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IRIT, Université de Toulouse, CNRS, Toulouse, France

(e-mail: luis@irit.fr)

submitted 18 December 2020; revised 21 December 2022; accepted 7 April 2022

Abstract

In this work, we show that both logic programming and abstract argumentation frameworks can
be interpreted in terms of Nelson’s constructive logic N4. We do so by formalising, in this logic,
two principles that we call noncontradictory inference and strengthened closed world assump-
tion: the first states that no belief can be held based on contradictory evidence while the latter
forces both unknown and contradictory evidence to be regarded as false. Using these principles,
both logic programming and abstract argumentation frameworks are translated into construc-
tive logic in a modular way and using the object language. Logic programming implication
and abstract argumentation supports become, in the translation, a new implication connective
following the noncontradictory inference principle. Attacks are then represented by combining
this new implication with strong negation. Under consideration in Theory and Practice of Logic
Programming (TPLP).
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1 Introduction

Logic programming (LP) and Abstract Argumentation Frameworks (AFs) are two

well-established formalisms for Knowledge Representation and Reasoning (KR) whose

close relation is well-known since the introduction of the latter: besides introducing AFs,

Dung (1995) studied how logic programs under the stable models (Gelfond and Lifschitz

1988) and the well-founded semantics (Van Gelder et al. 1991) can be translated

into abstract argumentation frameworks. Since then, this initial connection has been

further studied and extended, providing relations between other semantics and ways to

translate argumentation frameworks into logic programs (Nieves et al. 2008; Caminada
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2 J. Fandinno and L. F. del Cerro

and Gabbay 2009; Wu and Caminada 2010; Toni and Sergot 2011; Dvorák et al. 2011;

Caminada et al. 2015).

On the other hand, Nelson’s constructive logic (Nelson 1949) is a conservative extension

of intuitionistic logic, which introduces the notion of strong negation as a means to deal

with constructive falsity, in an analogous way as intuitionism deals with constructive

truth. Pearce (1996; 2006) showed that a particular selection of models of constructive

logic, called equilibrium logic, precisely characterize the stable models of a logic program.

This characterization was later extended to the three-valued stable model (Przymusinski

1991) and the well-founded semantics by Cabalar et al. (2007). Versions of constructive

logic without the “explosive” axiom ϕ→ (∼ϕ→ ψ) have been extensively studied in

the literature (Nelson 1959; López-Escobar 1972; Thomason 1969; Almukdad and Nelson

1984; Odintsov 2005; Odintsov and Rybakov 2015; Kamide and Wansing 2015) and can

be considered a kind of paraconsistent logics, in the sense, that some formulas may

be constructively true and false at the same time. The notion of equilibrium has been

extended to one of these logics by Odintsov and Pearce (2005), who also showed that

this precise characterize the paraconsistent stable semantics (Sakama and Inoue 1995).

In this paper, we formalize in Nelson’s constructive logic a reasoning principle, to be

called non-contradictory inference (denoted NC), which states that

NC “no belief can be held based on contradictory evidence.”

Interestingly, though different from the logic studied by Odintsov and Pearce, the logic

presented here is also a conservative extension of equilibrium logic (and, thus, also of LP

under the stable models semantics) that allows us to deal with inconsistent information

in LP. The interesting feature of this new logic is that, besides LP, it also captures several

classes of AFs, under the stable semantics. It is worth to mention that the representation

of AFs in this new logic is modular and it is done using an object language level. Recall

that by object language level, we mean that AFs and its logical translation share the same

language (each argument in the AF becomes an atom in its corresponding logical the-

ory) and the relation between arguments in the AF (attacks or supports) are expressed

by means of logical connectives. This contrast with meta level approaches, which talk

about the AFs from “above,” using another language and relegating logic to talk about

this new language. It is important to note that, as highlighted by Gabbay and Gabbay

(2015), the object language oriented approaches have the remarkable property of provid-

ing alternative intuitive meaning to the translated concepts through their interpretation

in logic. In this sense, from the viewpoint of constructive logic, AFs can be understood

as a strengthened closed world assumption (Reiter 1980) that we denote as CW:

CW “everything for which we do not have evidence of being true or for which we

have contradictory evidence, should be regarded as false”

The relation between AFs and logic has been extensively studied in the literature and,

as mentioned above, can be divided in two categories: those that follow an object language

approach (Caminada and Gabbay 2009; Gabbay and Gabbay 2015; 2016) and those that

follow a meta-level approach (Besnard and Doutre 2004; Caminada and Gabbay 2009;

Grossi 2011; Dvorák et al. 2012; Arieli and Caminada 2013; Doutre et al. 2014; Besnard

et al. 2014; Dvorák et al. 2015). In particular, the approach we take here shares with the

work by Gabbay and Gabbay (2015) the use of strong negation to capture attacks, but

differs in the underlying logic: constructive logic in our case and classical logic in the case
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of Gabbay and Gabbay’s work. On the intuitive level, under the constructive logic point

of view, attacks can be understood as

AT “means to construct a proof of the falsity of the attacked argument based on the

acceptability of the attacker”

On the practical level, the use of constructive logic allows for a more compact andmodular

translation: each attack becomes a (rule-like) formula with the attacker – or a conjunction

of attackers in the case of set attacking arguments (Nielsen and Parsons 2007) – as the

antecedent and the attacked argument as the consequent. Moreover, when attacks are

combined with LP implication, we show that the latter captures the notion of support

in Evidential-Based Argumentation Frameworks (EBAFs; Oren and Norman 2008): for

accepting an argument, these frameworks require, not only its acceptability as in Dung’s

sense, but also that it is supported by some chain of supports rooted in a kind of special

arguments called prima-facie.

2 Background

In this section, we recall the needed background regarding Nelson’s constructive logic,

logic programming, and argumentation frameworks.

2.1 Nelson’s constructive logic

The concept of constructive falsity was introduced into logic by Nelson (1949) and it is

often denoted as N3. It was first axiomatized by Vorob’ev (1952), and later studied by

Markov (1953), who related intuitionistic and strong negation, and by Rasiowa (1969),

who provided an algebraic characterization. Versions of constructive logic without the

“explosive” axiom ϕ→ (∼ϕ→ ψ) are usually denoted asN4 and they are based on a four

valued assignment for each world corresponding to the values unknown, (constructively)

true, (constructively) false and inconsistent (or overdetermined). The logic N3 can be

obtained by adding back the “explosive” axiom. We describe next a Kripke semantics for

a version of N4 (Thomason 1969; Gurevich 1977) with the falsity constant ⊥, which is

denoted as N4⊥ by Odintsov and Rybakov (2015). We follow here an approach with two

forcing relations in the style of the work by Akama (1987). An alternative characterization

using 2-valued assignments plus an involution has been described by Routley (1974).

