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Abstract

We investigate a dichotomy property for Hardy–Littlewood maximal operators, noncentred M and centred
Mc, that was noticed by Bennett et al. [‘Weak-L∞ and BMO’, Ann. of Math. (2) 113 (1981), 601–611].
We illustrate the full spectrum of possible cases related to the occurrence or not of this property for M
and Mc in the context of nondoubling metric measure spaces (X, ρ, µ). In addition, if X = Rd , d ≥ 1, and
ρ is the metric induced by an arbitrary norm on Rd , then we give the exact characterisation (in terms of
µ) of situations in which Mc possesses the dichotomy property provided that µ satisfies some very mild
assumptions.
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1. Introduction

A dichotomy for the Hardy–Littlewood maximal operators was noticed for the first
time by Bennett et al. in the context of the space of functions of bounded mean
oscillation. In [2] the authors discovered the principle that for any function f ∈
BMO(Rd), d ≥ 1, its maximal function M f either is finite almost everywhere or equals
+∞ on the whole Rd. Later on, however, it turned out that this property is not directly
related to the BMO concept. Fiorenza and Krbec [4] proved that for any f ∈ L1

loc(Rd),
the following holds: if M f (x0) < ∞ for some x0 ∈ R

n, then M f (x) is finite almost
everywhere. In turn, in [1] Aalto and Kinnunen have shown in a very elegant way
that this implication remains true if one replaces the Euclidean space by any metric
measure space with a doubling measure. There are also some negative results in similar
contexts. For example, Lin et al. [7] observed that such a principle does not hold for
local maximal operators.

The aim of this article is to shed more light on this issue by examining the
occurrence of the dichotomy property for the two most common maximal operators
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of Hardy–Littlewood type, noncentred M and centred Mc, associated with metric
measure spaces for which the doubling condition fails to hold.

By a metric measure space X we mean a triple (X, ρ, µ), where X is a set, ρ is a
metric on X and µ is a nonnegative Borel measure. Throughout the paper, we will also
assume (without any further mention) that µ is such that 0 < µ(B) <∞ holds for each
open ball B determined by ρ.

In this context we introduce the Hardy–Littlewood maximal operators, noncentred
M and centred Mc, by

M f (x) = sup
B3x

1
µ(B)

∫
B
| f | dµ, x ∈ X,

and

Mc f (x) = sup
r>0

1
µ(Br(x))

∫
Br(x)
| f | dµ, x ∈ X,

respectively. Here by B we mean any open ball in (X, ρ), while Br(x) stands for the
open ball centred at x ∈ X with radius r > 0. We also require the function f to belong
to the space L1

loc(µ), which means that
∫

B | f | dµ <∞ for any ball B ⊂ X.
We say that M possesses the dichotomy property if for any f ∈ L1

loc(µ), exactly one
of the following cases holds: either µ(E∞( f )) = 0 or E∞( f ) = X, where E∞( f ) denotes
the set E∞( f ) = {x ∈ X : M f (x) =∞}. Similarly, Mc possesses the dichotomy property
if for any f ∈ L1

loc(µ), we have either µ(Ec
∞( f )) = 0 or Ec

∞( f ) = X, where Ec
∞( f ) =

{x ∈ X : Mc f (x) =∞}. Equivalently, the dichotomy property can be formulated in the
following way: if M f (x0) < ∞ (respectively, Mc f (x0) < ∞) for some f ∈ L1

loc(µ) and
x0 ∈ X, then M f (respectively, Mc f ) is finite µ-almost everywhere.

Observe that for any f ∈ L1
loc(µ), we have Ec

∞( f ) ⊂ E∞( f ). Moreover, if the space is
doubling (which means that µ(B2r(x)) . µ(Br(x)) holds uniformly in x ∈ X and r > 0),
then Ec

∞( f ) = E∞( f ). Nevertheless, at first glance, there is no clear reason why the two
properties mentioned in the previous paragraph would be somehow interdependent in
general, since M f and Mc f may be incomparable if (X, ρ, µ) is not doubling. In other
words, we have no obvious indications at this point that the existence or absence of the
dichotomy property for one operator implies its existence or absence for another one.
Therefore, two natural problems arise. Can each of the four possibilities actually take
place for some metric measure space? Can we additionally demand that this space
be nondoubling? One of our two major results is the following theorem that gives
affirmative answers to these two questions.

Theorem 1.1. For each of the four possibilities regarding whether M and Mc possess
the dichotomy property or not, there exists a nondoubling metric measure space for
which the associated maximal operators behave in just the way we demand.

