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QUOTIENT COMPLETE INTERSECTIONS OF AFFINE SPACES

BY FINITE LINEAR GROUPS

HARUHISA NAKAJIMA

§ 1. Introduction

Let G be a finite subgroup of GLn(C) acting naturally on an affine
space Cn of dimension n over the complex number field C and denote by
Cn\G the quotient variety of Cn under this action of G. The purpose of
this paper is to determine G completely such that Cn\G is a complete inter-
section (abbrev. C.I.) i.e. its coordinate ring is a C.I. when n > 10. Our main
result is (5.1). Since the subgroup N generated by all pseudo-reflections
in G is a normal subgroup of G and Cn\G is obtained as the quotient
variety of Cn\N = Cn by G/N, without loss of generality, we may assume
that G is a subgroup of SLn(C) (cf. [6, 16, 24, 25]).

Stanley classified G in [21] such that Cn\G is a C.I. under the as-
sumption that G = G* Π SLn(C) for a finite reflection group G# in GLn(C),
and conjectured in [23] that if Cn\G is a C.I., G* D G 3 [G*, G*] for a
finite reflection group G* in GLn(C). In [17, 28], this conjecture was solved
negatively. On the other hand, Watanabe ([26]) and Watanabe-Rotillon
([29]) determined G such that Cn\G is a C.I. respectively for abelian G
and for any G in <SL3(C). In case of n = 2, it is well known and classical
that C2jG is always a hypersurface for every G in SL2(C).

Recently Goto and Watanabe showed that if Cn\G is a C.I., then its
embedding dimension is at most 2n — 1 i.e. Cn\G can be regarded as a
closed subvariety of C2n~l (cf. [27, 31]). This result follows from the main
theorem in [11] on rational singularities, because Cn\G is a rational singu-
larity at the induced origin (cf. [10]). Moreover, using Grothendieck's
purity theorem, Kac and Watanabe [9] showed that if Cn\G is a C.I., then
G is generated by {σ e G\dimIm (σ — 1) <̂  2}. Thanks to the last theorem,
we can use a classification of some finite linear groups given by Blichfeldt,
Huffman and Wales (see the references in [14]), and consequently, for
example, have shown
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2 HARUHISA NAKAJIMA

THEOREM ([13,14]). Suppose that n > 10, {Cn)G = 0 and G is contained

in SLn(C). Then Cn\G is a hypersurface if and only if G = G*Γ)SLn(C)

for a finite reflection group G# in GLn{C) in which all orders of pseudo-

reflections are equal to the index [G*: G].

The proofs of our theorems, which show that counter-examples for

Stanley's conjecture are very few, depend not only on the above results

but also on some results on relative invariants of finite groups ([21]) and

regular elements of finite reflection groups ([19]). Furthermore the clas-

sification of finite reflection groups in [4, 24] plays an essential role in

this paper. The manuscript of this paper was completed in 1982. The

author was expecting the publication of a part of [27] in English, which

has been essentially used in this paper. After this paper was circulated,

he learned that Gordeev [32] announced (4.1) and some related partial results.

Further classification in small dimensions shall be published elsewhere.

The following notation will be used throughout.

N the additive monoid of all nonnegative integers

Z the ring of all integers

detΓ or det determinant map on a vector space V

diag [au a2, ' > «J the diagonal matrix whose diagonal entries are au

02, , an

σ[n] the permutat ion matr ix associated with σ in the sym-

metric group Sn of degree n

ζm a primitive /n-th root of uni ty

μm t h e cyclic group <ζm 1>

Dm the binary dihedral group of order 4m

T the binary tetrahedral group of order 24

O the binary octahedral group of order 48

/ the binary icosahedral group of order 120

(μu\μυ; H\N) the subgroup of GL2(C) defined in [4]

G(p, q, ή) the monomial irreducible reflection subgroup in

GLn(C) defined in [4]

A(p, q, n) the diagonal par t of G(p, q, ή)

Cm the group A(m, m9 2)

W(Γ) the group generated by pseudo-reflections induced

from a root graph Γ (cf. [4])

[σ, τ] the commutator στσ~ιτ~ι for elements σ, τ in a group G

[G, G] the commutator subgroup of a group G
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§2. Definitions, notations and preliminary results

Throughout this paper all rings are assumed to be commutative with
unity. For a ring R, let R* be the group of all unit elements in R, ht (α)
the height of an ideal α of R and RX the ideal of R generated by a subset
X of R.

