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Abstract. Let S be a scheme, and letGbe a ¢nite, £at, commutative group scheme over S. In this
paper we show that (subject to a mild technical assumption) every primitive class in Pic(G) is
realisable. This gives an af¢rmative answer to a question of Waterhouse. We also discuss
applications to locally free classgroups and to Selmer groups of Abelian varieties.
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Introduction

Let F be a number ¢eld with ring of integers OF , and suppose that G=OF is a ¢nite,
£at, commutative group scheme of exponent N. Then G � Spec�B�, where B is
an OF -Hopf algebra. Let H1�OF ;G� denote £at cohomology of Spec�OF � with
coef¢cients in G, and write GD � Spec�A� for the Cartier dual of G. The group
H1�OF ;G� parametrises isomorphism classes of twisted forms of B. It may be shown
that each twisted form C ofB is a locally freeA-module, and so determines a class �C�
in the Picard group Pic�GD� of GD.

In recent years, a large amount of work has been done concerning the A-module
structure of twisted forms of B. The initial motivation for this work was the study
of the Galois module structure of rings of integers: in many cases, the twisted form
C may be viewed as an order in the ring of integers of some (in general wildly
rami¢ed) extension of F . An important aspect of this theory is the class invariant
homomorphism c which is de¢ned by

c:H1�OF ;G� ÿ!Pic�GD�
C 7 ÿ! �C��B�ÿ1:

�1�

This homomorphism was ¢rst introduced by W. Waterhouse (see [Wa]), and it pro-
vides a measure of the A-module structure of twisted forms of B. For example,
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in many cases of arithmetic interest, one can show that B is A-globally free. If this
holds, then it follows that C is a globally free A-module if and only if it lies in
the kernel of c.

In this note, we shall be concerned with describing the image of c. In order to
explain our result, we ¢rst give two de¢nitions. Let pi:GD � GD ! GD

(i � 1; 2) denote projection onto the ith factor, and write m:GD � GD ! GD

for the multiplication map on GD. Each of these maps induces corresponding
pullback homomorphisms p�i : Pic�GD� ! Pic�GD � GD� and m�: Pic�GD� !
Pic�GD � GD� on Picard groups. We shall say that an element in Pic�GD� is primi-
tive if it lies in the kernel of the homomorphism m� ÿ p�1 ÿ p�2. We shall say
that an element in Pic�GD� is realisable if it lies in the image of the homo-
morphism c.

It was shown by Childs and Magid (see [CM]) that every realisable class is
primitive, and Waterhouse has raised the question as to whether the converse is
true. If the converse does hold, then this gives an analogue for ¢nite group schemes
of a standard result concerning extensions of Abelian varieties by commutative, con-
nected linear groups (see [S], Chapter VII, no. 15, Theorem 5). The purpose of this
note is to point out that Waterhouse's question does indeed have an af¢rmative
answer in almost all cases of arithmetic interest: it follows by combining the work
of Childs and Magid with a vanishing theorem of Breen.

We remark that Waterhouse's question has been considered by a number of other
authors (see, e.g., [By1, C, C1, C2, CP]). Also, by extending earlier work of L.
McCulloh on relative Abelian Galois module structure (see [M]), N. Byott has given
a precise description of the realisable classes of Pic�GD� in terms of certain resolvend
maps (see [By2]). However, it does not seem to be easy to use this description to
determine whether or not every primitive class is realisable. It would be interesting
to obtain an answer to Waterhouse's question in terms of Byott's description.

In Section 1 of this note, we recall work of Childs andMagid, and of Breen, and we
state our main result. In Section 2, we explain how this result may be used to study
the Galois structure of rings of integers of unrami¢ed extensions of F and to analyse
the structure of certain locally free classgroups. Finally, in Section 3, we apply our
earlier results to the case of class invariants arising via Abelian varieties, and we
explain how to obtain a new description of a certain £at Selmer group in some cases.
(In fact, it was this last application that originally aroused our interest in
Waterhouse's question.)

1. We begin by brie£y reviewing certain aspects of the work of Childs and Magid.
The reader may ¢nd further details in [CM].