Proof. Examples 1, 2, 3 and 4 in Sections 2 and 3 together constitute the proof of this
theorem, illustrating all the desired situations. �
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Table 1. Occurrence of the dichotomy property (DP) for M and Mc associated with spaces described in
Examples 1, 2, 3 and 4.

Ex. X ρ µ DP for M DP for Mc

1 R de ex2
dx 3 7

2 R de e−x2
dx 3 3

3 Z2 d∞ µ(n,m) =

{
4|m| if n = 0,
1 otherwise 7 3

4 Z2 d∞ µ(n,m) =


4|m| if n = 0,
2n2

if n < 0 and m = 0,
1 otherwise

7 7

It is worth noting at this point that, in addition to indicating appropriate examples,
our goal is also to ensure that they are constructed as simply as possible. Thus, in
all examples presented later on X is either Rd or Zd, d ≥ 1, while ρ is the standard
Euclidean metric de or the supremum metric d∞. Finally, in the discrete setting µ is
defined by taking the value µ({x}) > 0 at each point x ∈ X, while in the continuous
situation µ is determined by a suitable strictly positive weight w.

For the convenience of the reader, the results obtained in Examples 1, 2, 3 and 4
have been summarised in Table 1.

One more comment is in order here. While the doubling condition for measures is
often assumed in the literature to ensure that most of the classical theory works, some
statements can be verified under the less strict condition that the space is geometrically
doubling or satisfies both geometric doubling and upper doubling properties (see [6]
for the details). In our case, although the metric measure spaces appearing in Table
1 are nondoubling, the corresponding metric spaces are geometrically doubling. This
means that the general result for the class of doubling spaces, concerning the existence
of the dichotomy property for maximal operators, cannot be repeated in the context of
geometrically doubling spaces. Finally, Example 5 in Section 4 illustrates the situation
where the space is geometrically doubling and upper doubling at the same time, while
the associated operator M does not possess the dichotomy property.

2. Real-line case

In this section we study the dichotomy property for the Hardy–Littlewood maximal
operators M and Mc associated with the space (R, de, µ), where µ is arbitrary. Let us
note here that we consider one-dimensional spaces separately, since they have some
specific properties, mainly due to their linear order (for example, in this case M always
satisfies the weak type (1, 1) inequality with constant 2). Our first task is to prove the
following proposition.
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Proposition 2.1. Consider the space (R, de, µ), where µ is an arbitrary Borel measure.
Then M possesses the dichotomy property.

Let r(B) be the radius of a given ball B. For f ∈ L1
loc(µ), we denote

L f = L f (µ) =

{
x ∈ R : lim

r→0
sup

B3x : r(B)=r

1
µ(B)

∫
B
| f (y) − f (x)| dµ(y) = 0

}
and

Lc
f = Lc

f (µ) =

{
x ∈ R : lim

r→0

1
µ(Br(x))

∫
Br(x)
| f (y) − f (x)| dµ(y) = 0

}
.

Notice that there is a small nuisance here, because f is actually an equivalence class
of functions, while L f and Lc

f clearly depend on the choice of its representative.
Nevertheless, for any two representatives f1 and f2 of a fixed equivalence class we
have µ(L f14L f2 ) = 0 and µ(Lc

f1
4Lc

f2
) = 0 (where 4 denotes the symmetric difference of

two sets) and this is sufficient for our purposes.
The conclusion of the following lemma is a simple modification of the well-known

fact about the set of Lebesgue points of a given function. Although the proof is rather
standard, we present it for completeness (cf. [5, Theorem 3.20]).

Lemma 2.2. Consider the space (R, de, µ) and let f ∈ L1
loc(µ). Then µ(R \ L f ) = 0.

Proof. For a function g ∈ L1
loc(µ), let us introduce the sets Lg,N , N ∈ N, defined by

Lg,N =

{
x ∈ R : lim sup

r→0
sup

B3x : r(B)=r

1
µ(B)

∫
B
|g(y) − g(x)| dµ(y) ≤

1
N

}
.

Note that L f =
⋂∞

N=1 L f ,N . Therefore, it suffices to prove that for each N ∈ N, there
exists a Borel set AN such that (−N,N) \ L f ,N ⊂ AN and µ(AN) ≤ 1/N.

