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Abstract
The water purification functions of forests represent one of the most frequently invoked
examples of nonmarket ecosystem services that are economically valuable. This study quan-
tifies the monetary value of forests’ water purification services in the form of the ensuing
cost savings of municipal drinking water treatment, using a rich panel dataset from China’s
Sichuan province.Moreover, this study has undertaken a novel spatial piecewise approach to
investigate the spatial patterns of such cost savings delivered by forests at different distances
from the water intake point. The estimation results find that forests within a 2 km radius
upstream from the water intake point have the most sizeable and statistically significant cost
saving effect. For forests within a 3 km radius, this effect becomes somewhat smaller but
remains statistically significant. Beyond a 4 km radius, this effect becomes notably smaller
and statistically equal to zero. Our analysis facilitates the optimal spatial targeting of forest
conservation.

Keywords: fixed effects panel data model; forest; production function; spatial piecewise approach; valua-
tion of ecosystem services; water purification
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1. Introduction
The water purification functions of forests represent one of the most frequently invoked
examples of nonmarket ecosystem services that are economically valuable (Freeman
et al., 2014; Vincent et al., 2016). Forests help enhance water quality by reducing soil
erosion (and hence reducing silt) as well as filtering out nutrients and pollutants carried
in water, which allows the municipal water supply sector to simplify or expedite many
costly water treatment procedures and thereby save on operating costs (Millennium
EcosystemAssessment, 2005; Holmes et al., 2017). Despite that, there has been a paucity
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of statistical estimates that robustly quantify such cost savings (Ferraro et al., 2012;
Price and Heberling, 2018; Ovando and Brouwer, 2019), which has precluded inclu-
sion of this essential ecosystem service in large-scale programmes intended to main-
stream ecosystem services into national accounts, such as the UK National Ecosystem
Assessment (Bateman et al., 2013).

There is a recent and limited body of formal econometric literature that attempts
to bridge this gap, such as the studies of Abildtrup et al. (2013, 2015), Fiquepron
et al. (2013), Singh and Mishra (2014), Vincent et al. (2016, 2020), Lopes et al. (2019),
Westling et al. (2020) and Piaggio and Siikamäki (2021).1 Among these studies, only
Vincent et al. (2016, 2020), Westling et al. (2020) and Piaggio and Siikamäki (2021)
undertook fixed effects panel data estimation, and none of these studies adopted the fur-
ther quasi-experimental approaches or supplementary analyses (such as placebo tests)
recommended by Greenstone and Gayer (2009), Imbens and Wooldridge (2009) and
Athey and Imbens (2017) to more convincingly identify the water treatment cost sav-
ings ‘caused’ by forests, as opposed to those that are in fact induced by other unobserved
‘confounding factors’ but are likely to be mistakenly attributed to forests.2

Moreover, the spatial patterns of such cost savings delivered by forests at different
distances from the water intake point remain less understood. Existing studies typically
focus on the average effect of forest cover in the entire catchment area (e.g., Singh and
Mishra, 2014; Vincent et al., 2016, 2020; Piaggio and Siikamäki, 2021).3 Such estimates
suffice for the valuation and accounting of the average or aggregate value of water purifi-
cation services of forests in each catchment area. However, the provision of such services
(via forest conservation) nearly always entails costs to society such as administrative
costs of conservation activities and forgone benefits of alternative land use (Pearce, 2004;
Armsworth, 2014). Economically optimal land use decision making critically depends
on whether the benefits of such services (savings of drinking water treatment costs)
outweigh the costs of forest conservation.

Yet, such benefits and costs tend to be spatially heterogenous (Polasky et al., 2008;
Vincent et al., 2016). Therefore, the cost-effective provision of water purification ser-
vices via forest conservation would necessitate a better understanding of the presumably
location-specific implications of forest cover for drinking water treatment costs. For
instance, intuition might suggest that upstream forest cover within a certain radius of
the water intake point is likely to have a larger effect on water treatment costs, relative to
forest cover in a farther upstream location, because solids and other pollutants entrained
by surface runoff in farther upstream locations may have been naturally removed before
they could reach the water intake point, due to sedimentation and other self-purification
functions of water bodies. In that case, it might be worthwhile to undertake forest con-
servation actions within that radius of the water intake point, but the opposite might be

1Further details of these studies are provided in table A1 in online appendix A.
2Vincent et al. (2016) and Lopes et al. (2019) performed instrumental variable estimation. Yet both stud-

ies instrumented another explanatory variable of drinking water treatment costs (the volume of treated
water), instead of forest cover.

3Lopes et al. (2019) and Westling et al. (2020) measured the average effect of forest cover within a pre-
determined radius (10 and 100 km respectively) of the water intake point, whereas Abildtrup et al. (2013,
2015) used forest cover in the entire administrative division served by a drinking water treatment works.
Such practices are prone to considerable measurement error because, intuitively, only forests within the
upstream catchment area (as opposed to forests in other locations) have implications for water quality at
the water intake point.
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true for more distant locations or the entire catchment area. This is particularly relevant
if water treatment works extract water from large rivers with massive catchment areas.

This study seeks to contribute to this literature through a spatial piecewise analysis of
the effects of forest cover on drinking water treatment costs. We undertook fixed effects
estimation using a rich panel dataset that contains annual observations on the drinking
water treatment works of 170 county-level administrative divisions of China’s Sichuan
province during 1992–2015. This allows us to control formany unobserved confounding
factors that might bias the estimated water treatment cost savings attributable to forest
cover. Further, we performed aHeckman correction and a placebo test to formally assess
the implications of missing data and potential confounders for the estimates of interest.
This study thus enriches the currently thin evidence base around the monetary value of
water purification services of forests.

In particular, our study contributes to the geographic representativeness of this lit-
erature by providing perhaps the first formal case study from China, a country that, in
the past decades, experienced significant changes in forest cover and rapid expansion of
drinkingwater supply on a large scale.Moreover, the spatial piecewise approach4 enables
us to identify the farthest upstreamdistance beyondwhich forest cover no longer directly
affects water treatment costs. We first delineated a sequence of equal distance concen-
tric circles or buffers (with a 1 km step length) surrounding each water intake point. We
next measured the forest cover within the overlapping areas between the catchment and
each buffer, giving rise to a vector of variables that represent forest cover within differ-
ent radiuses of the water intake point. These forest cover variables enter the regression
model individually, which reveals the threshold radius where the effect of forest cover
on water treatment costs just disappears.

Such spatially explicit quantification of forests’ water purification services has pro-
nounced implications for developing countries in the tropics that are subject to contin-
uing net losses of natural forests (Song et al., 2018) and limited access to safe drinking
water (UNICEF and WHO, 2019). For instance, it was estimated that only 35 per cent
of the population in the world’s least developed regions was covered by safely-managed
drinking water services in 2017 (UNICEF and WHO, 2019). In the upcoming decade,
these regions will need heavy investments in sanitised drinking water supply in order to
achieve theUnitedNations’ Sustainable Development Goal 6: ensure safe drinking water
for all by 2030. Preserving forests’ water purification servicesmay help rein in such costs,
which might be particularly pertinent for developing regions under tight constraints on
public spending.