An algebra A is defined to be Nm-graded {m e N) if A is regarded as
a graded algebra with a graduation graded by the additive monoid iVm

in the natural way, and, for i = (ίlf , im) e Nm, Aω stands for the ί-th
graded part of A. If / is an elements of A(0, / is said to be Nm-graded
and the Nm-degree (resp. j-th degree (1 <^ j <* m), fotaZ degree) of / is defined
to be i — (iu , im) (resp. i,, Σ?-i h) which is denoted by deg(m) (/) (resp.
άegj(f), deg(/)). We say that an iVw-graded algebra A is defined over a
field K, if Ai0) = K and A is finitely generated over K as an algebra, and in
this case denote by emb (A) the embedding dimension of A, i.e., dim A+/A\,
where A+ is the graded maximal ideal of A. For simplicity, let us use
"graded", "degree" and "deg(/)", respectively, instead of "iV-graded",
"iV-degree" and "deg(1) (/)". If A and B are graded algebras defined over
a field K, A®XJ5 is usually regarded as an iV2-graded algebra with the
graduation {Aw ®κ Bu) \ (i, ) e iV2}.

By the theorem in [11] on pseudo-rational singularities, the following
result is obtained:

THEOREM 2.1 (Goto-Watanabe [27, 31]). // R is a pseudo-rational local
ring and a C.I. whose residue class field is infinite, then emb (R) < 2 dim R.

In the case where R is essentially of finite type over a field K of
characteristic zero, R is a pseudo-rational singularity if and only if it is
a rational singularity.

Remark 2.2. We can determine the relation ideals of graded algebras
A such that AA+ are rational singularities. For example, if A are algebras
of invariants of reductive algebraic groups over fields of characteristic
zero, the minimal generating systems of A axe constructive ([15]), and
hence their relation ideals are also constructive: In general, let A be
an iV-graded algebra defined over a field K and K[XU , Xn] an n-dimen-
sional graded polynomial algebra over K. If AA+ is pseudo-rational and φ:
K[XU , Xn]-+A is a graded epimorphism, then KeτφΠK[Xί9 , XJd

+

im^+1

αK[Xu . ,Xn]+Kerφ.
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For a finite dimensional vector space V over C, let Sym(V) be the

symmetric algebra of V which is naturally regarded as a graded algebra

defined over C The rank of an element σ in End(V) (or Mn(C)) is denoted

by rk (σ), and, if ζ e C* is a root of 1, the eigenspace of σ corresponds to

the eigenvalue ζ is denoted by V(σ, ζ), i.e., V(σ, ζ) = {v e V\σ(v) = ζv} ([19]).

An element σ of GL(V) is said to be a pseudo-reflection (resp. a special

element) if rk (σ — 1) = 1 (resp. rk (σ — 1) = 2), and a finite subgroup of

GL(V) is said to be a reflection group if it is generated by pseudo-reflec-

tions. For a finite group G, a subgroup N of G and a representation p:

G-> GL(V) of G, we adopt the following notation and terminology: For

xeV, Gx stands for the stabilizer of G at x and, for X a V, put G m =

Oxex Gχ G is said to be irreducible (resp. reducible, primitive, imprimi-

tive, monomial) in GL(V)9 if so is p, and moreover G is said to be irre-

dundant in GL{V), if there are not nonzero CG-submodules Vt (i = 1, 2)

of V such that V = Vi Θ V2 and ^(G) = p(GίVil) X <t>(G[Fl]). Especially if

G is monomial in GL(V), {CXU , CXdimF} is a complete system of im-

primitivities of/? and ΛΓ = {Xx, , Xd{mV} is a C-basis of V, we denote by

[]X(G) the permutation group of G on {CXU , CXdimF} and by (CXiχ, ,

CXim) the usual cycle on {CXi]L, , CXim} in the symmetric group on the

letters {CXU , CXdimF}. For N such that N is normal in G and /?(iV)