Syntactically, we assume a logical language with a strong negation connective “∼”.
That is, given some (possibly infinite) set of atoms At, a formula ϕ is defined using the

grammar:

ϕ ::= ⊥ | a | ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ,

with a ∈ At. We use Greek letters ϕ and ψ and their variants to stand for propositional

formulas. Intuitionistic negation is defined as ¬ϕ def= (ϕ→ ⊥). We also define the derived

operators ϕ↔ ψ def= (ϕ→ ψ) ∧ (ψ → ϕ) and 
 def= ∼⊥.
A Kripke frame F = 〈W,≤〉 is a pair where W is a nonempty set of worlds and ≤ is a

partial order onW . A valuation V :W −→ 2At is a function mapping each world to a sub-

set of atoms. A Nelson’s interpretation (N-interpretation) is a 3-tuple I = 〈F , V +, V −〉
where F = 〈W,≤〉 is a Kripke frame and where both V + and V − are valuations satisfy-

ing, for every pair of worlds w,w′ ∈W with w ≤ w′ and every atom a ∈ At, the following
preservation properties:
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4 J. Fandinno and L. F. del Cerro

(i) V +(w) ⊆ V +(w′), and
(ii) V −(w) ⊆ V −(w′).

Intuitively, V + represents our knowledge about constructive truth while V − represents

our knowledge about constructive falsity. We say that I is consistent if, in addition, it

satisfies:

(iii) V +(w) ∩ V −(w) = ∅ for every world w ∈W .

Two forcing relations |=+ and |=− are defined with respect to any N-interpretation

I = 〈F , V +, V −〉, world w ∈W and atom a ∈ At as follows:
I, w |=+ a iff a ∈ V +(w),

I, w |=− a iff a ∈ V −(w).

These two relations are extended to compounded formulas as follows:

I, w �|=+ ⊥
I, w |=+ ϕ1 ∧ ϕ2 iff I, w |=+ ϕ1 and I, w |=+ ϕ2

I, w |=+ ϕ1 ∨ ϕ2 iff I, w |=+ ϕ1 or I, w |=+ ϕ2

I, w |=+ ϕ1→ϕ2 iff ∀w′≥w I, w′ �|=+ϕ1 or I, w′ |=+ϕ2

I, w |=+ ∼ϕ iff I, w |=− ϕ

I, w |=− ⊥
I, w |=− ϕ1 ∧ ϕ2 iff I, w |=− ϕ1 or I, w |=− ϕ2

I, w |=− ϕ1 ∨ ϕ2 iff I, w |=− ϕ1 and I, w |=− ϕ2

I, w |=− ϕ1→ϕ2 iff I, w |=+ ϕ1 and I, w |=− ϕ2

I, w |=− ∼ϕ iff I, w |=+ ϕ.

An N-interpretation is said to be an N-model of a formula ϕ, in symbols I |=+ ϕ, iff

I, w |=+ ϕ for every w ∈ W . It is said to be N-model of a theory Γ, in symbols also

I |=+ Γ, iff it is an N-model of all its formulas I |=+ ϕ. A formula ϕ is said to be a

consequence of a theory Γ iff every model of Γ is also a model of ϕ, that is I |=+ ϕ

for every I |=+ Γ. This formalization characterizes N4 while a restriction to consistent

N-interpretations would characterize N3. As mentioned above, N4 is “somehow” para-

consistent in the sense that a formula ϕ and its strongly negated counterpart ∼ϕ may

simultaneously be consequences of some theory: for instance, we have that {a,∼a} |=+ a

and {a,∼a} |=+ ∼a. Intuitively, these two forcing relations determine the four values

above mentioned: a formula ϕ satisfying I �|=+ ϕ and I �|=− ϕ is understood as unknown.

If it satisfies I |=+ ϕ and I �|=− ϕ, is understood as true. False if I �|=+ ϕ and I |=− ϕ,

and inconsistent if I |=+ ϕ and I |=− ϕ.

2.2 Logic programming, equilibrium logic, and

here-and-there Nelson’s models

In order to accommodate logic programming conventions, we will indistinctly write

ϕ← ψ instead of ψ → ϕ when describing logic programs. An explicit literal is either

an atom a ∈ At or an atom preceded by strong negation ∼a. A literal is either an ex-

plicit literal l or an explicit literal preceded by intuitionistic negation ¬l. A literal that
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contains intuitionistic negation is called negative. Otherwise, it is called positive. A rule

is a formula of the form H ← B where H is a disjunction of atoms and B is a conjunction

of literals. A logic program Π is a set of rules.

Given some set of explicit literals T and some formula ϕ, we write T |=+ ϕ when

〈F , V +, V −〉 |=+ ϕ holds for the Kripke frame F with a unique world w and valuations:

V +(w) = T ∩At and V −(w) = { a ∣∣ ∼a ∈ T }. A set of explicit literals T is said to be

closed under Π if T |=+ H ← B for every rule H ← B in Π.

Next, we recall the notions of reduct and answer set (Gelfond and Lifschitz 1991):

Definition 1 (Reduct and Answer Set)

The reduct of program Π w.r.t. some set of explicit literals T is defined as follows

(i) Remove all rules with ¬l in the body s.t. l ∈ T,

(ii) Remove all negative literals for the remaining rules.

Set T is a stable model of Π if T is a ⊆-minimal closed set under Π.

For characterizing logic programs in constructive logic, we are only interested in a

particular kind of N-interpretations over Here-and-There (HT) frames. These frames are

of the form FHT = 〈{h, t},≤〉 where ≤ is a partial order satisfying h ≤ t. We refer to

N-interpretations with an HT-frame as HT-interpretations. A HT-model is an N-model

which is also a HT-interpretation. We use the generic terms interpretation (resp. model)

for both HT and N-interpretations (resp. models) when it is clear by the context. At

first sight, it may look that restricting ourselves to HT frames is an oversimplification.

However, once the closed world assumption is added to intuitionistic logic, this logic can

be replaced without loss of generality by any proper intermediate logic (Osorio et al.

2005; Cabalar et al. 2017).

Given any HT-interpretation, I = 〈FHT , V
+, V −〉, we define four sets of atoms as

follows:

H+
I

def= V +(h)

H−
I

def= V −(h)

T+
I

def= V +(t)

T−
I

def= V −(t).