However, local households in these regions tend to rely heavily on forest extrac-
tion as an essential source of livelihoods (Wunder et al., 2018). In these contexts, the
within-catchment optimal targeting of forest conservation actions takes on particular
importance in terms of reducing drinking water treatment costs on the one hand, and
protecting local livelihoods on the other. This study, admittedly, did not collect data
from the tropics and the resultsmay not be globally generalisable. Despite that, this study
demonstrates a viable empirical approach that facilitates the identification of the forests
(within a catchment) that provide the most materialisable water purification services
to local residents. This empirical approach constitutes the primary contribution of this
study and is transferrable to other geographic contexts.

4This was adapted from the study of Tibesigwa et al. (2019), which concerns forests’ benefits for
cultivation activities in terms of providing habitats for natural pollinators.
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Our discussion so far has yet tomention other types of ecosystem services provided by
forests because our empirical analysis primarily focuses on thewater purification service.
However, when conducting a cost-benefit analysis for forest conservation or restora-
tion, it is important to bear in mind that the water purification service is only one of a
wide range of ecosystem services provided by forests, as discussed by the Millennium
Ecosystem Assessment (2005), Binder et al. (2017), Holmes et al. (2017), and Ovando
and Brouwer (2019). For example, forests offer provisioning services such as timber and
non-timber forest products. Thewater purification service of forests is typically regarded
as a type of regulating service; other examples under this broad category include carbon
sequestration, regulating streamflow, recharging groundwater, andmitigating flood risk.
Cultural services such as recreational benefits represent another well-known category of
ecosystem services delivered by forests.

Moreover, forests provide supporting services such as soil formation, nutrient cycling
and the provision of habitats for wildlife. Many of these ecosystem services exhibit spa-
tial heterogeneity or distance decay similar to the water purification service (Siikamäki
et al., 2015). For example, provisioning and recreational services are more likely to be
utilised in locations closer to human settlements or roads, due to high transport/travel
costs in more distant or less accessible locations (Bateman et al., 2006; Hyde, 2012;
Siikamäki et al., 2015; Busch and Ferretti-Gallon, 2017). The travel cost approach is a
classic methodology that captures the distance decay of forests’ recreational services by
modelling the negative relationship between distance and the number of visits (Freeman
et al., 2014).

Moreover, a few recent hedonic pricing studies (i.e., Conway et al., 2010; Sander
et al., 2010) performed the spatial piecewise analysis mentioned above and found that
the recreational services of urban forests are capitalised into the prices of houses, but
only within a certain radius. Another example is that forests provide habitats for natu-
ral pollinators which contribute to the production of pollinator-dependent crops, and
such benefits tend to be larger if the forests are in close proximity to farmland plots,
because natural pollinators usually have a limited foraging distance. Tibesigwa et al.
(2019) explored this spatial pattern using the spatial piecewise approach mentioned
above. Our study represents the first empirical study on the spatial pattern of forests’
water purification service, which provides a novel addition to this broader literature
around the spatial heterogeneity of forests’ ecosystem services.

The remainder of this paper is structured as follows. Section 2 describes the study
area, data sources and measurement of variables. Section 3 performs the econometric
analysis and reports the results. Section 4 discusses these findings and concludes.

2. Study area, data and variables
The geographic focus of this study is China’s Sichuan province (figure A1, online
appendix A). In 2018, the province had a population of over 80 million and its econ-
omy was similar in size to Switzerland in terms of GDP (National Bureau of Statistics of
China, 2019). The province’s forests are widely considered to have a pivotal role in the
delivery of watershed services and biodiversity. Sichuan is one of the only two provinces
of China that accommodate the upper courses of both the Yangtze River and the Yellow
River, the two largest rivers of the country. Its forests contribute greatly to water inflows
to both rivers. Moreover, they provide vital habitats for a variety of endangered species,
including the giant panda.
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Therefore, central and local government bodies have been heavily investing in forest
conservation and restoration programmes, such as the Sloping Land Conversion Pro-
gramme that retires highly erodible agricultural lands and converts them to woodlands.
Public spending on forest conservation and restoration in Sichuan province in 2018
amounted to CNY9.5 b (USD1.4 b) (National Bureau of Statistics of China, 2019), which
is a considerable sum, using the annual cost of the US Conservation Reserve Program
(USD1.8 b) as a reference point (Hellerstein, 2017). However, less is known about the
economic returns of forest conservation and restoration, which adds to the difficulty
of setting such activities at the optimal level (where the benefits outweigh the costs).
The postulatedwater purification services of forests would represent a highly perceivable
nonmarket benefit of forests that continuously accrues to society.

We next outline the theoretical framework which guided the selection of variables
and data collection. The water purification effect of forests is modelled as an input to the
production of drinkingwater, following the theoretical framework ofVincent (2011) and
Freeman et al. (2014). The production function is assumed to take the Cobb-Douglas
functional form:5

z = xα
1 x

β
2 e

γ . (1)

In this production function, x1 represents a vector of variable inputs such as raw
water, chemicals, labour and electricity; x2 denotes a vector of fixed inputs such as
machinery; e consists of a vector of environmental factors that are exogenous to pro-
duction decisions, such as forest cover and rainfall. Producers (water treatment works)
choose the amounts of variable and fixed inputs that minimise the long-run production
costs (since our dataset shows considerable adjustments in production assets during the
24-year period it covers), given exogenous levels of output z̃ and environmental factors
ẽ. Solving this cost minimisation problem gives rise to the conditional factor demands:

x∗
1 =

[(
w1β

w2α

)−β
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5As described in online appendix B, we tested an alternative production function involving both the
quantity and quality of output, which was adapted from the model of Grieco and McDevitt (2017), and the
findings are largely stable.
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Figure 1. Schematic diagram of a water intake point and its catchment.

where the coefficient on lnẽ represents the elasticity of the unit drinking water treatment
cost with respect to environmental factors, which captures themonetary value of forests’
water purification services. This theoretical framework provides a basis for the selection
of variables in our data collection and empirical analysis.

A full catalogue of the geographic coordinates of 276 urban drinking water intake
points in Sichuan province was obtained from the Ministry of Ecology and Environ-
ment of China. This has enabled the delineation of the upstream catchment area of each
water intake point, within which the surface runoff drains into the water intake point
(as illustrated in figure 1). The upstream catchment area (the polygon that encompasses
the river networks in figure 1) was delineated from a Digital Elevation Model (DEM) in
ArcGIS. We next drew a sequence of equal distance concentric circles (with a 1 km step
length) surrounding each water intake point. (The smallest circle surrounding the water
intake point has a radius of 1 km, the second smallest circle has a radius of 2 km, and so
forth.) These circles were used to define the segments of the catchment at different dis-
tances to the water intake point.We thenmeasured the area and percentages of different
land use types within the overlapping areas between the catchment and each circle (the
shaded areas in figure 1).

In contrast, forests in the remaining fractions of the circles outside the catch-
ment (the unshaded portions of the circles in figure 1) will be used as a placebo
test, as will be detailed shortly. The land use dataset was sourced from the Climate
Change Initiative of the European Space Agency (https://www.esa-landcover-cci.org/?
q{\mathsurround=\opskip$=$}node/175), which consists of consecutive annual landuse
data from 1992–2015 with a spatial resolution of 300m.6 Moreover, following Singh and
Mishra (2014) andVincent et al. (2016), we controlled for rainfall in these buffers, which

6The original landuse dataset classifies 22 first-level landuse types (ESAClimateChange Initiative, 2017).
We selected a subset of these types and regrouped them into cropland (original first-level classification codes
10 and 20), forestland (original codes 50, 60, 70, 80, 90, 120), and urban areas (original codes 190, 200, 201,
202). Other land use types either only account for a trivial fraction of the buffers in our dataset, or represent
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is likely to correlate with both land use changes and water quality (and hence drinking
water treatment costs). The rainfall dataset was obtained from theClimate ResearchUnit
of the University of East Anglia (Harris et al., 2014; Osborn and Jones, 2014), which con-
tains monthly rainfall data for the same period (1992–2015). This dataset has an original
spatial resolution of 0.5 degrees and was resampled to a 30m resolution. The land use
and rainfall variables constitute the vector of environmental inputs (ẽ) in equation (5).