Let S be any scheme, and let G be any ¢nite, £at, commutative group scheme over
S of exponent N. It is not hard to show, using Yoneda's lemma, that the primitive
elements of Pic�GD� correspond to the natural homomorphisms between the
group-valued functors GD and H1�ÿ;Gm�. In particular, this implies that the group
of primitive classes in Pic�GD� is annihilated by N.
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Let P and S denote the categories of Abelian presheaves and sheaves, respectively,
for the fpqc topology on S. Childs and Magid show that there is a spectral sequence

Ext
p
P�GD;Hq�ÿ;Gm�� ) Ext

p�q
S �GD;Gm�: �2�

The exact sequence of terms of low degree of (2) yields

0! Ext1P�GD;Gm� ! Ext1S�GD;Gm� ! HomP�GD;H1�ÿ;Gm��
! Ext2P�GD;Gm�:

�3�

NowWaterhouse (see Theorem 2 of [W]) has shown that Ext1S�GD;Gm� is isomorphic
to H1�S;G�. Hence (3) yields an exact sequence

H1�S;G� ! Prim�H1�GD;Gm�� ! Ext2P�G;Gm�; �4�

where Prim�H1�GD;Gm�� denotes the group of primitive classes of H1�GD;Gm�.
The ¢rst arrow of (4) is the class invariant homomorphism c. Hence, (4) implies

that the image of c is contained in the group of primitive classes of
H1�GD;Gm�, i.e. that every realisable class is primitive. Furthermore, if
Ext2P�GD;Gm� � 0, then it follows from (4) that the image of c consists precisely
of the primitive classes, i.e. that every primitive class is realisable. (See Proposition
1.1 of [CM].)

We now give the statement of Breen's vanishing theorem. Although the following
result is not explicitly stated in [Br1] in quite this form, it is a direct consequence
of the results described that paper (cf. [Br1], Thëore© me 3).

THEOREM 1.1 (Breen). Let S be any scheme, and let G be a ¢nite, £at commutative
group scheme over S. Suppose that the composition series of every geometric ¢bre
of G of residue characteristic 2 does not contain a factor of local-local type. Then
Ext2P�G;Gm� � 0.

Proof. We shall briefy explain how the results of [Br1] imply Theorem 1.1, and we
refer the reader to [Br1] for full details. We shall follow the notation of [Br1] as
closely as possible in our explanation below.

Suppose ¢rst that G is just an ordinary Abelian group, and consider the following
complex L:�G�:

0! Z�G� G� �Z�G� G� G� ÿ!d1 Z�G� G� ÿ!d0 Z�G� ÿ!e G! 0:

Here

e�p� � p;

d0�p; q� � �p� q� ÿ �p� ÿ �q�;
d1�p; q� � �p; q� ÿ �q; p�;
d1�p; q; r� � �p� q; r� ÿ �p; q� r� ÿ �p; q� ÿ �q; r�;
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and we set

L0�G� � Z�G�; L1�G� � Z�G� G�;

L2�G� � Z�G� G� �Z�G� G� G�:
Then (see [G], Exposë VII, 3.5)

H0�L:�G�� � G; H1�L:�G�� � 0:

Now the above construction is functorial in G ( loc. cit.). Hence given any ¢nite, £at
commutative group scheme G over S (viewed as an object of P), we may construct
a complex L:�G� of Abelian presheaves over S exactly as above. (We remark that
Breen uses a different complex, denoted by A�G� in [Br1]. We use the complex
L:�G� here in order to be able to treat group schemes G of even order (cf. Remarque
3 of [Br1]).)

Now suppose that A is any Abelian category which has enough injectives. Let X�
be a complex in A, and let H be any object of A. Then there are two spectral
sequences whose abutment is the hypercohomology of X� with values inH (see [Br2],
Sections 4 and 5):

0Ei;j
1 � Ext j�Xi;H� �)Exti�j�X�;H�;

00Ei;j
2 � Exti�Hj�X��;H� �)Exti�j�X�;H�:

We now take A � P, X� � L:�G�, and H � Gm. Since L:�G� is a partial free resol-
ution of G, we have

Extj�G;Gm� ' Ext j�L:�G�;Gm�; 0W jW 2:

Next, we note that, for any scheme X , we have

Extj�Z�X �;Gm� � Hj�X ;Gm� � 0 �j > 0�
in P, since the global sections functor H 7!H0�X ;H� is exact in P. This implies that
the spectral sequence 0Ei;j degenerates. Hence, its abutment Exti�G;Gm�
�0W iW 2� is the ith cohomology group of the complex

0E�;01 : Hom�L0�G�;Gm� ! Hom�L1�G�;Gm� ÿ!
f

Hom�L2�G�;Gm�:
Thus, to show that Ext2�G;Gm� � 0, we have to show that f is surjective.