These sets of atoms correspond to the atoms verified at each corresponding world and

valuation. Every HT-interpretation I is fully determined by these four sets. We will

omit the subscript and write, for instance, H+ instead of H+
I when I is clear from

the context. Furthermore, any HT-interpretations can be succinctly rewritten as a pair

I = 〈H,T〉 where H = H+ ∪ ∼H− and T = T+ ∪ ∼T− are sets of literals.1 Note that,

by the preservation properties of N-interpretations, we have that H ⊆ T. We say that an

HT-interpretation I = 〈H,T〉 is total iff H = T. Given HT-interpretations I = 〈H,T〉
and I ′ = 〈H′,T′〉, we write I ≤ I ′ iff H ⊆ H′ and T = T′. As usual, we write I < I ′ iff
I ≤ I ′ and I �= I ′.
Next, we introduce the definition of equilibrium model (Pearce 1996).

Definition 2 (Equilibrium model)

A HT-model I of a theory Γ is said to be an equilibrium model iff it is total and there is

no other HT-model I ′ of Γ s.t. I ′ < I.

1 We denote by ∼S def
= { ∼ϕ

∣
∣ ϕ ∈ S } the of set strongly negated formulas of a given set S. Similarly,

we also define ¬S def
= { ¬ϕ ∣

∣ ϕ ∈ S }.
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Interestingly, consistent equilibrium models precisely capture the answer set of a logic

program. The following is a rephrase of Proposition 2 by Pearce (1996) using our notation.

Proposition 1

Let Π be a logic program. A consistent set T of explicit literals is a stable model of Π

if and only if T is the set of explicit literals true in some consistent equilibrium model

of Π.

More in general, it has been shown by Odintsov and Pearce (2005) that the (possible

nonconsistent) equilibrium models of a logic program capture its paraconsistent answer

sets (Sakama and Inoue 1995).

The following propositions characterizes some interesting properties of HT and strong

negation that will be useful through the paper2 :

Proposition 2 (Persistence)

Any HT-interpretation I, formula ϕ and world w ∈ {h, t} satisfy:
1. I, w |=+ ϕ implies I, t |=+ ϕ, and

2. I, w |=− ϕ implies I, t |=− ϕ.

Proposition 3 (HT-negation)

Any HT-interpretation I, formula ϕ and world w ∈ {h, t} satisfy:
i) I, w |=+ ¬ϕ iff I, t �|=+ ϕ, and

ii) I, w |=+ ¬¬ϕ iff I, t |=+ ϕ, and

iii) I, w |=+ ¬¬¬ϕ iff I, w |=+ ¬ϕ, and
iv) I, w |=− ¬ϕ iff I, w |=− ∼ϕ.

2.3 Abstract argumentation frameworks

Since their introduction, the syntax of AFs have been extended in different ways. One

of these extensions, usually called SETAFs, consists in generalizing the notion of bi-

nary attacks to collective attacks such that a set of arguments B attacks some ar-

gument a (Nielsen and Parsons 2007). Another such extension, usually called Bipo-

lar AFs (BAFs), consists in frameworks with a second positive relation called sup-

port (Karacapilidis and Papadias 2001; Verheij 2003a; Amgoud et al. 2004). In par-

ticular, Verheij (2003b) introduced the idea that, in AFs, arguments are considered as

prima-facie justified statements, which can be considered true until proved otherwise,

that is, until they are defeated. This allows introducing a second class of ordinary ar-

guments, which cannot be considered true unless get supported by the prima-facie ones.

Later, Polberg and Oren (2014) developed this idea by introducing Evidence-Based AFs

(EBAFs), an extension of SETAFs (and, this, of AFs) which incorporates the notions of

support and prima-facie arguments. Next we introduce an equivalent definition by Cayrol

et al. (2018), which is closer to the logic formulation we pursue here.

Definition 3 (Evidence-Based Argumentation framework)

An Evidence-Based Argumentation framework EF = 〈A,Ra,Rs,P〉 is a 4-tuple where

A represents a (possibly infinite) set of arguments, Ra ⊆ 2A ×A is an attack relation,

2 For the sake of clarity, proofs of formal results are moving to an appendix.
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Rs ⊆ 2A ×A is a support relation and P ⊆ A is a set of distinguished prima-facie

arguments. We say that an EF is finitary iff B is finite for every attack or support

(B, a) ∈ Ra ∪Rs.

The notion of acceptability is extended by requiring not only defense against all at-

tacking arguments, but also support from some prima-facie arguments. Furthermore, the

defense can be provided not only by defeating all attacking sets of arguments, but also

by denying the necessary support for some of the non-prima-facie arguments of these

attacks.

Definition 4 (Defeat/Acceptability)

Given some argument a ∈ A and set of arguments E ⊆ A, we say

1. a is defeated w.r.t. E iff there is some B ⊆ E s.t. (B, a) ∈ Ra,

Def (E) will denote the set of arguments that are defeated w.r.t. E.

2. a is supported w.r.t. E iff either a ∈ P or there is some B ⊆ E \ {a} whose elements

are supported w.r.t. E \ {a} and such that (B, a) ∈ Rs,

3. a is supportable w.r.t. E iff it is supported w.r.t. A \Def (E),

4. a is unacceptable w.r.t. E iff it is either defeated or not supportable,

5. a is acceptable w.r.t. E iff it is supported and, for every (B, a) ∈ Ra, there is b ∈ B
such that b is unacceptable w.r.t. E

Sup(E) (resp. UnAcc(E) and Acc(E)) will denote the set of arguments that are supported

(resp. unacceptable and acceptable) w.r.t. E.

Then, semantics are defined as follows:

Definition 5

A set of arguments E ⊆ A is said to be:

1. self-supporting iff E ⊆ Sup(E),

2. conflict-free iff E∩Def (E)=∅,

3. admissible iff it is conflict-free and E ⊆ Acc(E),

4. complete iff it is conflict-free and E = Acc(E),

5. preferred iff it is a ⊆-maximal admissible set,

6. stable iff E = A \UnAcc(E).

SETAFs can be seen as special cases where the set of supports is empty and all argu-

ments are prima-facie. In this sense, we write SF= 〈A,Ra〉 instead EF = 〈A,Ra,∅,A〉.
Furthermore, in their turn, AFs can be seen as a special case of SETAFs where all attacks

have singleton sources. In such case, we just write AF= 〈A,R〉 instead SF = 〈A,Ra〉,
where R = { (b, a) ∣∣ ({b}, a) ∈ Ra } For this kind of frameworks, the respective notions

of conflict-free (resp. admissible, complete, preferred or stable) coincide with those being

defined by Nielsen and Parsons (2007) and Dung (1995), respectively.