is a reflection group, a regular system {hu , /ιdimF} of graded parameters

of S y m t l T is defined to be G/N-linearlized, if © S F CA* is a CG-submodule

of Sym(V)^, and it should be noted that such a regular system of parame-

ters of SymίV)^ always exists. Let V^ be the CΛΓ-submodule Σ<re^(o" — 1)V

of Vand St(V; N) the subgroup of ρ(N) generated by all pseudo-reflections

in p(N). A subspace U of codimension one in V is said to be a reflecting

hyperplane relative to N if V<σ> = J7 for some σeiV. Denote by Jf(V, N)

the set consisting of all reflecting hyperplanes relative to N and by Ju{N)

the subgroup {τ e p(N) \ V<τ> Z) £7} for C7e^(V,i\Γ). An element in N is

called a generic pseudo-reflection in JV if it generates some ^Ό{N)i and the

cardinalities \*fΌ(N)\(UeH(V> N)) are called orders of pseudo-reflections in

iV. For each UeJP(V,N)9 let Lσ(V, N) be a fixed nonzero element in

Vsu(N) and, for a linear character X of G with Ker % 13 Ker ô, put Su( V, N, X)

min {a e N\ X(τ) = detF (τ)α for all τ € ./„(#)} and

V)=. Π ^ ( ^ i V ) ^ ^ - ) .

Further Sym(V)f denotes the set {/€ Sym (V) \ τ{f) = χ(τ)/ for τ e N}, whose
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elements are known as X-invarίants or invariants of N relative to X. Since

N acts naturally on M?(V9N), N\Jίf(V,N) stands for a set of all repre-

sentatives of Jf(V, N) modulo N, and, for £7, U' in jf(V9 N), we say that

U is equivalent to Uf if U and V are contained in an iV-orbit. The group

homomorphisms (<fO,(N) \ NUB £/') a τ \-+ detF (r) e (C*)^ induce the com-

mutative diagram

where (C*)y = C*, Φ^.F is a group homomorphism and ®UGN\^(V,N) (C*)σ

is diagonally embedded in GL]N^(V,N)](C) (cf. [12]). For a representation

5: H-+GL(V) of a finite group H, (βt(V; N), H, V) is defined to be a

Cl-triplet, if # ( F ; iV) Z) δ(H) 3 [Λ(V; iV), Λ(y ; N)] and ΦN,v(δ(H)) is conju-

gate to (/^(C) in GL| jvχ^(Γ)jV),(C) for some datum D (see [26], for definition

of GD(C) and D). Moreover H is said to be extended to a Cl-triplet in

GL(V), if (£P, H, V) is a Cl-triplet for a finite reflection subgroup H* in

PROPOSITION 2.3 ([12, Sect. 3]). Let G be a finite subgroup of GL(V)

where V is a finite dimensional C-space, and suppose G# Z) G ZD [G#, G*] for

some finite reflection subgroup G# in GL(V). Then Sym(Vr)<? is a C.I. if

and only if G is extended to a Cl-triplet in GL(V).

LEMMA 2.4. Let G be a finite group and p: G -* GL(V) a represen-

tation of G of finite degree over C. Then:

(1) If S y m ί V ) 0 is a C.I., then, for any xeV and any CG-submodule

U of V, S y m ( V r * and Sym(U)G are C.Γs.

(2) Suppose that p(G) = p(Gίv^) X ρ(GίVll) and V= V1 φ V2 for some

nonzero CG-submodules Vt (i = 1, 2) of V. Then Sym(V)G is a C.I. if and

only if Sym(VΪ)G(i = 1, 2) are C./.'s. Moreover if U is a nontrivίal irreducible

CG-submodule of V, one of V/s contains U.

Proof (1) and the first assertion of (2) follow from [14, 21]. To show

the last assertion, we assume U (£ Vt (i = I, 2). Then since U can be

embedded in V2 ^ VI Vί and Vi ^ V/V2, respectively, as CG-modules, U c

γoininγβiy* = (yf 0 Van (Vi θ Vξ), and this shows UG = U, a contra-

diction.
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From now on we will study our subject under the circumstance as

follows: Let S be Sym(V) of an n-dimensional C-space V and G a finite

subgroup of SL(V). Let Vt (1 <^ ί <̂  m) be irreducible CG-submodules of

V with dim ^ = 71* which satisfy V=ΘΓ-iVi, and pt: G -> GL{Vt) the

representation of G afforded by the CG-module Vt. Let Gt be {σ e GL(V)\

<Vj) =Vj(l^j£ m), σ\Vj =l(iΦ j ) , σ\Vi e Pί(G)}, a n d p u t G = Gί X .