Fix N and consider fN = f · χ(−N−1,N+1). Thus, fN ∈ L1(µ) and L fN ,N coincides with
L f ,N on (−N,N). We take a continuous function gN satisfying ‖ fN − gN‖L1(µ) ≤ 1/(9N2)
(notice that continuous functions are dense in L1(µ) by [5, Proposition 7.9]) and define
two auxiliary sets

E1
N =

{
x ∈ R : |( fN − gN)(x)| >

1
3N

}
, E2

N =

{
x ∈ R : M( fN − gN)(x) >

1
3N

}
.

Observe that µ(E1
N) ≤ 1/(3N) and µ(E2

N) ≤ 2/(3N). Fix x0 ∈ (−N,N) \ (E1
N ∪ E2

N) and
take 0 < ε < 1 such that |gN(y) − gN(x0)| ≤ 1/(3N) for |y − x0| < ε. If B contains x0 and
satisfies r(B) < ε/2, then, by using the estimate

| f (y) − f (x0)| ≤ | fN(y) − gN(y)| + |gN(y) − gN(x0)| + |(gN(x0) − fN(x0)|,

which is valid for all y ∈ B,

1
µ(B)

∫
B
| f (y) − f (x0)| dµ(y) ≤ M( fN − gN)(x0) +

1
3N

+ | fN(x0) − gN(x0)| ≤
1
N

and therefore AN = E1
N ∪ E2

N satisfies the desired conditions. �
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Remark 2.3. Of course, the definitions of L f and Lc
f can also be adapted to the situation

of an arbitrary metric measure space (X, ρ, µ). In this case, µ(X \ L f ) = 0 (respectively,
µ(X \ Lc

f ) = 0) for a given function f ∈ L1
loc(µ) if only the associated maximal operator

M (respectively, Mc) is of weak type (1, 1) and continuous functions are dense in
L1(µ). This is the case, for example, when dealing with Lc

f and the space (Rd, ρ, µ),
d ≥ 1, where ρ is the metric induced by a fixed norm (in particular, ρ = de and ρ = d∞
are included) and µ is arbitrary. We explain this more precisely in Section 4.

Proof of Proposition 2.1. Assume that µ(E∞( f )) > 0. Then we can take x ∈ L f such
that M f (x) =∞. There exist balls Bn, n ∈ N, containing x and satisfying

1
µ(Bn)

∫
Bn

| f (y)| dµ(y) > n.

Fix ε > 0 such that
1

µ(B)

∫
B
| f (y) − f (x)| dµ(y) < 1

if r(B) ≤ ε and denote δ = min{µ((x − ε/2, x]), µ([x, x + ε/2))}. Then we obtain
Bn ( (x − ε/2, x + ε/2) if n ≥ | f (x)| + 1 and, as a result, µ(Bn) ≥ δ for that n.

Now let us fix an arbitrary point x′ > x (the case x < x′ can be considered
analogously). We denote γ = µ((x, x′ + 1)) < ∞ and B′n = Bn ∪ (x, x′ + 1), n ∈ N.
Observe that if n ≥ | f (x)| + 1, then the set B′n forms a ball containing x′ and therefore

M f (x′) ≥
1

µ(B′n)

∫
B′n
| f (y)| dµ(y) ≥

µ(Bn)
µ(B′n)

1
µ(Bn)

∫
Bn

| f (y)| dµ(y) ≥
δn
δ + γ

.

This, in turn, implies that M f (x′) =∞, since n can be arbitrarily large. �

To end this section we give an example of a space (R, de,w(x) dx), where w is a
suitable weight (and w(x) dx is nondoubling), for which the centred Hardy–Littlewood
maximal operator does not possess the dichotomy property.

Example 1. Consider the space (R, de, µ) with dµ = ex2
dx. Then M possesses the

dichotomy property, while Mc does not.

Indeed, it suffices to prove only the second part, since M possesses the dichotomy
property by Proposition 2.1. Consider f (x) = x · χ(0,∞)(x). We shall show that
Mc( f ) =∞ if and only if x ≥ 0.

For x ∈ R and r > 0, let us introduce the quantity

Ar f (x) =
1

µ(Br(x))

∫
Br(x)
| f (y)| ey2

dy.

First, observe that limr→∞ Ar f (0) =∞. Indeed, fix N ∈ N and take r0 > N such that∫
(N,r)

ex2
dx ≥

1
3

∫
(−r,r)

ex2
dx
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for each r ≥ r0. Therefore, for that r,

Ar f (0) =
1

µ(Br(0))

∫
Br(0)

f (x) ex2
dx ≥

N
µ(Br(0))

∫
(N,r)

ex2
dx ≥

N
3

and thus Mc f (0) = ∞. Next, it is easy to see that for any x > 0, there is Ar f (x) ≥
Ar+x f (0) for r ≥ x. This fact, in turn, gives M f c(x) =∞ for any x ≥ 0.