Annual water treatment data were extracted from the Statistical Yearbook of City
Water Supply and the Statistical Yearbook of County Water Supply. These data pro-
vided the remaining quantity variables in equation (5), namely the unit water treatment
cost c̄, the level of water supply z̃ and the value of fixed assets x̃2. Each observation in
these yearbooks refers to a water supply firm, which may own multiple water treatment
works. This has added to the difficulty of performing the analysis at the water treatment
work level. Moreover, many water supply firms were renamed (even more than once)
due to reorganisation, acquisition and expansion so forth. over the 24-year-long time
span of this study. Therefore, we have opted to conduct the analysis at the county level to
circumvent the uncertainties around identifying the same water supply firms under dif-
ferent names. We thus aggregated the land use, rainfall, water supply and asset variables
to the county level,7 and derived the county-level unit water treatment cost variable as
each county’s total treatment cost divided by its total water supply. In fact, these ‘aggre-
gated’ observations still mostly contain firm-level information, since only a very small
proportion (less than 7 per cent) of the counties in our dataset have multiple water sup-
ply firms in one year. Turning to the prices of variable inputs and production assets
(w1 and w2), the wage rate (or the price of labour) was measured at the county level
using data from the Sichuan Statistical Yearbook, whereas the prices of raw water, elec-
tricity, chemicals and production assets were controlled for by year fixed effects, which
will be further discussed in section 3. In addition, the privatisation of China’s urban
water supply, as opposed to public management, has been expected to enhance the sec-
tor’s performance in terms of cost-effectiveness (Jiang and Zheng, 2014; Li, 2018). We
have therefore controlled for the proportion of private water supply firms in estimat-
ing the water treatment cost function. Panel 1 of table A2 (online appendix A) describes
these variables, although for brevity it contains land cover and rainfall variables only
for the 3 km radius as an example, since the preferred regression models did not find a
statistically significant effect of forest cover beyond the 3 km radius on water treatment
costs. Figure A2 in online appendix A presents the means of the land cover variables for
all different radiuses involved in the regression analysis.

3. Estimation methods and results
We performed a series of econometric analyses on the spatial patterns of forests’ water
purification services. This section reports our estimation procedures and main findings.

amosaic of diverse land use types (e.g. crops and natural vegetation) whichmay havemixed effects on water
quality.

7For counties withmultiple water intake points andmultiple water supply firms, the rainfall variables and
the percentages of different land use types were measured as county-level averages across different water
intake points, whereas the water supply and asset variables were measured as county-level totals across
different water supply firms.
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3.1 Visual evidence
Figure A3 in online appendix A visualises the spatial distribution of unit water treatment
cost levels and forest cover within a 3 km radius upstream of the water intake point.8 The
twomaps exhibit a reasonably distinguishable negative association between the two vari-
ables: unit water treatment costs tend to be higher (darker areas in figure A3a) where
water intake points are surrounded by less forest cover (lighter areas in figure A3b),
such as the dashed square areas. In the opposite direction, water treatment costs appear
to be lower where water intake points have more forested buffers, such as the dashed
circular areas. Moreover, figure A3c suggests a timewise negative correlation between
water treatment costs and forest cover. These visually observed negative correlations can
be quantitatively substantiated by the correlation coefficient between the two variables
(−0.075, p-value< 0.01).

These findings are suggestive of the postulated water purification effect of forests.
Yet, the strength of such evidence is rather limited, as the observed spatial and temporal
heterogeneity of water treatment costs might be induced by certain unobserved factors
other than forest cover. For example, less forested locations might imply higher levels of
urbanisation and hence higher prices of labour, in which case the observed higher water
treatment costs in these places might be caused by higher labour costs instead of lower
sourcewater quality associatedwith less forest cover. These patternswill be further tested
via the more rigorous regression analysis reported below.

3.2 Main analysis
The departure point of our regression analysis is a county-level fixed effects model
specified as per the water treatment cost function (equation (5)):

arcsinh(c̄it) = λl arcsinh(lit) + λr1 arcsinh(rit) + λr2 [arcsinh(rit)]2 + λz arcsinh(zit)

+ λw arcsinh(wit) + λp arcsinh(pit) + θ i + θ t + εit . (6)

(The notation ‘arcsinh’ refers to the inverse hyperbolic sine transformation which
approximates the logarithmic transformation. We will further discuss this later.) This
specification explicitly contains the following explanatory variables for county i in year
t: the level of annual water supply (zit), thewage rate (wit), the percentage of privatewater
works (pit), the percentages of different land use types (lit), and annual rainfall (rit). In
particular, runoff from cropland and urban areas tends to carry considerable amounts
of agricultural fertilisers and household sewage, which is likely to induce higher water
treatment costs.

On the other hand, these land use types are often converted from natural land cover
such as forests, and therefore may have a negative correlation with the percentage of
forest cover. We thus explicitly controlled for the percentages of cropland and urban
areas to avoid potential confounding bias.9 Moreover, we attempt to account for other

8Forest cover maps for other radiuses up to 10 km (which are available upon request) have similar spa-
tial patterns. It is difficult to visually assess whether forest cover in different radiuses has different spatial
correlations with water treatment costs. Figure A3 therefore focuses on forest cover in the 3 km radius as an
example, for the same reason as in table A2.

9We also investigated the locations of 175 wastewater treatment plants in Sichuan province which are
routinely monitored by the state as major sources of water pollution (‘guokong’ plants). Of the 170 counties
involved in this study, only three have a single ‘guokong’ wastewater treatment plant within 10 kmupstream
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price variables using year fixed effects (θ t). Prices of raw water and electricity are reg-
ulated by the government to be the same across different counties of the province in a
given time period. Chemicals (such as clarifying agents and disinfectants) and produc-
tion assets are likely to be purchased from a single and sufficiently competitive market.
We thus assume that prices of chemicals and production assets vary over time but not
across water treatment works. These year fixed effects also control for a variety of other
time varying factors that are homogeneously faced by all water treatment works, such as
inflation and changes in national and provincial environmental and resource policies.