X Gm, G< = ni*js*jΦi Gίvβ (1 ̂  i £m) and Spe (G) = {σ e G| σ β ( J « « » ^

and σ is special} respectively. If G is generated by special elements in

GL{V\ then pt(G) = ^(G*)^ «Spe (G)» - pAG^p^iV; G)) (1 ̂  i ̂  m) and

G (resp. G) is generated by Ui*<*» G* U ( ^ ( F ; G)ΠG) (resp. U i ^ m G* U

&(V; G)). Since S ^ Sym (V,) (x)c ® c Sym (VJ, we regard S as an 7Vm-

graded C-algebra in the natural way and Sym(V)Gί is an iVm-graded sub-

algebra of S. Let {/i, , fr) be a generating system of SG as a C-algebra

consisting of iVm-graded elements and let A = C[TU , Tr] be an r-dimen-

sional iVm-graded polynomial algebra over C with deg(m) (T7*) = deg(m) (/f).

Moreover let Φ: A-+ SG be the iVm-graded C-epimorphism defined by 0(Tt)

= /i. Then Ker Φ is minimally generated by iVm-graded elements Ft (1 ̂  ί

LEMMA 2.5 (e.g. [14, 27]). If SG is a C.I., then:

(1) ( - / I , , . . . , - nm) = ΣU deg™ (Fd - Σί- i deg(w) (Γ,).

(2) Πί-idβg(Γ*) = |G|Πί-idβg(ίΊ).

Proof. For the proof of (1), see [14]. If {fu , /r} contains a system

{fu'-'yfn} of parameters of Sσ, C[Γn + 1, , Γr] is a free module over

C[F19 - ,FJ of rank Π ί - i d e g ^ / Π U + i d e g ί Γ , ) where F, = Ft(0, , 0,

Tn+1, Tn+2, •••, Tr), and hence (2) follows. The general case can easily

be reduced to this case.

§ 3. Certain monomial groups of dimension four

In this section, we suppose that n = 4 and G is monomial on the C-

basis X = {Xl9 X2> X8, XJ of V such that ftx (G) = <(CXX, CX2)(CX3, CX4),

2, CX4)>.

PROPOSITION 3.1. SG is a C.L if and only if G is conjugate to one of

the groups listed in Table I.
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TABLE I

Groups

G1

G,

G3

Gi
G<

G\

G*,

Gί

r, = diag E.,
r4 = diag [1,
r7 = diag E.,
σί = diag [1,

Generators

n,n,
n
r*
Tl,

h,
r2,

1,

ζa,

1,

r2,

n,
n,
rl,
n,
rs,
n,
i,<
ζ-

Λ C

r 7 , (
r,, <
y-,, <

r,, <
r β , <
r 6 , «
^ 6 , <•

Ml;
r1, c,

ζfα1]

x1 ( σ 2

71} σ2 4α|e

TJ, σ2 4α |e

7], σ2 4 α | e

ri, <r2 4α|e

r2 = diag [1, 1,
r5 = diag [1, ζe

J; σ, = (1, 2X3,
σ! α, 6, eeN.

, 6 -
, 6 -

, 6 -
, & -

ζa, C
•/2> Ce/:

4)[4]

α <

- α =

- α =

- α =

- a —

α 1]; ^

Li] ;
0*2 =

Conditions

α | e

e/2, α|e/2, 2|e
4 |e

4) e, α = 4/e
e/2, α < e/4, 6/α =
e/2, α < e/4, b/a =
e/2, α < e/4, 6/α =
e/2, a < e/4, 6/α =

3 = diag [ζβ/2, ζβ7J, 1,

r6 = diag[ζe-
δ/α, ζ"1,'

= (1,3)(2,4)[4];

3(4)
3(4)
3(4)
3(4)

i ] ;

^e J ^eJ?