Now we show that Mc f (x) < ∞ if x is strictly negative. Fix x < 0 and r > 0. We
can assume that r > |x|, since for the smaller values of r we have Ar f (x) = 0. Observe
that it is possible to choose r0 > |x| such that, for each r ≥ r0,

e(x+r)2
≤ 2 |x| er2

.

If r < r0, then Ar f (x) ≤ f (x + r0). On the other hand, if r ≥ r0, then

Ar f (x) ≤
1

µ(Br(x))

∫
Br(x)

f (x) ex2
dx ≤

e(x+r)2

2 µ((x − r,−r))
≤

e(x+r)2

2 |x| er2 ≤ 1,

which implies that Mc f (x) <∞.

3. Multidimensional case

Throughout this section we work with spaces that do not necessarily have a linear
structure. First, we show that in certain circumstances Mc must possess the dichotomy
property. We wish to ensure that the criterion is relatively easy to apply and returns
positive results also for some nondoubling spaces. Fortunately, it turns out that it is
possible to find a condition that successfully meets all these requirements.

The following proposition is embedded in the context of Euclidean spaces, but
it is worth keeping in mind that, in fact, it applies to all spaces (X, ρ, µ) for which
µ(X \ Lc

f ) = 0 holds for each f ∈ L1
loc(µ).

Proposition 3.1. Consider the space (Rd, de, µ), d ≥ 1, and assume that

∃y0 ∈ R
d : lim sup

r→∞

µ(Br+1(y0))
µ(Br(y0))

= C̃ = C̃(y0) <∞. (3.1)

Then the associated maximal operator Mc possesses the dichotomy property.

Observe that condition (3.1) is related to certain global properties of a given metric
measure space X and thus its occurrence (or not) should be independent of the choice
of the point y0 specified above. Indeed, it can be easily shown that if the inequality in
(3.1) holds for some y0, then it is also true if we replace y0 by an arbitrary point y ∈ X.

Secondly, as it turns out according to Theorem 4.1, the converse also holds in the
case X = (Rd, de, µ). Namely, we shall prove that if Mc possesses the dichotomy
property, then (3.1) holds for some y0 ∈ R

d. Notice that we state only one of the
implications in Proposition 3.1 above because it is enough to prove Theorem 1.1. On
the other hand, the opposite implication allows us to say that the formulated condition
is sufficient and necessary at the same time and, since looking for such conditions is
interesting in itself, we discuss it in a separate section.
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Proof of Proposition 3.1. Let f ∈ L1
loc(µ) and assume that µ(Ec

∞( f )) > 0. We take
x0 ∈ Lc

f such that Mc f (x0) = ∞. Hence, for each n ∈ N, we have a ball Bn = Brn (x0)
satisfying

1
µ(Bn)

∫
Bn

| f (y)| dµ(y) > n.

Fix ε > 0 such that

1
µ(Br(x0))

∫
Br(x0)

| f (y) − f (x0)| dµ(y) ≤ 1

for r ≤ ε and denote δ = µ(Bε(x0)). If n ≥ | f (x0)| + 1, then Bn ( Bε(x0) and, as a result,
µ(Bn) ≥ δ. This fact easily implies that limn→∞ rn =∞, since f is locally integrable.

Now we fix any point x ∈ Rd. There exists r0 > 0 such that

µ(Br+1(y0)) ≤ 2C̃ µ(Br(y0))

for each r ≥ r0. We choose n0 ≥ | f (x0)| + 1 large enough to ensure that n ≥ n0 implies
that rn − |y0 − x0| ≥ r0. Consider the balls B′n = Brn+|x0−x|(x) for n ∈ N. If n ≥ n0, then

µ(B′n) ≤ µ(Brn+|x0−x|+|y0−x|(y0)) ≤ (2C̃)mµ(Brn−|x0−y0 |(x0)) ≤ (2C̃)mµ(Bn),

where m > |x0 − x| + |y0 − x| + |x0 − y0| is a positive integer independent of n. Finally,
by using the fact that Bn ⊂ B′n,

Mc f (x) ≥
1

µ(B′n)

∫
B′n
| f (y)| dµ(y) ≥

µ(Bn)
µ(B′n)

1
µ(Bn)

∫
Bn

| f (y)| dµ(y) ≥
n

(2C̃)m
,

which gives Mc f (x) =∞, since n can be arbitrarily large. �

Remark 3.2. Notice that the conclusion of Proposition 3.1 remains true if we take
the metric d∞ instead of de provided that this time the balls determined by d∞ are
used in (3.1). There are also no obstacles to getting discrete counterparts of the above
statements. Namely, one can replace Rd by Zd, d ≥ 1, and obtain the desired result for
the space (Zd, ρ, µ), where ρ = de or ρ = d∞ and µ is arbitrary.