In addition, this specification includes county fixed effects (θ i) to eliminate potential
confounding factors that are location specific but do not vary over time, such as various
topographical and geological characteristics including the slope of forestland. Standard
errors are clustered at the county level to address unobserved within-county correla-
tion (Cameron andMiller, 2015). Lastly, the logarithmic transformation is approximated
using the inverse hyperbolic sine (IHS) transformation, which allows zero values of the
land use variables. All estimates are expressed as elasticities derived using the approach
recommended by Bellemare and Wichman (2020).10

Figure 2a presents the estimated elasticities of the unit water treatment cost with
respect to forest cover within different radiuses upstream from the water intake point,
where the solid circles represent the point estimates, and the crosses and diamonds give
the confidence intervals at the 5 and 10 per cent significance levels, respectively. These
estimates were derived from 10 regression models that each contain a single forest cover
variable for a certain radius, as exemplified by Model 1 in table 1. Figure 2a shows that
forest cover within a 2 km radius upstream from the water intake point has the most
sizeable effect on drinking water treatment costs (estimated elasticity= –2.48× 10–2,
p-value< 0.05). For a 3 km radius, this effect becomes somewhat smaller but remains sta-
tistically significant (estimated elasticity= –1.84× 10–2, p-value< 0.10). The estimate
for the 4 km radius is similar to that for the 3 km radius, although the p-value goes slightly
above 10 per cent after correcting for the unbalanced panel dataset, which will be fur-
ther discussed shortly. Beyond 4 km, the estimates becomemuchweaker in terms of both
the magnitude and statistical significance (the absolute value of the estimated elasticity
<9.06× 10–3, p-value> 0.43). We therefore opted to focus on the estimate for the 3 km
radius (for the moment).

Table 1 reports the full estimates for the corresponding model (Model 1). As men-
tioned above, forests in farther upstream locations (e.g., beyond 4 km) are less likely to

of their drinking water intake points. Dropping these three counties led to qualitatively similar findings.
(Full regression results are available upon request.) Alternatively, due to lack of time-variant data on these
wastewater plants (e.g., the time they started operating and the volume of wastewater treated/discharged
every year), the only control variable that could be constructed using the locations of these wastewater plants
would be a time-invariant variable indicating the number of wastewater plants located upstream of each
county’s drinking water intake points, which has already been accounted for by county fixed effects and
hence would not affect the estimates regardless of whether they are added to the regression models.

10Following Bellemare and Wichman (2020), the original values of all the variables listed in panel 1 of
table A2 were multiplied by 100 before the IHS transformation to obtain stable elasticity estimates. This
adjustment did not change the signs and statistical significance of the elasticity estimates. Take the regression
model arcsinh(y) = α + β arcsinh(x) + ε, where all the variables and parameters are stylised notations that
do not refer to any variables or parameters defined elsewhere in this paper. The elasticity of ywith respect to

x can be expressed as β̂

√
ȳ2+1
ȳ

x̄√
x̄2+1

, where β̂ represents the estimator of β , and ȳ and x̄ refer to the sample
means of y and x, respectively.
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(a) (b)

(c)

Figure 2. Elasticity estimates with respect to forestland percentages within different radiuses.

influence water treatment costs because sediments and nutrients from those locations
are more likely to have settled before reaching the water intake points. That said, it is
worth noting that the estimate for the closest radius (1 km) is small in size and statis-
tically insignificant. Many ecological studies (e.g., Allan, 2004; Zhao et al., 2015) found
that river water quality tends to have a higher correlation with land use configurations
in a radius larger than a few hundred metres because sediments and nutrients can be
transported longer (but not unlimited) distances, which could be 2–3 km in our case.
Therefore, land use at a very local scale (e.g., within 1 km of the water intake point) may
not be able to explain sediments and nutrients that are transported downstream from
reasonably close upstream locations (e.g., within a 2 or 3 km radius). This implies that
forest cover within a 1 km radius may have lower explanatory power of water quality at
the water intake point and hence a smaller effect on water treatment costs. Comparing
figures 2a and A5a (online appendix), we have qualitatively similar findings regardless
of whether forest cover is measured in percentages or area units.

As can be seen in Model 1, the magnitude of the estimate for the variable ‘IHS of per-
centage of forestland 0–3 km’ implies that a 1 per cent increase in forest cover within
a 3 km radius upstream from the water intake point would decrease drinking water
treatment costs by almost 0.02 per cent (at the means of the two variables). (Recall
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Table 1. Estimated water treatment cost function using land cover percentage variables

Dependent variable:
IHS of unit cost Model 1 Model 2

Explanatory variables:

IHS of pct. of
forestland 0–3 km
(inside catchment)

–1.84× 10–2* (9.53× 10–3) –1.67× 10–2* (1.01× 10–2)

IHS of pct. of
cropland 0–3 km
(inside catchment)

1.54× 10–2 (2.28× 10–2) 1.85× 10–2 (2.36× 10–2)

IHS of pct. of urban
area 0–3 km (inside
catchment)

1.72× 10–2 (1.22× 10–2) 1.66× 10–2 (1.22× 10–2)

IHS of rainfall
0–3 km

5.40 (8.16) 5.43 (8.12)

Squared IHS of
rainfall 0–3 km

–0.22 (0.34) –0.23 (0.33)

IHS of water
supply

–0.20*** (0.04) –0.21*** (0.04)

IHS of wage rate 2.54× 10–3 (0.08) –6.51× 10–3 (0.08)

IHS of pct. of state
owned water works

6.73× 10–3 (5.89× 10–3) 5.38× 10–3 (5.81× 10–3)

Inverse Mills Ratio –0.78*** (0.29)

County fixed effects Yes Yes

Year fixed effects Yes Yes

Clustered standard
errors (at the
county level)

Yes Yes

Number of
observations

1,618 1,618

Model significance
(p-value)

0.00 0.00

R2 (within) 0.75 0.75

Notes: Estimates that are statistically significant in both models are highlighted in bold italics (up to the 10% significance
level). Asterisks indicate statistical significance: *p-value< 0.10, ***p-value< 0.01. Standard errors are in parentheses.

that all estimates have been converted to elasticities following Bellemare and Wichman
(2020).) Another way to interpret this elasticity estimate is that a 1 km2 increase in for-
est cover would reduce water treatment costs by CNY0.006/m3 (USD0.001/m3). This
is much smaller than the elasticity estimates reported by tropical case studies such as
Singh and Mishra (2014) and Vincent et al. (2016, 2020), but comparable to those from
temperate regions such as Abildtrup et al. (2013) and Lopes et al. (2019), as shown in
table A1 in online appendix A. It appears that forests in the tropics help reduce drink-
ing water treatment costs to a greater extent than those in temperate regions, which is
consistent with ecological and hydrological evidence (e.g., Bruijnzeel, 2004; Wei et al.,
2005). The aggregate cost savings derived using the total water supply in 2018 amounts
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to CNY63m (USD9.5m). This value, although lower than the province’s forest invest-
ments in the same year, is provided by a small proportion of the province’s forests (those
within 3 km upstream of drinking water intake points), and represents only one part of
forests’ ecosystem services. Moreover, such benefits will continue to accrue in increasing
amounts over time, in light of the ongoing rapid urbanisation of Sichuan province and
the accompanying expansion of municipal water supply.

In addition, the estimated elasticity of the unit water treatment cost with respect to
the scale of water supply is negative and less than one, as shown by the estimate for the
variable ‘IHS of water supply’ in Model 1. This implies that the unit water treatment cost
decreases less than proportionally with the scale of water supply; in other words, the
water supply firms in our dataset exhibit increasing returns to scale.

3.3 Heckman correction for missing data
Nonetheless, our county-level panel dataset is still unbalanced, whichmight bias the esti-
mates if certain types of counties are more likely to have missing data, in which case the
available observations with complete information would become an unrepresentative
sample of the study area. For instance, the complete observations in our dataset have
an average urban population of 110.66 thousand, which is notably higher than that of
incomplete and missing observations (71.60 thousand), and the difference is strongly
significant with a p-value below 0.001. This implies that counties with a smaller urban
population aremore likely to havemissing data; this is not surprising because water sup-
ply firms smaller than a threshold size (probably serving a smaller urban population) are
not legally obliged to report to statistics authorities.