To illustrate the notions of support and prima-facie arguments, consider the well-known

Tweety example:

Example 1

Suppose we have the knowledge base that includes the following statements:

1. birds (normally) can fly,

2. penguins are birds,
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3. penguins cannot fly and

4. Tweety is a penguin.

We can formalize this by the following graph:

pT fT

bT

where pT , bT and fT respectively stand for “Tweety is a penguin”, “Tweety is a bird” and

“Tweety can fly.” Double arrows represent support while simple ones represent attacks.

Furthermore, circles with solid border represent prima-facie arguments while dashed

border ones represent ordinary ones. That is, “Tweety is a penguin” is considered a

prima-facie argument that supports that “Tweety is a bird” which, in its turn, supports

that “Tweety can fly.” The latter is then considered also prima-facie, that is, true unless

proven otherwise. Note that “Tweety is a penguin” also attacks that “Tweety can fly”,

so the latter cannot be accepted as true. Formally, this corresponds to the framework

EF1 = 〈A,Ra,Rs,P〉 with Ra = {({pT}, fT )} and Rs = {({pT}, bT ), ({bT}, fT )} and

P = {pT} whose unique admissible, complete, preferred and stable extension is {pT, bT}.
In other words, we conclude that “Tweety cannot fly.” Note that “Tweety is a penguin”

provides conflicting evidence for whether it can fly or not. In EBAFs, this is solved by

giving priority to the attack relation, so “Tweety cannot fly” is inferred.

3 Reasoning with contradictory evidence in equilibrium logic

In this section, we formalize principles NC and CW in constructive logic, obtaining

as a result a formalism which is a conservative extension of logic programming under

the answer set semantics (see Theorem 1 and Corollary 1 below) and which is capable of

reasoning with contradictory evidence. We start by defining a new implication connective

that captures NC in terms of intuitionistic implication and strong negation:

ϕ1 ⇒ ϕ2
def= (¬∼ϕ1 ∧ ϕ1)→ ϕ2. (1)

Recall that intuitionistic implication ϕ1 → ϕ2 can be informally understood as a means

to construct a proof of the truth of the consequent ϕ2 in terms of a proof of truth of the

antecedent ϕ1. In this sense, (1) can be understood as a means to construct a proof of

the truth of the consequent ϕ2 in terms of proof of the truth of the antecedent ϕ1 and

the absence of a proof of its falsity, or in other words, in terms of a consistent proof of

the antecedent ϕ1. It is easy to see that (1) is weaker than intuitionistic implication, that

is, that

ϕ1 → ϕ2 |=+ ϕ1 ⇒ ϕ2,

holds for every pair of formulas ϕ1 and ϕ2. We can use the following simple example to

illustrate the difference between intuitionistic implication and (1).

Example 2

Let Γ2 be the following set of formulas:

a b ∼b a⇒ c b⇒ d,
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and let Γ′
2 be the theory obtained by replacing each occurrence of implication ⇒ by

intuitionistic implication →. On the one hand, we have that both, Γ2 and Γ′
2, entail

atoms a and c. On the other hand, we have: Γ′
2 |=+ d but Γ2 �|=+ d. This is in accordance

with NC, since the only way to obtain a proof of d is in terms of b, for which we have

contradictory evidence. Note also that an alternative proof of d could be obtained if

new consistent evidence becomes available: for the theory Γ3 = Γ2 ∪ {a⇒ d} we obtain

Γ3 |=+ d. It is also worth highlighting that, in contrast with intuitionistic implication,

this new connective (1) is not monotonic: for Γ4 = {b, b⇒ d} we have Γ4 |=+ d and

Γ4 ∪ {∼b} �|=+ d. Obviously, it is not antimonotonic either: Γ4 \ {b} �|=+ d.

The following result shows that, when dealing with consistent evidence, these differ-

ences disappear and (1) collapses into intuitionistic implication:

Proposition 4

Let I be a consistent N-interpretation and let ϕ1 and ϕ2 be any pair of formulas. Then,

I |=+ ϕ1 ⇒ ϕ2 iff I |=+ ϕ1 → ϕ2.

Let us now formalize the CW assumption. As usual nonmonotonicity is obtained by

considering equilibrium models (Definition 2). However, to capture CW, we need to

restrict the consequences of these models to those that are consistent. We do so by

introducing a new cw-inference relation which, precisely, restricts the consequences of |=+

to those which are consistent:

I, w |= ϕ iff I, w |=+ ¬∼ϕ ∧ ϕ. (2)

Furthermore, as usual, we write I |= ϕ iff I, w |= ϕ for all w ∈W . We also write Γ |= ϕ

iff I |= ϕ holds for every equilibrium model I of Γ. For instance, in Example 2, it is

easy to see that Γ2 |=+ b and Γ2 |=+ ∼b, but Γ2 �|= b and Γ2 �|= ∼b because the unique

equilibrium model of Γ2 contains contradictory evidence for b. On the other hand, as may

be expected, when we deal with noncontradictory evidence cw-inference |= just collapses

to the regular inference relation |=+ (see Proposition 5 below).

To finalize the formalization of CW, we also need to define default negation. This is

accomplished by introducing a new connective not and adding the following two items

to the Nelson’s forcing relations:

I, w |=+ not ϕ iff I, w |=+ ¬ϕ ∨ (ϕ ∧ ∼ϕ),
I, w |=− not ϕ iff I, w |=+ ϕ and I, w �|=− ϕ.

Then, an extended formula ϕ is defined using the following grammar:

ϕ ::= ⊥ | a | ∼ϕ | not ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ,

with a ∈ At an atom. The following result shows that cw-inference and default negation

are conservative extensions of the satisfaction relation |=+ and HT-negation ¬ when

restricted to consistent knowledge.

Proposition 5

Let I be a consistent N-interpretation and ϕ be any extended formula. Then, the following

conditions hold:

(i) I |= ϕ iff I |=+ ϕ

(ii) I |= not ϕ iff I |= ¬ϕ.
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Despite the relation between default negation not and HT-negation ¬ on consistent

interpretations, in general, they no not coincide. The following example illustrates the

difference between these two kinds of negations:

Example 3

Let Γ5 be the following theory:

a ∼a not ∼a⇒ b.

This theory has a unique equilibrium model I = 〈T,T〉 with T = {a,∼a, b}. Note

that, every model J of Γ5 must satisfy J |=+ a ∧ ∼a and, thus, it must also satisfy

J |= not ∼a and J |=+ b follows (Proposition 6). Hence, I is a ≤-minimal model and,

thus, an equilibrium model. On the other hand, let Γ6 be the theory:

a ∼a ¬∼a⇒ b.