Now, with Propositions 2.1 and 3.1 in hand, we can easily give an example of a
nondoubling space for which both M and Mc possess the dichotomy property.

Example 2. Consider the space (R, de, µ) with dµ(x) = e−x2
dx. Then both M and Mc

possess the dichotomy property.

Indeed, M possesses the dichotomy property by Proposition 2.1, while Mc

possesses the dichotomy property by Proposition 3.1, as limr→∞ µ(Br+1(0))/µ(Br(0))
= 1.

At this point, a natural question arises: will we get the same result for Gaussian
measures in higher dimensions? The next proposition settles this in the affirmative.
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Proposition 3.3. Consider the space (Rd, de, µ) with µ(Rd) < ∞. Assume that µ is
determined by a strictly positive weight w satisfying

0 < cn ≤ w(x) ≤ Cn <∞, x ∈ Bn(0), n ∈ N, (3.2)

for some numerical constants cn and Cn, n ∈ N. Then the associated maximal
operators, M and Mc, both possess the dichotomy property.

Proof. It suffices to prove that M possesses the dichotomy property, since µ(Rd) <∞
implies that (3.1) is satisfied with C̃ = 1 (regardless of which point y0 ∈ R

d we choose).
Take f ∈ L1

loc(µ). We shall show that µ(Rd \ L f ) = 0. For a fixed n ∈ N, let us
consider the measure µn determined by wn satisfying

wn(x) =

{
w(x) if x ∈ Bn(0),
1 otherwise.

Observe that condition (3.2) implies that µn is doubling. Let fn = fχBn(0). Then

µ(Bn(0) \ L f ) = µn(Bn(0) \ L fn (µn)) ≤ µn(Rd \ L fn (µn)) = 0,

because fn ∈ L1
loc(µn) and this yields µ(Rd \ L f ) = 0, since n can be arbitrarily large.

Assume that µ(E∞( f )) > 0 and take x0 ∈ L f such that M f (x0) =∞. For each n ∈ N,
we have a ball Bn 3 x0 for which

1
µ(Bn)

∫
Bn

| f (y)| dµ(y) > n.

Fix ε > 0 such that
1

µ(B)

∫
B
| f (y) − f (x0)| dµ(y) ≤ 1

whenever B ⊂ Bε(x0). If n ≥ | f (x0)| + 1, then Bn ( Bε(x0). Thus, combining condition
(3.2) with the fact that r(Bn) ≥ ε/2 for that n, we conclude that µ(Bn) ≥ δ, where
δ = δ(x0, ε) is strictly positive and independent of n.

Now we fix any point x ∈ Rd and take n ≥ | f (x0)| + 1. Let B′n be any ball containing
x and Bn. Then

M f (x) ≥
1

µ(B′n)

∫
B′n
| f (y)| dµ(y) ≥

1
µ(Rd)

∫
Bn

| f (y)| dµ(y) ≥
δn

µ(Rd)
,

which gives Mc f (x) =∞, since n can be arbitrarily large. �

Until now we furnished examples illustrating two of the four possibilities related
to the problem of possessing or not the dichotomy property by M and Mc. In both
situations, the space was R with the usual metric and measure determined by a suitable
weight. Unfortunately, as was indicated in Proposition 2.1, such examples cannot be
used to cover the remaining two cases, since this time we want M not to possess the
dichotomy property. Therefore, a natural step is to try to use R2 instead of R. This idea
turns out to be right. However, for simplicity, the other two examples will be initially
constructed in the discrete setting Z2. Also, for purely technical reasons, the metric de
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is replaced by d∞. Nevertheless, after presenting Examples 3 and 4, we include some
additional comments in order to convince the reader that it is also possible to obtain
the desired results for the appropriate metric measure spaces of the form (R2, de, µ).

While dealing with Z2, for the sake of clarity, we will write Br(n,m) and µ(n,m)
instead of Br((n,m)) and µ({(n,m)}), respectively.

Example 3. Consider the space (Z2, d∞, µ), where µ is defined by

µ(n,m) =

{
4|m| if n = 0,
1 otherwise.

Then Mc possesses the dichotomy property, while M does not.