As can be seen in Model 1, the negative and statistically significant estimate on the
variable ‘IHS of water supply’ suggests that counties with a higher scale of water sup-
ply (which is likely associated with a larger urban population) tend to have lower unit
water treatment costs. Therefore, the complete observations in our dataset are likely to
underestimate the province’s unit water treatment costs, since counties with a smaller
urban population (and hence potentially a smaller scale of water supply and higher unit
water treatment costs) are more likely to be missing. There are similar yet more subtle
implications for the estimates on forest cover. If the available observations constitute an
unrepresentative sample of the province, it would be possible that the estimated water
purification effect of forests deviates from the overall situation of the province.

We performed a Heckman correction following a two-stage procedure described
by Wooldridge (2010) to formally assess whether the estimates in Model 1 are indeed
biased due to missing data. The first stage is a probit sample selection equation (Model
A1 in table A3 in online appendix A) estimated using data for the entire sample (170
counties× 24 years= 4,080 observations):

Pr(yit = 1|vit) = �(δ0 + δvit). (7)

The binary dependent variable yit equals one if the data point for county i in year
t is observed, and zero otherwise. �(·) represents the standard normal cumulative
distribution function, and vit consists of a vector of variables that explain the proba-
bility of a data point being observed, which are listed in panel 2 of table A2 (online
appendix A). The variable ‘urban population’ captures the scale-dependent obligation
of statistical reporting mentioned above. In addition, we included several variables that
account for communication costs within a centralised economic system, as per Huang
et al. (2017). These variables include each county’s distance to the capital city of the
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province (Chengdu), number of phones per capita, road density and percentage of pri-
vate water works. Furthermore, the first-stage model contains a binary variable that
indicates whether a county is an ethnic minority autonomous county, as China’s ethnic
minority autonomous divisions are typically less integrated with the country’s govern-
ing system (Han and Paik, 2017) and therefore may be less responsive to the centralised
statistical bureaucracy. These variables were obtained from the Sichuan Statistical Year-
book and hence were available for the entire sample. Lastly, we estimated the inverse
Mills ratio11 from the sample selection equation and inserted it into the water treatment
cost function estimated using the selected sample.

Returning to table 1, the second column of results (Model 2) presents the selection-
corrected estimates of the water treatment cost function that contains forest cover within
a 3 km radius upstream. The statistically significant coefficient on the inverse Mills ratio
term provides corroborating evidence of the conjectured sample selection bias asso-
ciated with missing data. However, the consequences of such bias for this particular
model are somewhat limited, as the selection-corrected estimates on other regressors
mostly closely resemble the uncorrected estimates in Model 1. In particular, there is
no substantial change in the estimate for the variable ‘IHS of percentage of forestland
0–3 km’, although its statistical significance becomes slightly weaker. Figure 2b reports
the selection-corrected estimates for forests at other distances. As mentioned above, the
4 km radius estimate becomes statistically insignificant, since the upper bound of its 10
per cent level confidence interval goes above zero. Aside from that, there is still no evi-
dence that forests at farther distances have a statistically distinguishable effect on water
treatment costs. Therefore, the previous findings and interpretation pertaining to the
monetary value of forests’ water purification services remain largely robust.

3.4 Placebo tests and robustness checks
We conducted a placebo or falsification test in an attempt to examine whether the
foregoing findings stem from some unobserved time-varying factors that are system-
atically correlated with variation in forest cover. In this test, we replaced the forest cover
variable in the water treatment cost model using forests inside the same radius but
outside the catchment area (the unshaded portions of the circles in figure 1). These out-
of-catchment forests are either downstream from the water intake point or belong to
another drainage system, and therefore, intuitively, should have no direct implications
for water quality at the intake point. If there exist certain unobserved local factors that
covary with both forest cover and water treatment costs, these factors would likely be
correlated with forests inside and outside the catchment alike. In that case, regressing
water treatment costs against out-of-catchment forests would (falsely) pick up a signifi-
cant effect. Reassuringly, the estimates of the placebo regressions, which are statistically
insignificant throughout all radiuses (as shown in figure 2c), ease this concern to some
extent.

Admittedly, the estimates for out-of-catchment forests are not negligible in size
relative to those for within-catchment forests. In particular, the negative estimate on out-
of-catchment forests in the 2 km radius suggests that higher levels of out-of-catchment

11The inverse Mills ratio can be expressed as: ϕ(δ̂0 + δ̂vit)/�(δ̂0 + δ̂vit), where ϕ(·) represents the stan-
dard normal density function, and δ̂0 and δ̂ refer to the estimated parameters of the sample selection
equation (7).
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forest cover correlate with lower water treatment costs, which cannot be explained by
forests’ water purification effect and is hence likely confounded by certain unobserved
factors. In that case, the estimates on within-catchment forests in the 2 km radius (as
shown in figures 2a and 2b) are likely subject to similar bias and should be taken with
caution, since these estimates have likely overestimated forests’ water purification effect.
In contrast, the positive estimate on out-of-catchment forests in the 3 km radius implies
that the estimates on within-catchment forests in the same radius have likely underesti-
mated forests’ water purification services due to omitted factors. This is another reason
that we opted to focus on estimates for the 3 km radius (rather than those for the 2 km
radius which have higher magnitudes and statistical significance levels), since conserva-
tive estimates help reduce Type I error (or false positive findings) and are thus preferable
for statistical hypothesis testing. Despite the high correlation between forest cover inside
and outside the catchment area (as shown in figure A4 in online appendix A), out-of-
catchment forest cover was not found to have a statistically discernible effect on water
treatment costs, which provides additional credibility for our main results.

In addition, we formally assessed the implications of potential heterogeneity in the
quality of treated water. Drinking water supply firms in China are required to treat water
to the same set of national standards, and the quality of treated water is subject to routine
self-monitoring and government inspections. Despite that, these standards and regula-
tions tend to be loosely enforced, and the quality of treated water is likely to vary across
regions. This is because economic growth is geographically unbalanced throughout the
country, and less developed regions tend to have financial difficulties treating drinking
water to the national standards, since treating drinking water to higher quality usually
incurs higher treatment costs (Browder et al., 2007; Jiang and Zheng, 2014; Li, 2018).
If these less developed regions are also less urbanised and therefore have higher levels
of forest cover, omitting the quality of treated water in the regression analysis would
confound the estimate on forest cover.

Our dataset containswater supply firms’ self-reported percentage of testedwater sam-
ples that achieve the quality standards, which shows some degree of heterogeneity: this
percentage ranges from 80.71 to 100 per cent, yet is above 98 per cent for 90 per cent of
the observations that contain complete information for the regression analysis. Grieco
andMcDevitt (2017) developed a novel form of the production function which accounts
for both the quantity and quality of output. As described in online appendix B, thismodel
basically assumes that producing the same amount of output with higher quality requires
a higher level of aggregate production input. This production function allows the quality
of treated water to be explicitly controlled for in the regression models as an explanatory
variable.We next re-estimated all regressionmodels controlling for the quality of treated
water, and the estimates turned out to be largely stable, as can be seen in figure A7 in
online appendix B; they are almost indistinguishable from their counterpart estimates
from the models that do not account for the quality of treated water (figure 2). Table A5
in online appendix B presents an example of these new models (Model B1) which has
the same specification as Model 2 in table 1 (and hence focuses on forest cover in a 3 km
radius), except that Model B1 controls for the quality of treated water. It can be seen that
the two models give very similar estimates for all the common regressors. Admittedly,
our data on the quality of treated water were self-reported by water treatment firms and
hence may not fully reflect the actual variation in quality. Despite that, the placebo test
mentioned above has implicitly accounted for unobserved heterogeneity in the quality
of treated water: if it has a substantial confounding effect (jointly with other unobserved
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factors), this should have been captured by the estimates for out-of-catchment forest
cover.