In this case, we can check that J = 〈H,T〉 with H = {a,∼a} is a model of Γ6 because

J �|= ¬∼a and, thus, now I is not an equilibrium model. In fact, 〈H,H〉 is the unique

equilibrium model of Γ6.

The following result shows the relation between default negation, implication, and

cw-inference.

Proposition 6

Let I be any N-interpretation and ϕ be any formula. Then,

(i) I |= ϕ and I |=+ ϕ⇒ ψ implies I |=+ ψ,

(ii) I |= not ϕ implies I �|= ϕ.

Furthermore, if I is a total HT-interpretation, then

(iii) I |= not ϕ iff I �|= ϕ.

Condition (i) formalizes a kind of modus ponens for ⇒ in the sense that, if the we have

a consistent proof of the antecedent, then we have a (possibly inconsistent) proof of the

consequent. It is clear that this statement cannot be strengthened to provide a consistent

proof of the consequent because any other formula could provide the contradictory evi-

dence to make it inconsistent. Note also that this relation is nonmonotonic as adding new

information may result in a contradictory antecedent. Condition (iii) formalizes the CW

assumption, that is, not ϕ holds whenever ϕ is not known to be true or we have contradic-

tory evidence for it. Note that, according to this, the default negation of an inconsistent

formula is true and, therefore, the evaluation of default negation itself is always consis-

tent (even if the formula is inconsistent): that is, I, w �|=+ not ϕ or I, w �|=− not ϕ holds

for any extended formula.

On the contrary that implication⇒, default negation not cannot be straightforwardly

defined3 in terms of Nelson’s connectives.

Another alternative, we have investigated was defining not ϕ as and ¬ϕ ∨ (ϕ ∧ ∼ϕ).
in terms of cw-inference. The following result shades light on this attempt.

Proposition 7

Let I be any N-interpretation and ϕ be any formula. Then, I |= ¬ϕ∨(ϕ∧∼ϕ) iff I |= ¬ϕ.

3 It is still an open question whether it is definable in terms of Nelson’s connectives or not.
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That is, in terms of cw-inference, ¬ϕ ∨ (ϕ ∧ ∼ϕ) is equivalent to HT-negation. As

illustrated by Example 3, default negation and HT-negation do not behave in the

same way.

The following example illustrates that, though default negation allows to derive new

knowledge from contradictory information, it does not allow to self justify a contradiction.

Example 4

Let Γ7 be a logic program containing the following single rule:

not ∼a⇒ a, (3)

stating, as usual, that a holds by default. As expected this theory has a unique equilibrium

model I which satisfies I |= a and I �|= ∼a. Let now Γ8 = Γ7 ∪ {∼a}. This second theory

also has a unique equilibrium model I which now satisfies I |= ∼a and I �|= a. To see that

J = 〈T,T〉 with T = {a,∼a} is not an equilibrium model of Γ8, let J ′ = 〈H,T〉 with
H = {∼a} be an interpretation. Since J ′ satisfies J ′ < J and it is a model of ∼a, it only
remains to be shown that J ′ is a model of (3). For that, just note J |= ∼a and, thus,

J �|= not ∼a follows by Proposition 6. This implies that J ′ satisfies (3) and, consequently,
that J is not an equilibrium model. In fact, 〈H,H〉 is the unique equilibrium model of Γ8.

3.1 A conservative extension of logic programming

Let us now consider the language formed with the set of logical connectives

CLP def= {⊥,∼,∧,∨,⇒,not }.
In other words, a CLP -formula ϕ is defined using the following grammar:

ϕ ::= ⊥ | a | ∼ϕ | not ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ,

with a ∈ At being an atom. A CLP -literal is either an explicit literal l or is default nega-

tion not l. A CLP -rule is a formula of the form H ⇐ B where H is a disjunction of atoms

and B is a conjunction of CLP -literals. CLP -theories and CLP -programs are respectively

defined as sets of CLP -formulas and CLP -rules. The definition of an answer set is applied

straightforwardly as in Definition 1. Given any theory CLP -theory Γ, by CN(Γ) we denote
the result of

1. replacing every occurrence of ⇒ by → and

2. and every occurrence of not by ¬.
Then, the following results follow directly from Propositions 4 and 5:

Theorem 1

Let Γ be any CLP -theory and I be any consistent interpretation. Then, I is an equilibrium

model of Γ iff I is an equilibrium model of CN(Γ).

Corollary 1

Let P be a CLP -program and T be any consistent set of explicit literals. Then, I = 〈T,T〉
is an equilibrium model of P iff T is an answer set of P .

In other words, the equilibrium models semantics are a conservative extension of the

answer set semantics. The following example shows the usual representation of the Tweety
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scenario in this logic (an alternative representation using contradictory evidence will be

discussed in the Discussion section).

Example 5 (Ex. 1 continued)

Consider again the Tweety scenario. The following logic program P9 is a usual way of

representing this scenario in LP:

flyTweety ⇐ birdTweety ∧ not ∼flyTweety , (4)

birdTweety ⇐ penguinTweety , (5)

∼flyTweety ⇐ penguinTweety (6)

penguinTweety ,

where rule (4) formalizes the statement “birds normally can fly.” This is achieved by

considering ∼flyTweety as an exception to this rule. It can be checked that P9 has a

unique equilibrium model I9, which is consistent, and which satisfies I9 �|= flyTweety

and I9 |= not flyTweety . In other words, Tweety cannot fly.

Example 6 (Ex. 2 continued)

Consider now the theory obtained by replacing formulas a ⇒ c and b ⇒ d in Γ2 by the

following two formulas:

not e ∧ a⇒ c not e ∧ b⇒ d.

Let Γ10 be such theory. It is easy to see that neither Γ10 nor CN(Γ10) monotonically

entail c nor d. This is due to the fact that the negation of e is not monotonically

entailed: Γ10 �|=+ not e and CN(Γ10) �|=+ ¬e. On the other hand, the negation of e is

non-monotonically entailed in both cases: Γ10 |= not e and CN(Γ10) |= ¬e. Note that

both Γ10 and CN(Γ10) have a unique equilibrium model, I10 = 〈T,T〉 and I ′10 = 〈T′,T′〉
with T = {a, b,∼b, c} and T′ = {a, b,∼b, c, d}, respectively, and in both cases we have

I10 |= not e and I ′10 |= ¬e. As a result, we get that both theories cautiously entail c. How-

ever, as happened in Example 2, only CN(Γ10) cautiously entails d, because the unique

evidence for d comes from b for which we have inconsistent evidence. This behavior is

different from paraconsistent answer sets (Sakama and Inoue 1995; Odintsov and Pearce

2005). As pointed out by Sakama and Inoue (1995), the truth of d is less credible than

the truth of c, since d is derived through the contradictory fact b. In order to distinguish

such two facts Sakama and Inoue (1995) also define suspicious answer sets which do not

consider d as true.4

This example also helps us to illustrate the strengthened closed world assumption

principle CW. On the one hand, we have that Γ10 |= not e holds because there is no

evidence for e. On the other hand, we have that Γ10 |= not b holds because we have

contradictory evidence for b. Moreover, we have that Γ10 |= not d holds because the only

evidence we have for d is based on the contradictory evidence for b.