For each 0W iW 2, the presheaf Hom�Li�G�;Gm� is represented by a smooth
group scheme over S. Hence, via the argument given on p. 345^347 of [Br1], it
suf¢ces to show that f is surjective whenever S � Spec�k�, where k is an algebraically
closed ¢eld, i.e. that Ext2�G;Gm� � 0 in this case. If char�k� > 2, this follows imme-
diately from Proposition 2 of [Br1]. On the other hand, if char�k� � 2, then
Ext2�Z=2Z;Gm� � Ext2�m2;Gm� � 0, while Ext2�a2;Gm� 6� 0 (see [Br3], Remark
5). Hence, it follows via devissage that if the composition series of G does not have
a factor of local-local type, then Ext2�G;Gm� � 0. This completes the proof. &
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The next result now follows immediately from Theorem 1.1 and the exact sequence
(4).

THEOREM 1.2. Let S be any scheme, and let G be a ¢nite, £at commutative group
scheme over S. Suppose that the composition series of every geometric ¢bre of G
of residue characteristic 2 does not contain a factor of local-local type. Then every
primitive class of Pic�GD� is realisable. &

Remark 1.3. If S � Spec�OF � (or more generally, if S � Spec�R�, where R is any
Dedekind domain), then Pic�GD� may be identi¢ed with the locally free classgroup
Cl�A� of the Hopf algebra A. Theorem 1.2 then asserts that (under the given
hypotheses on G), every primitive class in Cl�A� is realisable. We remark that most
authors have considered Waterhouse's question in terms of classgroups of Hopf
algebras.

2. Suppose now that S � Spec�OF � and that G � �iZ=niZ is a constant group
scheme over S. Then GD � �imni . If we set G � G�F �, then A � OFG, and
B �Map�G;OF �. In this situation, the twisted forms of B are the rings of integers
in unrami¢ed Galois algebra extensions of F with Galois group G which are
unrami¢ed at all ¢nite primes of F (see, e.g., [BT]).

THEOREM 2.1. (a) We have Im�c� � Prim�Cl�A��.
(b) Suppose that jGj is coprime to jCl�OF �j. If either
(i) F is totally imaginary, or
(ii) F is not totally imaginary and jGj is odd,

then Prim�Cl�A�� � 0.
If F is not totally imaginary and jGjis even, then 2:Prim�Cl�A�� � 0.
Proof. (a) This follows from Theorem 1.2 and Remark 1.3.
(b) Let C=F be a Galois algebra extension of F with Galois group G, and assume

that C=F is unrami¢ed at all ¢nite places of F . Suppose either that F is totally
imaginary, or that F is not totally imaginary and jGj is odd. Then class¢eld theory
implies that each Wedderburn component of C is isomorphic to F . Hence the
subgroup of realisable classes of Cl�A� is trivial, and so it follows from Theorem
1.2 that Prim�Cl�A�� is also trivial.

On the other hand, if F is not totally imaginary and jGj is even, then each
Wedderburn component of C is isomorphic either to F or to a quadratic extension
of F which is unrami¢ed at all ¢nite places of F . This implies that, in this case,
the subgroup of realisable classes of Cl�A� is annihilated by 2. Hence we deduce
from Theorem 1.2 that 2:Prim�Cl�A�� � 0. &

Remark 2.2. Theorem 2.1(b) is rather striking because it gives quite ¢ne infor-
mation concerning the structure of Cl�A� solely in terms of the classgroup
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Cl�OF � of the base OF . In some sense, it may be viewed as a sort of analogue of
Vandiver's conjecture for classgroups of integral group rings. We shall illustrate
this point via a simple example. (It is possible to construct more complicated
examples by using work of Ullom ([U]) on the ¢ne structure of certain classgroups.)