First, observe that Mc possesses the dichotomy property by Proposition 3.1 (or,
more precisely, by the remark following Proposition 3.1), since

lim
r→∞

µ(Br+1(0, 0))
µ(Br(0, 0))

= 4.

To verify the second part of the conclusion, let us consider the function f defined by

f (n,m) =

{
2n if n > 0 and m = 0,
0 otherwise.

We will show that M f (1, 0) =∞ and M f (−1, 0) <∞ (in fact, (1, 0) and (−1, 0) may be
replaced by any other points (n1,m1) and (n2,m2) such that n1 is strictly positive and
n2 is strictly negative).

Consider the balls BN = BN(N, 0) for N ∈ N. Observe that

M f (1, 0) ≥
1

µ(BN)

∑
(n,m)∈BN

f (n,m) µ(n,m) ≥
f (N, 0) µ(N, 0)

(2N − 1)2 =
2N

(2N − 1)2 ,

which implies that M f (1, 0) =∞.
On the other hand, consider any ball B containing (−1, 0) and denote

K = K(B) = max{n ∈ N : (n, 0) ∈ B}.

If K ≤ 0, then
∑

(n,m)∈B f (n,m) µ(n,m) = 0. In turn, if K > 0, then B must contain at
least one of the points (0,−bK/2c) and (0, bK/2c). Consequently,

1
µ(B)

∑
(n,m)∈B

f (n,m) µ(n,m) ≤
2 f (K, 0)

4bK/2c
≤ 4,

which implies that M f (−1, 0) <∞.

Example 4. Consider the space (Z2, d∞, µ), where µ is defined by

µ(n,m) =


4|m| if n = 0,
2n2

if n < 0 and m = 0,
1 otherwise.

Then both M and Mc do not possess the dichotomy property.
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To verify that M does not possess the dichotomy property, we can use exactly
the same function f as in Example 3. It is easy to see that M f (1, 0) = ∞ and
M f (−1, 0) < ∞ hold as before. Next, in order to show that Mc does not possess the
dichotomy property, let us take the function g defined by

g(n,m) =

{
2n2

if n > 0 and m = 0,
0 otherwise.

Consider the balls B+
N = BN(1, 0) and B−N = BN(−1, 0) for N ∈ N. Observe that for large

values of N,
1

µ(B+
N)

∑
(n,m)∈B+

N

g(n,m) µ(n,m) ≥
g(N, 0)

2µ(−N + 2, 0)
= 2N2−(N−2)2−1

and
1

µ(B−N)

∑
(n,m)∈B−N

g(n,m) µ(n,m) ≤
2g(N − 2, 0)
µ(−N, 0)

= 2−N2+(N−2)2+1.

This easily leads to the conclusion that Mg(1, 0) =∞ and Mg(−1, 0) <∞.

As we mentioned earlier, we will outline how to adapt Examples 3 and 4 to the
situation of R2 with the Euclidean metric. First, note that the key idea of Example 3
was to construct a measure which creates a kind of barrier separating (in the proper
meaning) the points (n,m) with positive and negative values of n, respectively. Exactly
the same effect can be obtained if we define w so that it behaves like e|y| in the
strip − 1

2 < |x| <
1
2 and like 1 outside of it. However, because of some significant

differences between the shapes of the balls determined by de and d∞, respectively,
one should be a bit more careful when looking for the proper function f such that
M f (x, y) =∞ if x > 1 and M f (x, y) <∞ if x < −1. Observe that any ball B such that
(−1,0) ∈ B and (N,0) ∈ B must contain at least one of the points (0,−

√
N) and (0,

√
N).

Therefore, if BN is such that N is the largest positive integer n satisfying (n, 0) ∈ BN ,
then it would be advantageous to ensure that the integral

∫
BN

f (x, y)w(x, y) dx dy is no

more than Ce
√

N , where C > 0 is some numerical constant. On the other hand, we
want this quantity to tend to infinity with N faster than N2. These two conditions
are fulfilled simultaneously if, for example, f (x, y) behaves like x2 in the region
{(x, y) ∈ R2 : x > 0,− 1

2 < |y| <
1
2 } and equals 0 outside of it.

Finally, to arrange the situation of Example 4, it suffices to define w in such a way
that it is comparable to e|y| if − 1

2 < |x| <
1
2 , to ex2

if x < 0 and − 1
2 < |y| <

1
2 and to 1

elsewhere. There are no further difficulties in finding the appropriate functions f and
g that break the dichotomy condition for M and Mc, respectively.