So far, we have been following the approach of Tibesigwa et al. (2019) and focus-
ing on a series of models which separately look at the effects of forest cover in different
radiuses one at a time (i.e., 0–1 km, 0–2 km and 0–3 km, etc.). This approach differs
from another type of spatial piecewise analysis which includes in a single model all
forest variables for different distances (i.e., 0–1 km, 1–2 km and 2–3 km, etc.). We did
not opt for the latter approach, primarily due to concerns about multicollinearity issues
among forest variables for adjacent ‘rings’ or ‘bands’ (e.g., 1–2 km and 2–3 km, or 5–6 km
and 6–7 km).12 High multicollinearity would lead to implausible coefficient estimates
and inflated standard errors (Greene, 2020). That said, we estimated another version
of Model 2 which still focuses on forest cover for the 3 km radius but controls for for-
est cover in farther rings (i.e., 3–6 km and 6–10 km). The band-widths of the farther
rings are wider than 1 km, whichmay help reducemulticollinearity. The estimates of this
model are shown byModel A2 in tableA4 (online appendixA). The estimate for the 3 km
radius (−2.91× 10–2, p-value< 0.01) remains reasonably stable compared to its coun-
terpart in Model 2 (table 1), which leaves out forest cover in farther rings (−1.67× 10–2,
p-value< 0.10), although the estimate inModel A2 appears stronger in terms of themag-
nitude and statistical significance. Regarding forest cover in farther rings (i.e., 3–6 km
and 6–10 km), the estimates in Model A2 are statistically insignificant (p-value= 0.31
and 0.55, respectively). However, the magnitudes of those estimates are much larger
(in absolute value) than those in figure 2b, where the models do not contain multi-
ple forest variables, and the estimate for the 3–6 km ring in Model A2 has the opposite
sign. These swings in estimates likely stem from high multicollinearity and correlation
between the two forest variables for farther rings: the variance inflation factor of the two
forest variables is above the conventional rule of thumb (10) and the correlation coeffi-
cient is close to one (0.83, p-value< 0.001), which suggests substantial multicollinearity
issues.

Finally, we tested the robustness of our findings using the logarithms rather than
the IHS transformations of the variables. The IHS transformation is becoming increas-
ingly popular in applied econometrics due to its properties that approximate those of
the logarithmic transformation whilst being straightforwardly applicable to zero-valued
observations (Bellemare and Wichman, 2020). Despite that, using logarithms in our
econometric analysis was better in line with the theoretical model presented in section 2.
In addition, many previous econometric studies on the value of forests’ water purifi-
cation services used the logarithms of the variables and accommodated zero-valued
observations by adding a very small value to the original variables (e.g., Vincent et al.,
2016, 2020; Westling et al., 2020; Piaggio and Siikamäki, 2021).

Therefore, it is useful to investigate whether our results are sensitive to the choice
between the IHS and the logarithmic transformation. We repeated all our main regres-
sion models and the placebo tests using the logarithms of the variables, where we added

12For one thing, land use patterns in adjacent locations are commonly observed to be highly correlated due
to natural factors and/or human activities (Irwin, 2002). Another issue is that our land use variables were
derived from pixel-level satellite data, where a contiguous forest that overlaps with multiple rings would be
disaggregated and separately assigned to these rings, which increases their spatial correlation. In addition,
for those water intake points with small catchments (e.g., radius <5 km), all land use variables for farther
rings (i.e., 5–6 km and 6–7 km, etc.) equal zero, which increases the correlation among those rings.
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a small value (0.001) to the original variables that contain zero values. The estimates per-
taining to forest cover are graphically reported in figure A6 in online appendix A. It can
be seen that these estimates are highly similar (in terms of both the magnitude and sta-
tistical significance) to their counterparts derived from the regression models using IHS
transformations (as shown in figure 2). For example, for the model that uses logarithms
and corrects for sample selection, the estimate for forest cover within a 3 km radius
is−1.42× 10–2 (p-value< 0.10), which closely resembles its counterpart from themodel
using IHS transformations (−1.67× 10–2, p-value< 0.10). In fact, the two sets ofmodels
yield highly comparable estimates for all the explanatory variables, which demonstrates
the stability of our results regardless of the choice between the IHS and the logarithmic
transformation. (Further details are available upon request.)

4. Discussion and conclusions
This study robustly measures the monetary value of forests’ water purification services
in the form of the ensuing cost savings of municipal drinking water treatment. This
was enabled by a rich panel dataset from China’s Sichuan province, which allowed us
to adopt the fixed effects approach to control for a variety of observed and unobserved
factors that might otherwise have biased the estimates of interest. This study thus adds to
the currently thin formal econometric evidence base in this regard, which was recently
reviewed by Price and Heberling (2018) and Ovando and Brouwer (2019), and typically
represented by the study of Vincent et al. (2016). Moreover, this study has undertaken a
novel spatial piecewise approach to investigate the spatial patterns of such cost savings
delivered by forests in different segments of the catchment area.

We found that forests inside a 2 km radius upstream from the water intake point have
the strongest effect of reducing drinking water treatment costs. For a 3 km radius, this
effect becomes somewhat smaller but remains statistically significant. Forests within a
4 km radius have a similar sized effect to the 3 km radius, but the p-value is marginally
above the conventional significance levels. Beyond 4 km, the estimated effect becomes
notably smaller and statistically equal to zero. These findings provide suggestive practical
implications for the optimal spatial targeting of forest conservation efforts. The magni-
tudes of our estimates are comparable to the results of previous studies from temperate
regions such as Abildtrup et al. (2013) and Lopes et al. (2019), but smaller than those
from the tropics such as Singh and Mishra (2014) and Vincent et al. (2016, 2020). Our
results are robust to a series of alternative methods of specifying the regression model
and measuring the key variables. The credibility of our estimates is further strengthened
by a placebo test which found no statistically discernible effect for forests outside the
catchment area.

The aggregate water treatment cost savings delivered by forests in the study area
amount to CNY63m (USD9.5m) in 2018. This value is only moderate relative to the
scale of the province’s economy and forest investments. However, the primary con-
tribution of this study is to demonstrate the spatial piecewise approach, which helps
identify the heterogenous water purification services provided by forests at various dis-
tances from the water intake point. This approach also facilitates a placebo test utilising
out-of-catchment forest cover in the same radius of the water intake point, which pro-
vides important insights as to the direction and magnitude of potential omitted variable
bias. This methodological twist is transferrable and applicable to other regions where
the optimal spatial targeting of forest conservation is particularly relevant, such as less
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developed tropical regions where local livelihoods tend to heavily rely on extraction of
forest resources (which implies a higher opportunity cost of forest conservation).