4 Suspicious answer sets are based on a 6-value lattice which add the values suspiciously true and
suspiciously false to the four values of N4. In the unique suspicious answer set of Γ10, atom d gets
assigned the suspiciously true value instead the true value. A formal comparison with suspicious answer
sets is left for future work.
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4 Argumentation frameworks in equilibrium logic

In this section, we show how AFs, SETAFs, and EBAFs can be translated in this logic in

a modular way and using only the object language. This translation is a formalization of

the intuition of an attack stated in AT. Theorems 2, 3, and 4 show that the equilibrium

models of this translation precisely characterize the stable extension of the corresponding

framework.

4.1 Dung’s argumentation frameworks

Now, let us formalize the notion of attack introduced in AT, by defining the following

connective:

ϕ1 � ϕ2
def= ϕ1 ⇒ ∼ϕ2. (7)

Here, we identify the acceptability of ϕ1 with having a consistent proof of it, or in other

words, as having a proof of the truth of ϕ1 and not having a proof of its falsity. Then,

(7) states that the acceptability of ϕ1 allows to construct a proof of the falsity of ϕ2. In

this sense, we identify a proof of the falsity of ϕ2 with ϕ2 being defeated.

Proposition 8

Given any N-interpretation I and any pair of formulas ϕ1, ϕ2, the following conditions

hold:

(i) I |= ϕ1 and I |=+ ϕ1 � ϕ2 imply I |=− ϕ2

Using the language CAF = {�}, we can translate any AF as follows:

Definition 6

Given some framework AF= 〈A,R〉, we define the theory:

CAF(AF) def= A ∪ { a� b
∣∣ (a, b) ∈ R }. (8)

In addition, we assign a corresponding set of arguments EI def= { a ∈ A
∣∣ I |= a } to every

interpretation I.
Translation CAF(·) applies the notion of attack introduced in AT to translate an AF

into a logical theory. The strengthened close world assumption CW is used to retrieve

the arguments EI corresponding to each stable model I of the logical theory obtained

from this translation.

Example 7

To illustrate this translation, let AF11 be the framework corresponding to the following

graph:

a b c

Then, we have that CAF(AF11) is the theory containing the following two attacks:

a� b b� c,

plus the facts {a, b, c}.
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Proposition 9

Let AF be some framework and I be some HT-model of CAF(AF). Then, the following

hold:

(i) if a is defeated w.r.t. EI , then I |=+ ∼a
(ii) EI is conflict-free.

If, in addition, I is an ≤-minimal model, then

(iii) a is defeated w.r.t. EI iff I |=+ ∼a.

Example 8 (Ex. 7 continued)

Continuing with our running example, let I11 = 〈T11,T11〉 and J11 = 〈T′
11,T

′
11〉 be two

total models of ΓAF11
with T11 = {a, b, c,∼b} and T′

11 = {a, b, c,∼a,∼c}. Then, we have
that both SI11 = {a, c} and SJ11

= {b} are conflict-free (though only SI11 is stable).

Furthermore, we also can see that argument b is the unique defeated argument w.r.t. SI11
and the unique atom for which I11 |=+ ∼b holds. On the other hand, we get that

argument c is the unique defeated argument w.r.t. SJ11
and also both J11 |=+ ∼a and

J11 |=+ ∼c hold. Note that, as stated by (iii) in Proposition 9, this implies that only SI11
can be an equilibrium model. Let us show that it is indeed the case that J11 is not an

equilibrium model and let us define, for that purpose, an interpretation J ′
11 = 〈H′

11,T
′
11〉

with H′
11 = T′

11 \ {∼a} = {a, b, c,∼c}. In other words, interpretation J ′
11 is as J11, but

removing the non-defeated argument a as a negated conclusion ∼a. It is easy to check that

J ′
11 |= b� c because ∼c ∈ H′

11 holds. Besides, since ∼a ∈ T′
11, we have that J ′

11 �|= a

and, therefore, that J ′
11 |= a � b. This implies that J ′

11 is a model of ΓAF11
. Since

J ′
11 < J11, we get that J11 is not an equilibrium model.

In fact, we can generalize this correspondence between the stable extensions and the

equilibrium models to any argumentation framework as stated by the following theorem:

Theorem 2

Given some AF= 〈A,R〉, there is a one-to-one correspondence between its stable exten-

sions and the equilibrium models of CAF(AF) such that

(i) if I is an equilibrium model of CAF(AF), then EI is a stable extension of AF,

(ii) if E is a stable extension of AF and I is a total interpretation such that T+
I =A

and T−
I =Def (E), then I is an equilibrium model of CAF(AF).

Proof sketch.5 First, note that condition (i) follows directly from (iii) in Proposition 9 and

the facts that (a) equilibrium models are ≤-minimal models and (b) EI is a stable exten-

sion iff EI are exactly the non-defeated arguments w.r.t. EI . To show (ii), it is easy to see

that EI being a stable extension implies that I is a model of CAF(AF). Hence, to show

that I is an equilibrium model what remains is to prove that any J < I is not a model

of CAF(AF). Any such J must satisfy H+
J = H+

I = A and H−
J ⊂ H−

I = T−
I = Def (E).

Therefore, there is some defeated argument such that a /∈ H−
J and some defeating attack

(b, a) ∈ Ra such that b ∈ E = H+
I \ T−

I = H+
J \ T−

J . This implies that b� a ∈ CAF(AF)

5 This theorem is a particualr case of Theorem 3 below. Recall that full proofs are provided in the
appendix.
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and J |= b which, in its turn, implies that a ∈ H−
J . This is a contradiction and, conse-

quently, I is an equilibrium model.

Theorem 2 captures the relation between the stable extensions of an AF and its trans-

lation into a logical theory. As mentioned above, this relation relies on the reasoning

principles AT and CW: An AF = 〈A,R〉 is translated into a logical theory CAF(AF)

using the notion of attack introduced in AT. The stable extension EI of this AF is then

retrieved from the equilibrium model I of CAF(AF) using the CW principle.