4. Necessary and sufficient condition

The last section is devoted to describing the exact characterisation of situations, in
which Mc possesses the dichotomy property, for metric measure spaces of the form
(Rd, de, µ), d ≥ 1, where µ is arbitrary. Our goal is to prove the following result.
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Theorem 4.1. Consider the metric measure space (Rd, de, µ), d ≥ 1, where µ is an
arbitrary Borel measure. Then Mc possesses the dichotomy property if and only if
(3.1) holds.

We show the proof only for d = 2, since in this case all the significant difficulties
are well exposed and, at the same time, we omit a few additional technical details that
arise when d ≥ 3. In turn, the case d = 1 is much simpler than the others, so we do not
focus on it. When dealing with R2, we will write shortly Br(x, y) instead of Br((x, y)),
just as we did in the previous section in the context of Z2.

Proof. One of the implications has already been proven in Proposition 3.1. Thus, it is
enough to show that (3.1) is necessary for Mc to possess the dichotomy property.

Take (R2, de, µ) and assume that (3.1) fails to occur. Thus, for the point (0, 0), there
exists a strictly increasing sequence of positive numbers {ak}k∈N such that

µ(Bak+1(0, 0)) ≥ 22k µ(Bak (0, 0))

for each k ∈ N. In addition, we can force a1 ≥ 8 and ak+1 ≥ ak + 2. For n ∈ N, we
introduce the auxiliary sets S (n)

k+, j, j ∈ {1, . . . , 2n}, defined by

S (n)
k+, j =

{
(x, y) ∈ Bak+1(0, 0) : φ(x, y) ∈

[2π( j − 1)
2n ,

2π j
2n

)}
,

where φ(x, y) ∈ [0, 2π) is the angle that (x, y) takes in polar coordinates.
Take n = 1 and choose j1 ∈ {1, 2} such that the set

Λ1 = {k ∈ N : µ(S (1)
k+, j1

) ≥ 1
2µ(Bak (0, 0))}

is infinite. Next, take n = 2 and choose j2 ∈ {1, 2, 3, 4} satisfying d j2/2e = j1 (where
d · e is the ceiling function) and such that

Λ2 = {k ∈ Λ1 : µ(B(2)
k+, j2

) ≥ 1
4µ(Bak (0, 0))}

is infinite. Continuing this process inductively, we construct a sequence { jn}n∈N
satisfying d jn+1/2e = jn for n ∈ N and, by invoking a diagonal argument, a strictly
increasing subsequence (akn )n∈N such that for each n ∈ N,

µ(S (n)
kn+, jn

) ≥
1
2n µ(Bakn

(0, 0)).

From now on, for simplicity, we will write Bn and S n+, jn instead of Bakn
(0, 0)

and S (n)
kn+, jn

, respectively. Observe that the constructed sequence { jn}n∈N determines
a unique angle φ0 ∈ [0, 2π) which defines a ray around which, loosely speaking, a
significant part of µ is concentrated. For the sake of clarity, we assume that φ0 = 0 and
therefore { jn}n∈N equals either (1, 1, 1, . . . ) or (2, 4, 8, . . . ).

Denote Bn− = B1/2(−akn + 2, 0), n ∈ N, and consider the function f defined by

f =

∞∑
n=1

2nµ(Bn)
µ(Bn−)

χBn− .
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Of course, f ∈ L1
loc(µ). We will show that Mc f (x0, y0) =∞ for (x0, y0) ∈ B1/2(0, 0) and

Mc f (x0, y0) <∞ for (x0, y0) ∈ B1/2(3, 0).
Fix (x0, y0) ∈ B1/2(0, 0) and observe that Bn− ⊂ Bakn−1(x0, y0) ⊂ Bn and therefore

1
µ(Bakn−1(x0, y0))

∫
Bakn−1(x0,y0)

f dµ ≥
1

µ(Bn)

∫
Bn−

f dµ = 2n,

which implies that Mc f (x0, y0) =∞.
In turn, fix (x0, y0) ∈ B1/2(3, 0) and consider r > 0 such that Br(x0, y0) intersects at

least one of the sets Bn−, n ∈ N. Notice that this requirement forces r > 2. We denote

N = N(r) = max{n ∈ N : Br(x0, y0) ∩ Bn− , ∅}.