The rest of this section is devoted to the proof of (3.1).

For any element w in S, let ΎY(W) (or TrG(if)) denote ΣσeG/Gw o(w).

LEMMA 3.2. SGi (1 ^ i ^ 5) and Sβ'* (3 ^ i ^ 5) are C.Γs.

Proof. By a direct computation, we easily have SGl = C[TrGl (Xf),

C[TrGl(Xί), TrC2

= C[Tre,(Xί), TrC3
G> = C[ΎvG,(Xf), ΎrG,

), XtXJW, SG* = C[TrGι(Xί),
"1), ΊxGι(XlXΪ), TrβΛ(XχXdta), TtβΛiXiXd'XF),

= C[Trβ,(Xf), Tr^iiX&y*), TrCi ((XW), Trci (XfXΪ), TτG,
X&], SG> = C[Γrβ,(Zj), Tr^αZA)^2), Trβ5

tXl), Tr G s ((^ZJ^r 2 ) , X,X^XJ and Sc^ = C[TrG,(Zf),
(Z,Z3)^2), Tr q (ZfZ5), Trc, ((Z,Z4)

2-), Tr* ((X.XJ X n
]. Then Sβ i (1 ^ i ^ 3) and Sca are C.I.'s (cf. [25, 18]). Suppose

G = G4 or G4 and put u = 6/α, /, = Tr (Zf), /, = Tr ((M)" 4 ) , /, = Tr ((ZZ3)e/4),
/4 = Tr (ZfZJ), /5 = Tr((Z1Z4Γ), /6 = Tr ((ZZ^Zf 2), /7 = X^X.X,. We
effectively find all relations of degree ^ 2(α + b): deg(F\) = e, deg(F2) =
deg (Fs) = 2(α + 6), and 2(α + 6)< deg (F4) ^ deg (F5) ^ if s > 3. (For
our purpose, it suffices to show (F,, F2, F3)A = Ker Φ, but this is not easy).
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Assume that Sσ is not a C.I. and let

be a minimal free resolution of SG, where each Lt is a graded free A-

module ®ό A Yiό with graded elements Yi} (1 ^ 7 <^ rank L*) and Φi is a

graded homomorphism. Since Sσ is a Gorenstein ring, L3 = A and there

is a pairing < , ) : L2 <S)A LΊ —> L3 = A Y31 which preserves the graduation and

induces an isomorphism 2^ ^ L2* = Hom^ (L2, A) (cf. [3, 22]). Thus we may

suppose deg(Yli) + deg(y2J) = deg(y81), deg(Yπ) - 2(u - l)α, deg(Y12) =

deg(Y13) = 2(w + l)α. On the other hand deg (Y31) = Σ U <*eg (ft) - 4 (cf.

[22] and the proof of [14, (2.8)]). Moreover, because Fλ = T2TZ + w for

some graded element w in C[TU T4, Tb, T6, T7], s = 5 and there is a 5 X 5

alternating matrix Θ = [vυ] whose entries are graded elements of positive

degree in A such that Pf(θ<) (1 ^ i ^ 5) generate KerΦ (cf. [3]). Here

Θι is the 4 χ 4 submatrix of Θ deleted the i-th column and i-th row from Θ

and Pf (Θt) is the Paffian of 0 .̂ We may suppose that vυ = (Y2u ^2(Y2j)}Ysi1

(cf. [3]), and deg(i;fi) = deg(y2i) + deg(y2<)-deg(y81), which implies deg(Pf(θ,))

= Σ w deg (Y2j) - 2 deg (y81) = 2 deg (Y31) - ΣJ+* deg (Y,,); deg (Pf (θd) =

8ua - deg (Y14) - deg (Y15), deg (Pf (θ2)) - (8κ + 4)α - deg (Y14) - deg(Y15),

deg (Pf (θ3)) = (8M + 4)α - deg (Y14) - deg (Y15), deg (Pf (θd) = (βu + 2)α -

deg (Y15), deg (Pf (ΘJ) = (6« + 2)o - deg(Y14). As deg (Y14) = deg (F4) >

deg(Y13), deg(Pf (θ5)) ̂  deg(Pf (ΘJ) > deg(Pf (θ3)) = deg(Pf (02))>deg(Pf (θ,))

