottom
panel) adjusting for moderate to vigorous physical activity.
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Markus, 2010). In addition, we have previously shown that baseline
higher WMH volume predicts conversion from normal cognition
to mild cognitive impairment (Bangen et al., 2018) as well as func-
tional decline (Bangen et al., 2020).

Our findings are in line with previous studies suggesting that
PA may be protective against WMH (Bronas et al., 2019; Gow
et al., 2012; Tseng et al., 2013; Yu et al., 2021). Although it
should be noted that the literature linking PA and WMH has
been mixed (Sexton et al., 2016; Torres et al., 2015) with some
studies finding no association between PA and WMH (Soldan
et al., 2022). Notably, although WMH have often been thought
of as irreversible and many longitudinal studies focus on slow-
ing or halting progression of WMH, there is some evidence that
WMH may not always be permanent. Early WMH may reflect
shifts in water content and not just permanent myelin loss or
axonal damage. Indeed, some studies of individuals who have
had a stroke have shown WMH reduction over time (Moriya
et al., 2009; Wardlaw et al., 2017). Elucidating the mechanisms
by which PA affects white matter health needs further study
(Soldan et al., 2022). Some evidence suggests that exercise-
induced brain-derived neurotrophic factor (BDNF) and endo-
thelial growth factor (Gaitán et al., 2021; Nicolini et al., 2021;
Soldan et al., 2022) may enhance axon regeneration and also
increase CBF and neurogenesis, suggesting multiple potential
ways PA could improve white matter integrity (Trigiani &
Hamel, 2017). Future randomized clinical trials involving longi-
tudinal interventions are needed to establish whether PA may
prevent progression or development of WMH or even possibly
reverse WMH, thereby potentially mitigating their effects on
cognitive and functional abilities.

It was somewhat unexpected that in the current study MVPA
did not relate to CBF. We have previously shown that MVPA is
associated with greater frontal CBF whereas sedentary time had
an inverse association with CBF (Zlatar et al., 2019). Whereas
WMH development are generally thought of as an insidious proc-
ess, results across studies examining ASL MRI among older adults
at risk for cognitive impairment have suggested that associations
with CBF may be complex, with some studies reporting increases
in CBF and others reporting decreases in CBF, while others suggest
both depending on the regions or risk factors examined (Bangen
et al., 2012; Wierenga et al., 2012). Increased resting CBF among
older at-risk adults has often been interpreted as reflecting neuro-
vascular dysregulation or possible compensatory mechanisms
(Bangen et al., 2017). Findings from an 8-year longitudinal study
using H(2)(15)O positron emission tomographic CBF suggested
that CBF may increase to compensate for lower interregional neu-
ral communication resulting from white matter disruption (Kraut
et al., 2008).

Given our strict inclusion criteria, our sample was comprised of
cognitively unimpaired and medically healthy individuals. Our
MVPA-CBF findings may have differed in a sample with greater
vascular risk burden or if we had examined different brain regions.
As described above, we selected a limited number of a priori ROIs
to minimize the number of statistical analyses in an attempt to
reduce susceptibility to type 1 errors. The specific a priori regions
we examined were selected because they have been implicated in
cerebrovascular dysfunction in aging and dementia (Bangen
et al., 2018; Yew et al., 2017).

Given the observed associations of all light PA with CBF (but
not cognition orWMH volume) and associations of MVPA with
cognition and WMH volume (but not CBF), it is possible that
different PA intensities have divergent associations with

markers of brain health. Alterations in CBF may represent a rel-
atively early or subtle change in cerebrovascular functioning
that precedes the development of frank lesions such as WMH
(Bangen et al., 2021; Zlokovic, 2011). Our findings suggest that
lighter intensity PA may be more sensitive to subtle changes in
cerebrovascular function (i.e., CBF), whereas MVPA may be
more favorable in protecting against cognitive decline and
development of frank lesions (i.e., WMH). Previous studies have
reported associations between greater PA and reduced WMH
volume (e.g., Tseng et al., 2013). However, in the present study,
the association of MVPA and WMH was observed when we
accounted for all light PA but attenuated and no longer signifi-
cant when we additionally adjusted for age and accelerometer
wear time. Future studies with larger samples and longitudinal
data should further elucidate the association of different PA
intensities with cognition, CBF, and WMH as well as potential
moderators of MRI-PA associations.

This study has limitations that should be considered when
interpreting our findings and should be addressed in future studies.
The cross-sectional design limits our ability to make causal inter-
pretations and the relatively small sample size reduces statistical
power to detect associations. Strengths of this study include the
use of a well-characterized sample of cognitively unimpaired older
adults, ASL MRI to assess CBF together with quantification of
WMH volume, and accelerometry to objectively measure PA as
it occurs in free-living environments.

Conclusion

Engaging in PA may be beneficial for cerebrovascular health
(WMH, CBF) with greater MVPA in particular possibly preserving
memory and executive function in otherwise cognitively healthy
older adults. There may be differential effects of engaging in lighter
activities and MVPA on MRI markers of cerebrovascular health
although this needs to be confirmed in future studies.
Specifically, lighter activities may be associated with subtle altera-
tions in CBF whereas MVPA may be more sensitive to WMH.
Furthermore, randomized controlled trials that test different levels
of PA intensity are needed to elucidate cause-effect associations
and dose-response patterns of PA with cognitive and brain health.
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