4.2 Set attack argumentation frameworks

We may also extend the results of the previous section to SETAFs using the language

CSF = {�,∧} and a similar translation.

Definition 7

Given some finitary set attack framework SF= 〈A,Ra〉, we define

ΓRa

def=
{ ∧

A� b
∣∣∣ (A, b) ∈ Ra

}
, (9)

and CSF(SF) def= A ∪ ΓRa
.

Similar to Definition 6, translation CSF(·) applies the notion of attack introduced in AT

to translate an AF into a logical theory. In this case, the set of attacking arguments

becomes a conjuntion in the antecedent of the attack connective.

Theorem 3

Given some finitary SF there is a one-to-one correspondence between its stable extensions

and the equilibrium models of CSF(SF) such that

(i) if I is an equilibrium model of CSF(SF), then EI is a stable extension of SF,

(ii) if E is a stable extension of SF and I is a total interpretation such that T+
I =A

and T−
I =Def (E), then I is an equilibrium model of CSF(SF).

Proof sketch. The proof follows as in Theorem 2 by noting that any interpretation I and

set of arguments B satisfy: B ⊆ EI iff I |= b for all b ∈ B iff I |= ∧
B.

4.3 Argumentation frameworks with evidence-based support

Let us now extend the language of SETAFs with the LP implication (1), in other words,

we consider the language possessing the following set of connectives CEF = {�,∧,⇒},
so that we can translate any EBAF as follows:

Definition 8

Given any finitary evidence-based framework EF= 〈A,Ra,Rs,P〉, we define its corre-

sponding theory as: CEF(EF)
def= P ∪ ΓRa

∪ ΓRs
with

ΓRs

def=
{ ∧

A⇒ b
∣∣∣ (A, b) ∈ Rs

}
, (10)

and ΓRa
as stated in (9).

Note that, in contrast with AFs and SETAFs, the theory corresponding to an EBAFs

do not contain all arguments as atoms, but only those that are prima-facie P. This
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reflects the fact that in EBAFs not all arguments can be accepted, but only those that

are prima-facie or are supported by those prima-facie. Supports are represented using the

LP implication ⇒ and supported arguments are captured by the positive evaluation of

each interpretation H+
I . The following result extends Proposition 9 to EBAFs including

the relation between supported arguments and models.

Proposition 10

Let EF be some framework and I be some HT-model of CEF(EF). Then, the following

hold:

(i) if a is supported w.r.t. EI , then I |=+ a,

(ii) if a is defeated w.r.t. EI , then I |=+ ∼a,
(iii) EI is conflict-free.

If, in addition, I is an ≤-minimal HT-model, then

(iii) a is supported w.r.t. EI iff I |=+ a,

(iv) a is defeated w.r.t. EI iff I |=+ ∼a,
(v) EI is self-supporting.

Example 9 (Ex. 1 continued)

Consider now framework EF representing the Tweety scenario.

birdTweety ⇒ flyTweety , (11)

penguinTweety ⇒ birdTweety , (12)

penguinTweety � flyTweety (13)

penguinTweety .

As mentioned in Example 1, framework EF1 has a unique stable extension

{penguinTweety , birdTweety},
which does not include the argument flyTweety . In other words, Tweety cannot fly.

Interestingly, CSF(EF1) has also a unique equilibrium model I12 = 〈T12,T12〉 where T12

stands for the set:

{penguinTweety , birdTweety , flyTweety , ∼flyTweety}.
This equilibrium model precisely satisfies the two arguments in that stable extension:

I12 |= penguinTweety and I12 |= birdTweety . Note that we get I12 �|= flyTweety from the

fact that I12 |=+ ∼flyTweety . In fact, this correspondence holds for any EBAF as shown

by Theorem 4 below. Though more technically complex, the proof of Theorem 4 is similar

that those of Theorems 2 and 3. In particular, it is necessary to prove the following

relation between equilibrium models and supportable arguments:

Proposition 11

Let EF be some framework and I be some equilibrium model of CEF(EF). Then, the

following statement holds:

(i) a is supportable w.r.t. EI iff I |=+ a.
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In contrast with the results for supported arguments stated in Proposition 10, this

property does not hold for arbitrary ≤-minimal models. This fact can be illustrated by

considering a simple EF13 such that CEF(EF13) = {a, a⇒ b}. Let I13 = 〈H13,T13〉 be
some interpretation with H13 = {a} and T13 = {a,∼a}. It is easy to see that I13 is a

≤-minimal model of CEF(EF13), though it is not an equilibrium model (because it is not

a total interpretation). It can also be checked that a is not defeated and, consequently,

that b is supportable w.r.t. EI13 = ∅. On the other hand, the unique equilibrium model

of CEF(EF13) is J13 = 〈H′
13,T

′
13〉 with H′

13 = {a, b} and T′
13 = {a, b}. Here, both a and

b are supportable (and supported) w.r.t. EJ13
= {a, b}.

The following result shows that, indeed, this correspondence holds for any EBAF:

Theorem 4

Given some finitary EF, there is a one-to-one correspondence between its stable exten-

sions and the equilibrium models of CEF(EF) such that

(i) if I is an equilibrium model of CEF(EF), then EI is a stable extension of EF,

(ii) if E is a stable extension of EF and I is a total interpretation such that T+
I =Sup(E)

and T−
I =Def (E), then I is an equilibrium model of CEF(EF).

5 Translation of CLP -program to regular programs

In this section, we show how CLP -programs can be translated into regular ASP programs.

An important practical consequence of this fact is that current state-of-the-art ASP

solvers (Faber et al. 2008; Gebser et al. 2012) can be applied to CLP -programs. Let us

introduce such a translation as follows:

Definition 9

Given a CLP -program P , by δP we denote the result of

1. replacing every positive literal a in the body of a rule by a ∧ ¬∼a,
2. replacing every negative literal not a in the body of a rule by ¬a ∨ (a∧∼a),
3. replacing all occurrences of ⇒ by →.

Proposition 12

Any CLP -program P and interpretation I satisfy: I |=+ P iff I |=+ δP .

Proposition 12 shows how we can translate any CLP -program into an equivalent theory

that does not use the new connectives not and ⇒. The result of the translation in

Definition 9 is almost a standard logic program, but for two points. First, strong negation

has to be understood in a paraconsistent way, so an atom can be true and false at the

same time. This can be addressed by using new auxiliary atoms to represent strongly

negated atoms.6 Second, step 2 introduces a disjunction in the body, which is not allowed

in the standard syntax of logic programs. This can be addressed in polynomial-time also

6 In fact, modern solvers already allow the use of explicit negation and their implementation is done
by using new auxiliary atoms to represent strongly negated atoms. However, solvers also include a
constraint of the form a ∧ ∼a → ⊥ for every atom a. This would remove the non-consistent answer
sets, something we have to avoid to obtain paraconsistent answer sets.
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by using auxiliary atoms (similar to Tseitin 1968). The following definition addresses

these two issues.