One can easily see that this implies that r > akn and hence (akn , 0) ∈ Br−2(x0, y0). It is
possible to choose N0 = N0(x0, y0) ≥ 2 such that if N ≥ N0, then (akN , 0) ∈ Br−2(x0, y0)
implies that S N+, jN ⊂ Br(x0, y0). Let Ñ = max{r > 0: N(r) < N0}. If 2 < r ≤ Ñ, then

1
µ(Br(x0, y0))

∫
Br(x0,y0)

f dµ ≤
1

µ(B2(x0, y0))

∫
BÑ (x0,y0)

f dµ = C,

where C is a numerical constant independent of r. On the other hand, if r > Ñ, then

1
µ(Br(x0, y0))

∫
Br(x0,y0)

f dµ ≤
2N+1µ(BN)
µ(S N+, jN )

≤ 2,

which implies that Mc f (x0, y0) <∞. �

Remark 4.2. Note that this time the proof relies on some properties of Euclidean
geometry and therefore it cannot be repeated in a more general context. The only
clearly visible way to generalise it is to replace the Euclidean metric. Indeed, one can,
for example, put a metric ρ induced by any norm on Rd in place of de and get the
desired result by following the same path only with a few minor modifications. Notice
that in this case, of course, the balls in (3.1) are taken with respect to ρ. Thus, among
other things, we must take into account how the shape of these balls is related to the
direction determined by the angle φ0 specified in the proof. Finally, the weak type (1,1)
inequality of Mc associated to (Rd, ρ, µ), which is needed to provide µ(Rd \ Lc

f ) = 0 in
Proposition 3.1, can be deduced from a stronger version of the Besicovitch covering
lemma (see [3, Theorem 2.8.14]).

Our final example indicates that a possible necessary and sufficient condition
for M must be of a completely different form. Namely, while condition (3.1)
concerned only the growth at infinity of a given measure, the parallel condition for
noncentred operators should deal with both global and local aspects of the spaces
under consideration. Thus, this problem, probably more difficult, is an interesting
starting point for further investigation.
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Example 5. Consider the space (R2, de, µ) with µ = λ1 + λ2, where λ1 is one-
dimensional Lebesgue measure on A = [0, 1] × {0} and λ2 is two-dimensional
Lebesgue measure on the whole plane. Then there exists f ∈ L1(µ) with compact
support such that E∞( f ) = A.

Indeed, denote S n = [0, 1] × (2−n2
, 2−n2+1) and consider the function

f =

∞∑
n=1

2nχS n .

Observe that f equals 0 outside the square [0, 1] × [0, 1] and ‖ f ‖1 =
∑∞

n=1 2n · 2−n2
≤ 2.

Let us fix x0 ∈ [0, 1] and consider the balls Bn = B2−n2+εn (x0, 2−n2
), n ∈ N, where

εn > 0 is such that µ(Bn) ≤ 2−2n2+2. Observe that (x0, 0) ∈ Bn for each n. If n ≥ 2, then
µ(Bn ∩ S n) ≥ 2−2n2−1 and, consequently,

1
µ(Bn)

∫
Bn

f dµ ≥
2n · 2−2n2−1

2−2n2+2
= 2n−3,

which implies that M f (x0, 0) =∞.
On the other hand, consider (x0, y0) < A. In this case, there exist ε > 0 and L > 0

such that de((x0, y0), (x, y)) < ε implies that f (x, y) ≤ L and, as a result, we obtain
M f (x0, y0) ≤ max{L, 2/λ2(Bε/2(x0, y0))} <∞.

Acknowledgement
This article was largely inspired by the suggestions of Professor Krzysztof Stempak.

I would like to thank him for insightful comments and continuous help during the
preparation of the paper.

References
[1] D. Aalto and J. Kinnunen, ‘The discrete maximal operator in metric spaces’, J. Anal. Math. 111

(2010), 369–390.
[2] C. Bennett, R. A. DeVore and R. Sharpley, ‘Weak-L∞ and BMO’, Ann. of Math. (2) 113 (1981),

601–611.
[3] H. Federer, Geometric Measure Theory (Springer, New York, 1969).
[4] A. Fiorenza and M. Krbec, ‘On the domain and range of the maximal operator’, Nagoya Math. J.

158 (2000), 43–61.
[5] G. B. Folland, Real Analysis: Modern Techniques and Their Applications (Wiley, New York, 1999).
[6] T. Hytönen, ‘A framework for non-homogeneous analysis on metric spaces, and the RBMO space

of Tolsa’, Publ. Mat. 54(2) (2010), 485–504.
[7] C.-C. Lin, K. Stempak and Y.-S. Wang, ‘Local maximal operators on measure metric spaces’, Publ.

Mat. 57(1) (2013), 239–264.

DARIUSZ KOSZ, Faculty of Pure and Applied Mathematics,
Wrocław University of Science and Technology,
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