Suppose that G is cyclic of prime order p > 2, and let Ĝ be the group of characters
of G. Write K � F �zp�, where zp is a primitive pth root of unity, and set
D � Gal�K=F �. Let MapD�Ĝ;Cl�OK �� denote the group of D-equivariant maps from
Ĝ to Cl�OK �. If M denotes the maximal OF -order in FG, then it follows from
the theory of locally free classgroups (see, e.g., Chapter 1 of [T]) that
Cl�M� 'MapD�Ĝ;Cl�OK ��. Let us now assume that Cl�A� ' Cl�M�. We therefore
regard each element of Cl�A� as being an element of MapD�Ĝ;Cl�OK ��.

Next, we recall that for each integer r with 0W rW pÿ 1, there is an Adams
operator Cr on Cl�A� which is de¢ned as follows (see Chapter 9 of [T1]). Suppose
that f 2MapD�Ĝ;Cl�OK ��. Then Cr f �w� � f �wr� for each w 2 Ĝ. Set

Cl�A��1�:� f f 2 Cl�A�jCr� f � � f r for all r with 1W rW pÿ 1g:

Then it is easy to see that Cl�A��1� ' HomD�Ĝ;Cl�OK �� �MapD�Ĝ;Cl�OK ��.
Let D denote the p-part of Cl�OK �, and write o:D! Z�p for the character giving

the action of D on the pth roots of unity in K . Then we have

HomD�Ĝ;Cl�OK �� ' HomD�Ĝ;D� ' D�o�;
where D�o� denotes the o-eigenspace for the action of D on D. Hence
Cl�A��1� ' D�o�: Now consider the following examples:

(a) Suppose that F � Q. Then it is a theorem of Rim (see [R] or Theorem 50.2 of
[CR]) that Cl�A� ' Cl�M�. Also, it follows from Herbrand's theorem (see [W], Prop-
osition 6.16 and Theorem 6.17) that D�o� � 0. Hence, we deduce that Prim�Cl�A�� �
Cl�A��1� � 0. (So in fact this gives another proof of Theorem 2.1(b) in this special
case.)

(b) Suppose that F � Q�zp��, the maximal real sub¢eld of K � Q�zp�, and that p is
an irregular prime, i.e. that p divides jCl�OK �j. (There are in¢nitely many irregular
primes.) Suppose further that Vandiver's conjecture holds, i.e. that p does not divide
jCl�OF �j. Then Theorem 2.1(b) implies that Prim�Cl�A�� � 0.

On the other hand, via an argument virtually identical to that given in Theorem
50.2 of [CR], it may be shown that Cl�A� ' Cl�M�. Hence, since Gal�K=F � is gen-
erated by complex conjugation, we have that Cl�A��1� ' D�o� � Dÿ, where Dÿ

denotes the minus-eigenspace for the action of complex conjugation on D. Since
D is nontrivial, and p does not divide jCl�OF �j, it follows that Dÿ is nontrivial.

Hence, if Vandiver's conjecture is true, then for in¢nitely many p, we have
Prim�Cl�A�� � 0, whilst Cl�A��1� 6� 0. &

Remark 2.3. Let F be a real quadratic ¢eld of odd discriminant and odd
classnumber. Then F has at most one quadratic extension L that is unrami¢ed
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at all ¢nite primes. This extension L exists if and only if the norm of a fundamental
unit of F is �1 (cf. [FT], Chapter V, 1.14). Hence, it follows from a theorem of
Brinkhuis (cf. [Bri], Theorem 2.2) that if H denotes Gal�L=F �, then OL is a free
OFH-module.

Now suppose that G is any ¢nite Abelian 2-group. Let C=F be any Galois algebra
extension of F with Galois group G, and assume that C=F is unrami¢ed at all ¢nite
places of F . Then each Wedderburn component of C is isomorphic either to F
or to L. Hence, the ring of integers of C is a free OFG-module. This implies that
the subgroup of realisable classes of OFG is trivial, and so it follows from Theorem
1.2 that Prim�Cl�OFG�� � 0.

It would be interesting to know whether a similar strengthening of Theorem 2.1(b)
holds for other ¢elds F which are not totally imaginary and which have odd
classnumber. &

3. We shall now describe the application that led to our interest in these problems.
For further details, the reader may consult [A1, A2], and [AT].