Definition 10

Given a CLP -program P , by τP we denote the result of applying the following transfor-

mations to δP :

1. replacing every explicit literal of the form ∼a by a fresh atom ã,

2. adding rules a′ ← ¬a and a′ ← a∧ ã for each atom a ∈ At with a′ a new fresh atom,

and

3. replacing each occurrence of ¬a ∨ (a ∧ ã) in the body of any rule by a′.

Given a total interpretation I, we also denote by τI an interpretation that, for every

atom a ∈ At, satisfies:
1. τI �|=− a

2. τI |=+ a iff I |=+ a

3. τI |=+ ã iff I |=− a

4. τI |=+ a′ iff either I �|=+ a or both I |=+ a and I |=− a.

Proposition 13

Any CLP -program P and total interpretation I satisfy that I is an equilibrium model of

P iff τI an equilibrium model of τP .

The result of Definition 10 is a standard logic program. Proposition 13 shows that we

can use this translation in combination with standard ASP solvers to obtain equilibrium

for CLP -program and stable extensions of all the AFs considered in this paper. The second

consequence of this translation is that deciding whether there exists any stable extension

of some CLP -program is in ΣP
2 in general and in NP if the program is normal (Dantsin et al.

2001). This complexity results are tight because hardness follows from Corollary 1 and

the hardness results for finding answer sets for these classes of programs (Dantsin et al.

2001). Therefore, deciding whether there exists any stable extension of some CLP -program
is ΣP

2 -complete in general and NP-complete for normal CLP -programs. Furthermore, this

result directly applies to EBAFs so that deciding whether there exists any stable exten-

sion is NP-complete.

6 Discussion

LP and AFs are two well-established KRR formalisms for dealing with nonmonotonic

reasoning (NMR). In particular, Answer Set Programming (ASP) is an LP paradigm,

based on the stable model semantics, which has raised as a preeminent tool for practical

NMR with applications in diverse areas of AI including planning, reasoning about actions,

diagnosis, abduction and beyond (Baral 2003; Brewka et al. 2011). On the other hand,

one of the major reasons for the success of AFs is their ability to handle conflicts due to

inconsistent information.

Here, we have shown that both formalisms can be successfully accommodated in

Nelson’s constructive logic. In fact, it is easy to see that by rewriting attacks using
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definition (7), the translation of any AF becomes a normal CLP -program. For instance,

by rewriting the attack (13), we obtain the equivalent formula:

penguinTweety ⇒ ∼flyTweety , (14)

which is a CLP -rule. In this sense, we can consider CSF(EF1) in Example 9 as an alternative

representation of the Tweety scenario in LP. Note that both the unique equilibrium model

I9 of program P9 (Example 5) and the unique equilibrium model I12 of this program

satisfy:

I9 �|= flyTweety

I9 |= not flyTweety

I12 �|= flyTweety

I12 |= not flyTweety .

In other words, in both programs we conclude that Tweety cannot fly. However, there are

a couple of differences between these two representations. First, in contrast with I9, we
have that I12 is not consistent: I12 |=+ flyTweety and I12 |=+ ∼flyTweety . Second and

perhaps more interestingly, in CSF(EF1), the “normality” of the statement “birds can fly”

does not need to be explicitly represented. Instead, this normality is implicitly handled

by the strong closed word assumption CW, which resolves the contradictory evidence

for flyTweety by regarding it as false. In this sense, CLP -programs and AFs can be seen

as two different syntaxes of the same formalism based on the principles NC and CW

highlighted in the introduction. In addition, another principle of this formalism is the

fact that evidence must be founded or justified: this clearly shows up in normal LP and

EBAFs where true literals can be computed by some recursive procedure, but also in

Dung’s AFs where, as we have seen, defeat can be understood as a proof of falsity.

Regarding practical aspects, we can use CLP -programs as a unifying formalism to

deal with both logic programs and AFs. This directly allows to introduce variables in

AFs through the use of grounding. Going further, full first-order characterizations of

AFs can be provided by applying the same principles to first-order constructive logic

(full first-order characterization of consistent logic programs has been already provided

by Pearce and Valverde 2004). Besides, constructive logic immediately provides an in-

terpretation for other richer syntaxes like the use of disjunctive targets in Collective

Argumentation (Bochman 2003) or the use of arbitrary propositional formulas to rep-

resent attacks in Abstract Dialectical Frameworks (Brewka and Woltran 2010; Brewka

et al. 2013).

7 Conclusion and future work

We have formalized the principles NC and CW in Nelson’s constructive logic and shown

that this is a conservative extension of logic programs which allow us to reason with

contradictory evidence. Furthermore, this allows us to translate argumentation frame-

works in a modular way and using the object language such that attacks and supports

become connectives in logic using the object level. As a consequence, we can combine

both formalisms in an unifying one and use proof methods from the logic or answer set

solver to reason about it.

Regarding future work, an obvious open topic is to explore how other argumenta-

tion semantics can be translated into the logic. For instance, the relation between the
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complete semantics for AFs, three-valued stable models semantics for LP (Przymusinski

1991; Y. et al. 2009) and partial equilibrium logic (Cabalar et al. 2007) suggest that our

framework can be extended to cover other semantics such as the complete and preferred.

Similarly, the relation between the paracoherent semantics for AFs (Amendola and Ricca

2019) and semiequilibrium models (Amendola et al. 2016) suggest a possible direction to

capture this semantics using the object level. It will also be interesting to see the relation

with the semistable semantics for AFs (Caminada et al. 2012). The relation with other

AFs extensions such as Collective Argumentation (Bochman 2003), Abstract Dialectical

Frameworks (Brewka and Woltran 2010; Brewka et al. 2013) or Recursive Argumentation

Frameworks (Barringer et al. 2005; Modgil 2009; Gabbay 2009; Baroni et al. 2011; Cayrol

et al. 2016; 2021) is also a direction worth exploring. Another important open questions

are studying how the principles NC and CW stand in the context of paraconsistent

logics (da Costa 1974) and paraconsistent logic programming (Blair and Subrahmanian

1989); and studying the notion of strong equivalence (Lifschitz et al. 2001; Oikarinen and

Woltran 2011) in this logic and evidence-based frameworks.
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