Moreover, forests’ water purification services may provide other benefits aside from
savings of drinkingwater treatment costs. For instance, in our study area,more than two-
thirds of the province’s population still rely on untreated water from natural sources.
These untreated water users are likely to benefit from forests’ water purification ser-
vices in the form of, for example, reduced exposure to waterborne diseases (Herrera
et al., 2017). Yet such benefits are not captured by the production function approach in
this study, which focuses on centralised drinking water treatment. Additionally, as men-
tioned in the introduction, forests provide a wide range of ecosystem services aside from
water purification. Therefore, the monetary value of water purification does not repre-
sent the entirety of forests’ benefits when assessing whether forest conservation efforts
are economically worthwhile.

Lastly, the focal point of this study is the spatial piecewise analysis which seeks to iden-
tify the spatial patterns of forests’ water purification services.Due to resource constraints,
we were unable to fully explore other important research questions around this topic.
For example, previous studies have conjectured that forests’ water purification services
depend on rainfall levels (Calder et al., 2007; Vincent et al., 2016), which implies that the
future scale of this ecosystem service may be affected by climate change. We conducted
some preliminary analysis (see online appendix C) but did not find any evidence for this
hypothesis. However, this is likely associated with the nature of our annual-level dataset
which has precluded us frommaking full use of the variation of rainfall and water treat-
ment costs at a higher temporal resolution. Moreover, we did not investigate whether
different types of forests (e.g., natural versus planted forests) may deliver different lev-
els of water purification services. This would have been particularly informative in the
context of Sichuan, because the province has been heavily investing in both forest con-
servation and restoration. Further research is warranted in light of the importance of
these research questions.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/S1355770X21000425

Acknowledgements. This paper is an output of the Ecosystem Services Accounting for Development
(ESAfD) project jointly initiated by the Environment for Development (EfD) Initiative and the Swedish
Environmental Protection Agency (SEPA), and funded by the Swedish International Development Coop-
eration Agency (SIDA).We gratefully acknowledge Dr. Juha Siikamäki for his engagement and input in the
design of this study. We would also like to express sincere appreciation to Prof. Jintao Xu and Dr. Miaoy-
ing Shi for their assistance in collecting and processing the data required by this study. We are also greatly
indebted to Cyndi Berck for editing this paper. Further, we are grateful for the very helpful comments pro-
vided by Dr. Jessica Alvsilver, Dr. Shengyu Li, Dr. Richard Mulwa, Dr. Matías Piaggio, Dr. Per Stromberg,
Dr. Byela Tibesigwa, Dr. Jane Turpie, Dr. Dawit Woubishet, an anonymous reviewer of the EfD Discussion
Paper Series, and delegates at the 25th Annual Conference of the European Association of Environmental
and Resource Economists (EAERE 2020). Last but not the least, we thank two anonymous referees and the
editor for their very helpful comments on an earlier version of the paper.

Conflict of interest. The authors declare none.

References
Abildtrup J, Garcia S and Stenger A (2013) The effect of forest land use on the cost of drinking water

supply: a spatial econometric analysis. Ecological Economics 92, 126–136.

https://doi.org/10.1017/S1355770X21000425 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X21000425 
https://doi.org/10.1017/S1355770X21000425 
https://doi.org/10.1017/S1355770X21000425


508 Zhaoyang Liu and Heqing Huang

Abildtrup J, Garcia S andKere E (2015) Land use and drinking water supply: a spatial switching regression
model with spatial endogenous switching. Revue d’Économie Régionale & UrbaineMai, 321–342.

Allan JD (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems.Annual Review
of Ecology, Evolution, and Systematics 35, 257–284.

Armsworth PR (2014) Inclusion of costs in conservation planning depends on limited datasets and hopeful
assumptions. Annals of the New York Academy of Sciences 1322, 61–76.

Athey S and Imbens GW (2017) The state of applied econometrics: causality and policy evaluation. Journal
of Economic Perspectives 31, 3–32.

Bateman IJ, Day BH, Georgiou S and Lake I (2006) The aggregation of environmental benefit values:
welfare measures, distance decay and total WTP. Ecological Economics 60, 450–460.

Bateman IJ, Harwood AR, Mace GM,Watson RT, Abson DJ, Andrews B, Binner A, Crowe A, Day BH,
Dugdale S, FezziC, Foden J,HadleyD,Haines-YoungR,HulmeM,KontoleonA, LovettAA,Munday
P, Pascual U, Paterson J, Perino G, Sen A, Siriwardena G, van Soest D and Termansen M (2013)
Bringing ecosystem services into economic decision-making: land use in the United Kingdom. Science
(New York, N.Y.) 341, 45–50.

BellemareMF andWichman CJ (2020) Elasticities and the inverse hyperbolic sine transformation.Oxford
Bulletin of Economics and Statistics 82, 50–61.

Binder S, Haight RG, Polasky S, Warziniack T, Mockrin MH, Deal RL and Arthaud G (2017) Assess-
ment and Valuation of Forest Ecosystem Services: State of the Science Review. Newtown Square, PA: U.S.
Department of Agriculture Forest Service, Northern Research Station.

Browder GJ, Xie S, Kim Y, Gu L, Fan M and Ehrhardt D (2007) Stepping up: Improving the Performance
of China’s Urban Water Utilities. Washington, DC: The World Bank.

Bruijnzeel LA (2004)Hydrological functions of tropical forests: not seeing the soil for the trees?Agriculture,
Ecosystems and Environment 104, 185–228.

Busch J and Ferretti-GallonK (2017)What drives deforestation and what stops it? Ameta-analysis. Review
of Environmental Economics and Policy 11, 3–23.

Calder I, Hofer T, Vermont S and Warren P (2007) Vers une nouvelle compréhension des arbres et des
forêts. Unasylva 58, 3–10, (in French).

Cameron AC and Miller DL (2015) A practitioner’s guide to cluster-robust inference. Journal of Human
Resources 50, 317–372.

ConwayD, LiCQ,Wolch J,KahleCand JerrettM (2010)A spatial autocorrelation approach for examining
the effects of urban greenspace on residential property values. The Journal of Real Estate Finance and
Economics 41, 150–169.

ESA Climate Change Initiative (2017) Quick user guide of the Land Cover State products in GTiff and
NetCDF formats. Available at http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUser
Guide-LC-Maps_v2-0-7.pdf.

Ferraro PJ, Lawlor K, Mullan KL and Pattanayak SK (2012) Forest figures: ecosystem services valuation
and policy evaluation in developing countries. Review of Environmental Economics and Policy 6, 20–44.

Fiquepron J, Garcia S and Stenger A (2013) Land use impact on water quality: valuing forest services in
terms of the water supply sector. Journal of Environmental Management 126, 113–121.

FreemanAMI,Herriges JA andKling CL (2014) TheMeasurement of Environmental and Resource Values:
Theory and Methods, 3rd Edn. Oxford: RFF Press, Taylor & Francis.

Greene WH (2020) Econometric Analysis. New York: Pearson Education Limited.
Greenstone M and Gayer T (2009) Quasi-experimental and experimental approaches to environmental

economics. Journal of Environmental Economics and Management 57, 21–44.
Grieco PLE and McDevitt RC (2017) Productivity and quality in health care: evidence from the dialysis

industry. The Review of Economic Studies 84, 1071–1105.
Han E and Paik C (2017) Ethnic integration and development in China.World Development 93, 31–42.
Harris I, Jones PD, Osborn TJ and Lister DH (2014) Updated high-resolution grids of monthly climatic

observations – the CRU TS3.10 dataset. International Journal of Climatology 34, 623–642.
Hellerstein DM (2017) The US conservation reserve program: the evolution of an enrollment mechanism.