and hence deg(Pf(θ,)) = deg(YH) and deg(Y14) + deg(Y15) = deg(Y31). Then

deg(u45) = deg(Y24) + deg(Y25) — deg(Y31) = 0, which requires u45 = 0 and

Pf (θj) = Ϊ;24U35 — u34u25. Obviously άeg(vυ) > 0 (i = 2, 3; j = 4, 5) Substi-

tuting 0 for Γ, (i ^ 2, 3), one sees deg (ι;24) = deg (T2) = deg (Tz) = deg (u85)

or deg(u34) = deg(Γ4) = deg(Γ5) = deg(u25), which shows deg(Y14) = deg(Y15).

Therefore deg (ι;24) = deg (vu) = deg (ι;35) = deg (ι;25), and υtj e C[Γ5, Γ7] θ CΓ2

φ Cr3. This conflicts with the expression of Fl9 and consequently SG is

a C.I.. Similarly we can prove that SG* and SG* are C.I.'s (in this case,

deg ft) = deg(F2) - 2(α + 6) and deg (F3) = 2e).

In order to show the "only if" part of (3.1), we suppose that SG is

a C.I. and may assume that the subgroup D consisting of all diagonal

matrices in G is nontrivial. Clearly G is generated by D and the elements

a = diag [1, u, v, w](l, 2)(3, 4)[4], τ = (1, 3)(2, 4)[4] = σ29 since G is generated

by special elements. Here u, v, w e C* with uvw = 1. Moreover we may
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suppose u = 1 and v = w~\ Let us assume r = emb(SG). Because G is

transitively monomial, ft may be identified with Tr (Mt) for some monomial

Mt of variables Xd (1 <* jf <̂  4) such that Λf* is divisible by Xx in S and

moreover G^. is equal to the stabilizer of G at the line CMt. For each

2 ^ ^ 4, let ψj . S-+C[Xl9 Xj] be a C-algebra map defined by ψ^Xd =

Xu ψjiXj) = XJ9 ψj(Xt) = 0 (i Φ 1J) and let S' be a C-subalgebra of S

generated by \Jiφj C[Xt9 Xj]D. Clearly ψ,(S*) = C[ψ/Λ) | M, e C[XU XR,

USG) = C[Xl9 X2Y
D>«\ USG) = C K , Z3]

<z)'r>, USG) = C[XU ZJ<^-> and

C [ I J D = C[X|] (1 ̂  / ̂  4) for some e e N. Put r, = θmb (ψj(SG)) and d̂

= emb C([XU Xj]D)9 2 <£ 7 ̂  4. Exchanging the indices of /€, we assume

LEMMA 3.3. 2 + Σ4

i==2 (r, - 1) ̂  7.

Proo/. As D is nontrivial, X1X2X3X4 is not contained in ((SV)G)2. Thus

this lemma follows from the above observation and (2.1).

We may suppose fr = XιXgXiXi. Let δji D -* GL (CX1 Θ CXS) (2 £ j

<̂  4) be the natural representation of D whose matrix representation is

afforded by {Xl9 X3)9 and cj the order of pseudo-reflections in δj(D)9 which

equals to \δj(DXl)\ (note that ^(CX,® CXj; D) = <diag[ζc., 1], diag[l, ζc.]».

Since C[X2, XZ9 X,]G^ is a C.L (cf. (2.4)), D X l is equal to one of <diag [ζca,

ζ-1,1], diag [1, ζC3, ζ"1]) (c2|c3, c3 = c4), <diag [ζC3, ζ"1,1], diag [ζC2,1, ζ"1]) (c,|c8,

c2 = c4), <diag [ζC2, ζ"1,1], diag [ζC4, 1, ζ^1]) (c4|c2, c2 = c3) on the C-basis

{X2, XS9 X3} (cf. [26]). Obviously D/DXl is a cyclic group of order e, and

δj(D)im(CX1 Θ CX;; D) is also cyclic. Let NJt = X?^ZJ^ (2 ̂  ^ 4; 1 ̂  ί

^ dj) be defined to satisfy that {Njt 11 ^ i ^ d3) is a minimal generating

set of C[Xί9 Xj]D and ajx ^ α j2 ̂  ^ α J d r

LEMMA 3.4. For any 2 ^ 7 <Ξ 4;

(1) 0 = α;, < α,2 < < α,rfy.