Let A=F be an Abelian variety with everywhere good reduction, and let A=OF

denote its Nëron model. Write AD=OF for the dual Abelian scheme of A=OF .
Fix a prime p, and let Apn denote the OF -group scheme of pn-torsion on A=OF . Then
Apn is a ¢nite, £at, commutative group scheme, and its Cartier dual is AD

pn , the
OF -group scheme of pn-torsion on AD=OF . We therefore have a class invariant
homomorphism

cn:H
1�OF ;Apn� ÿ!Prim�Pic�AD

pn ��

as described in Section 1. The study of the class invariant homorphism in this context
was ¢rst introduced by M. J. Taylor in [T2].

The natural inclusion map AD
pn ,!AD

pn�1 induces natural homomorphisms

H1�OF ;Apn�1� ! H1�OF ;Apn � and Prim�Pic�AD
pn�1 �� ! Prim�Pic�AD

pn ��:

It may be shown that the following diagram is commutative:

H1�OF ;Apn�1 � ÿ!
cn�1

Prim�Pic�AD
pn�1 ��??y ??y

H1�OF ;Apn � ÿ!
cn

Prim�Pic�AD
pn��:

Passing to inverse limits yields a homomorphism

c1: lim ÿ H1�OF ;Apn � ÿ! lim ÿ Prim�Pic�AD
pn��:

We now observe that for all odd primes p (and for all positive integers n), the group
schemes Apn satisfy the hypotheses of Theorem 1.2. Furthermore, this is also the
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case when p � 2 provided that A has ordinary reduction at all places dividing 2.
Hence, we have the following result.

THEOREM 3.1. The homomorphism c1 is surjective whenever p is odd. If A has
ordinary reduction at all places dividing 2, then c1 is also surjective when p � 2.

Remarks 3.2. (1) Theorem 3.1 gives an af¢rmative answer to Question 1 (ii) of [A1]
if in addition the p-primary part of the Tate^Shafarevich group of A=F is assumed to
be ¢nite.

(2) Suppose that the kernel of c1 is ¢nite. (The author believes that this is the case
for all Abelian varieties A=F with everywhere good reduction, and for all primes p.)
Then Theorem 3.1 implies that there is an isomorphism

lim ÿ a finite group
n o

' lim ÿ Prim�Pic�AD
pn��:

Hence we obtain a new description of the £at Selmer group lim ÿH
1�OF ;Apn � (modulo

a ¢nite subgroup) in terms of the Galois structure of twisted forms of Hopf orders.
It is shown in [AT] that, (subject to certain technical hypotheses), if A=F is a CM

elliptic curve and p is an odd prime of ordinary reduction, then the kernel of
c1 is indeed ¢nite.

(3) Observe that the kernel ofc1 is ¢nite if and only if the order of the kernel of cn

is bounded independently of n. The exact sequence (3) implies that this is equivalent
to the assertion that the order of the group Ext1P�AD

pn ;Gm� is bounded independently
of n. It would be very interesting to have an answer to the following question. Sup-
pose that �Gn�nX 0 is any p-divisible group scheme over OF . Under what conditions
is the order of the group Ext1P�Gn;Gm� bounded independently of n?

I am gateful to R. Schoof for drawing my attention to the following example. Let
�Z=pnZ�nX 0 denote the constant p-divisible group scheme over OF , and suppose
that p 6 j j Cl�OF �j. Then, for each n, the p-primary part of H1�Z=pnZ;Gm� is trivial,
and so it follows that

Ext1P�Z=pnZ;Gm� � Ext1S�Z=pnZ;Gm�:

Now Theorem 2 of [W] implies that

Ext1S�Z=pnZ;Gm� ' H1�OF ; mpn�;

and this last group is of exponent pn. Hence we deduce that the order of
Ext1P�Z=pnZ;Gm� increases with n.

This suggests that, in general, perhaps the exponent of Ext1P�Gn;Gm� remains
bounded if the p-divisible group �Gn�nX 0 does not have a subquotient of twisted
constant type. We remark that if A=OF is any Abelian scheme, then the p-divisible
group scheme �Apn�nX 0 does not have a subquotient of twisted constant type (see
[MW], Chapter 3, Section 7).
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