Land Use Policy 63, 601–610.
Herrera D, Ellis A, Fisher B, Golden CD, Johnson K, Mulligan M, Pfaff A, Treuer T and Ricketts TH

(2017) Upstream watershed condition predicts rural children’s health across 35 developing countries.
Nature Communications 8, 811.

https://doi.org/10.1017/S1355770X21000425 Published online by Cambridge University Press

http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pdf
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pdf
https://doi.org/10.1017/S1355770X21000425


Environment and Development Economics 509

HolmesTP,Vose J,WarziniackT andHolmanB (2017) Forest ecosystem services: water resources. In Sills
EO, Moore SE, Cubbage FW, McCarter KD, Holmes TP andMercer DE (eds), Trees At Work: Economic
Accounting for Forest Ecosystem Services in the U.S. South. Asheville, NC: U.S. Department of Agriculture
Forest Service, Southern Research Station, pp. 31–48.

Huang Z, Li L,MaG andXu LC (2017) Hayek, local information, and commanding heights: decentralizing
state-owned enterprises in China. American Economic Review 107, 2455–2478.

HydeWF (2012) The Global Economics of Forestry. New York: Resources for the Future.
Imbens GW andWooldridge JM (2009) Recent developments in the econometrics of program evaluation.

Journal of Economic Literature 47, 5–86.
Irwin EG (2002) The effects of open space on residential property values. Land Economics 78, 465–480.
Jiang Y and Zheng X (2014) Private sector participation and performance of urban water utilities in China.

Economic Development and Cultural Change 63, 155–189.
Li L (2018) Private sector participation and performance of county water utilities in China. China Economic

Review 52, 30–53.
LopesAF,Macdonald JL,QuinteiroP,ArrojaL,Carvalho-SantosC,Cunha-e-SáMAandDiasAC (2019)

Surface vs. Groundwater: the effect of forest cover on the costs of drinking water. Water Resources and
Economics 28, 100123.

Millennium Ecosystem Assessment (2005) Ecosystems and Human Well-Being: Synthesis. Washington,
DC: Island Press.

National Bureau of Statistics of China (2019) China Statistical Yearbook 2019. Beijing: China Statistics
Press.

Osborn TJ and Jones PD (2014) The CRUTEM4 land-surface air temperature data set: construction,
previous versions and dissemination via google earth. Earth System Science Data 6, 61–68.

Ovando P and Brouwer R (2019) A review of economic approaches modeling the complex interactions
between forest management and watershed services. Forest Policy and Economics 100, 164–176.

Pearce D (2004) Environmental market creation: saviour or oversell? Portuguese Economic Journal 3,
115–144.

Piaggio M and Siikamäki J (2021) The value of forest water purification ecosystem services in Costa Rica.
Science of The Total Environment 789, 147952.

Polasky S,NelsonE,CammJ,CsutiB, FacklerP, Lonsdorf E,MontgomeryC,WhiteD,Arthur J,Garber-
Yonts B, Haight R, Kagan J, Starfield A and Tobalske C (2008) Where to put things? Spatial land
management to sustain biodiversity and economic returns. Biological Conservation 141, 1505–1524.

Price JI and Heberling MT (2018) The effects of source water quality on drinking water treatment costs: a
review and synthesis of empirical literature. Ecological Economics 151, 195–209.

Sander H, Polasky S and Haight RG (2010) The value of urban tree cover: a hedonic property price model
in ramsey and dakota counties, minnesota, USA. Ecological Economics 69, 1646–1656.

Siikamäki J, Santiago-Ávila FJ andVail P (2015) Global assessment of nonwood forest ecosystem services:
spatially explicit meta-analysis and benefit transfer to improve the World Bank’s forest wealth database.
Available at https://www.wavespartnership.org/sites/waves/files/kc/Global Assessment of Non-Wood
Forest 2-25-16 %281%29.pdf.

Singh S and Mishra A (2014) Deforestation-induced costs on the drinking water supplies of the Mumbai
metropolitan, India. Global Environmental Change 27, 73–83.

Song X-P, Hansen MC, Stehman SV, Potapov PV, Tyukavina A, Vermote EF and Townshen JR (2018)
Global land change from 1982 to 2016. Nature 560, 639–643.

TibesigwaB, Siikamäki J, LokinaRandAlvsilver J (2019)Naturally availablewild pollination services have
economic value for nature dependent smallholder crop farms in Tanzania. Scientific Reports 9, 3434.

UNICEF andWHO (2019) Progress onHousehold DrinkingWater, Sanitation andHygiene 2000–2017. Spe-
cial Focus on Inequalities. New York: United Nations Children’s Fund and World Health Organization.

Vincent JR (2011) Valuing the environment as a production input. In Enamul Haque AK, Murty MN and
Shyamsundar P (eds), Environmental Valuation in South Asia. New Delhi: Cambridge University Press,
pp. 36–78.

Vincent JR, Ahmad I, AdnanN, BurwellWB, Pattanayak SK, Tan-Soo J-S andThomasK (2016) Valuing
water purification by forests: an analysis ofMalaysian panel data. Environmental and Resource Economics
64, 59–80.

https://doi.org/10.1017/S1355770X21000425 Published online by Cambridge University Press

https://www.wavespartnership.org/sites/waves/files/kc/Global Assessment of Non-Wood Forest 2-25-16 {%}281{%}29.pdf
https://www.wavespartnership.org/sites/waves/files/kc/Global Assessment of Non-Wood Forest 2-25-16 {%}281{%}29.pdf
https://doi.org/10.1017/S1355770X21000425


510 Zhaoyang Liu and Heqing Huang

Vincent JR, Nabangchang O and Shi C (2020) Is the distribution of ecosystem service benefits pro-poor?
Evidence from water purification by forests in Thailand.Water Economics and Policy 6, 2050005.

Wei X, Liu S, Zhou G and Wang C (2005) Hydrological processes in major types of Chinese forest.
Hydrological Processes 19, 63–75.

Westling N, Stromberg PM and Swain RB (2020) Can upstream ecosystems ensure safe drinking water –
insights from Sweden. Ecological Economics 169, 106552.

Wooldridge JM (2010) Econometric Analysis of Cross Section and Panel Data, 2nd Edn. Cambridge, MA
and London, UK: The MIT Press.

Wunder S,NoackF andAngelsenA (2018) Climate, crops, and forests: a pan-tropical analysis of household
income generation. Environment and Development Economics 23, 279–297.

Zhao J, Lin L, Yang K, Liu Q and Qian G (2015) Influences of land use on water quality in a reticular river
network area: a case study in Shanghai, China. Landscape and Urban Planning 137, 20–29.

Cite this article:LiuZ,HuangH (2022).Valuingwater purification services of forests: a production function
approach using panel data from China’s Sichuan province. Environment and Development Economics 27,
491–510. https://doi.org/10.1017/S1355770X21000425

https://doi.org/10.1017/S1355770X21000425 Published online by Cambridge University Press

https://doi.org/10.1017/S1355770X21000425 
https://doi.org/10.1017/S1355770X21000425

	1 Introduction
	2 Study area, data and variables
	3 Estimation methods and results
	3.1 Visual evidence
	3.2 Main analysis
	3.3 Heckman correction for missing data
	3.4 Placebo tests and robustness checks

	4 Discussion and conclusions