(2) α,, = 6^_ ί + 1,

(3) aJ2 = Cj divides aji9

(4) aj2 + 6i2 £ β, and especially if ah + 6J2 = β, then an = (i - l)cJ?

(5) r, ^ [(d; + l)/2] ([ ] is Gaussian symbol).

Proof. (1) and (2) are known ([30]), and (5) follows easily from (2).

To show (3) and (4), we may assume that c ; = 1. Then δj(D) = (diag [ζe,«
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10 HARUHISA NAKAJIMA

for some 1 ^ k < e with (k, e) — 1. Thus the assertions are evident (cf.

[30]).

LEMMA 3.5. For some 1 <L <̂  4, if dj ^ 6, then r, ^ 4.

Proo/. If dj ^ 7, this assertion follows from (3.4), so we suppose ds

= 6 and r3 = 3. Say j < 4. Since ψj(SG) is obtained as the ring of invariants

of some monomial subgroup L of GL(CX, Θ CX3) in £ = C[X,, X,], £^x 1 @ cx^)

is equal to C[Xf, X?] (p e ΛO or C[Xf + X?, (XiX,)9] (p, ^ € ΛΓ, g|p). If the

former case occurs, BD is a hypersurface ([25]). Therefore BmiCXl@CXj;L) =

C[Xζ + XI (X1XJYl Since (X.X^-^Xf - X?) = f^1(CXί Θ CXif L) is a

det" ̂ invariant of L (cf. [25, 21]), Xf — Xf is a relative invariant of L,

and hence both Xf + Xf and (XxXj)q are relative invariants of L. Clearly

L\9t{CXx Θ CX,; L) is cyclic, and we must have SL = [C(Xf + X?)π, (XiXj)qu,

(Xf + Xf) (XjXg)9] for u e N. On the other hand, by our assumption,

ψj(SG) must be written as C[Nn + iVj6, iVj2 + iVj5, iVi8 + iVj4], which con-

flicts with the above computation (cf. (3.4)).

LEMMA 3.6. If rr — 4 for some j ' , then;

(1) SD = S'KXMl,
(2) C[X l f X,]23 = C[XJf X5, (XΛ)^] ( i * A
(3) α^t + brί = e.

Proof. For simplicity, we assume / = 2. Since ψj(SG) is generated

by Ψj(fi) such that Af< e C[Xl9 Xs], r = 7 and /r = XJX2X3X4, we see that

SD = S'[/"r] and, for j ^ 2, ψj(SG) are polynomial rings over C, which implies

(2). As iV23Xj22X4

δ22 is an invariant of D,

= C[iV21, . . , ΛΓMi> (X,X4)-, X ,

(cf. (1)), and hence χ^-^χ^-^χ^-^ 6 C R X ^ 0 4 , (X2X4)
C3] (cf. (3.4)).

From this it follows that α23 + 623 = α22 + 622, which proves (3) (cf. (2)).

Suppose one of d/s is ^ 6, say d2 ^ 6. Then r2 = 4 and r = 7. Clearly

deg (Λ) = deg (/2) = deg (/3) = β, deg (/5) = 2c3, deg (/6) = 2c4, deg (/7) = 4 and

fie if d2 = 6
deg(Λ)= Λ .

e otherwise .
By (3.5)
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3 (5e + 2c3 + 2c4 = 30c2 + 2c3 + 2c4 if d2 = 6
v^ d.βεr (F )== Λ
*=i ι [4e + 2c3 + 2c4 = 4d2c2 + 2c3 + 2c4 otherwise ,

and

Πde ( F ) = ί 8 ^ ^ ! ί f d2==6

ΐ=i ι [4e3c3c4/| DXί I otherwise

where | D X l | = min {c2, c3, c j max {c2, c3, c4}. From these equalities and

Yl3

ί=1 deg(Fi) <; (ZiLi deg (Fi)/3)3, we easily deduce a contradiction. (For

example, suppose c3 = c4 (and so c2|c3) and d2 = 6. As Σί=ideg(ί\) <I 9β,

Π J.i deg (F«) = 8e3c3/c2 ^ 27e3. Thus c3/c2 = 3, and ΣJ-i <*eg (F«) ^ 6e, which

implies 8β3c3/c2 ^ 8e3. Consequently c2 = c3 = c4, and Σ?=i de& (^) — 34c2.

However Y[\=1άeg(Ft) = 8e3 > (Σ?=i deg (FJ/3)3, a contradiction.) Hence

dί ^ 5, 2 ^ j ^ 4.

Since C K , XJ^ is normal and r, ̂  4, α ;3 = 2aj29 2(αj4 — αj2) = e, 4α j 2 |β

and ajjaj2 is odd, in case of dό = 5.

LEMMA 3.7. | {; | r5 = 3} | = 1.

Proof. We assume that this lemma is false, and may suppose {j | r, = 3}

= {3, 4}. Then r2 = 2 and d2 <ΞJ 3. We need only to consider this in the

following cases; Case 1 "d3 = 4, d, = 5"; Case 2 "d8 = 5, d4 = 3"; Case 3

«d3 = 4, dA = 4"; Case 4 "d3 = 4, d4 = 3"; Case 5 "cί3 = 5, d, = 5".

1: iV44Z2

a42Z3

a44 is an invariant of D, and this implies (XxX^2 =

« e C K , X3P. On the other hand, as r3 = 3, C[Xlf X3]
D = C[Xf,

JSΓί/8Z|β/s, Z?β/8ZJ, Xf], which conflicts with the above argument.

Case 3: α34 — α32 (=e/2) is divisible by c2 and c4, respectively, in N.

On the other hand ψ,(SG) = C[X{ - X% (X{ + XiKXJQ", (XJWl

Since Tr {(XJQ'^XJίtf**) € ((SF)G)2, substituting 0 for X2, we see that
(XiX^^XxXtf0* is a product of monomial in C[XU XAD and a monomial in
C[X», XJΛ. Therefore Xf(X3X4)

C4 = {X.X^iX.X,)2^, which implies c4 = 2c3

and c4 + 2c3 = e, i.e., e = 4c3 = 2c4. As some two elements of c2, c3, c4 agree

each other, the degrees of {/J can be calculated. Then, by (2.5), []Li deg (Ft)

= 2048ĉ  ^ (ΣJ-i deg (F,)/3)3 = (32c3/3)3 < 1331c*, which is a contradiction.

In Cases 2, 4 and 5, we can similarly deduce a contradiction.

In case of d3 — 4, r5 = 3 if and only if aj2 + aj3 = e. Thus, by (3.6),

we have:
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LEMMA 3.8. If r$ = 4, then d3 = 5.

LEMMA 3.9. If, for some 2 rgj jf ^ 4, dy ^ 3 and cy = min {c2, c3, c4},

tfierc S* = S[fr].

Proof, Let M be a monomial in S β such that, for 0 <I i < deg (M),

the i-th graded part of SD is contained in S'[fr]. We may suppose / = 2

and M = XfXv

zXl for x, y, z e N. Since X3»XJ is contained in C[X2, X8,X4P**

(which equals to C[X$% X?, Xft X*X.X4, (X,Xaβll) and c 2 | c 3 ( = c 4 ) , M i s

divisible by (X3X4)
C2. On the other hand, by our assumption, C[X8, XA]

D

= C[Xf, XI (XZXA)C21 which shows M/(X3X4)
C2 e S*. Thus the assertion

follows.

LEMMA 3.10. d3 Φ 4 for 2 £j £4.

Proof. Suppose, for example, <24 = 4. Then r4 = 3, c4 = α42 = e/3, α43

= 2e/3, r, = 2 and d, = 3 ( 9̂  4). By (3.7), we may assume that fx = Tr (Xf),

/2 = Tr ((X1X2)
cή, U = Tr ((X.X^ ), Λ = Tr (XfXf'3), /5 = Tr ( ( X ^ ). e/3

is divisible by c2 and c3, respectively, in iV. Suppose c2 ^ c3 (this implies

cz = c4 = e/3). Clearly Tr (XK^ 2 ) C 2 ) is not contained in C[fly ,Λ,/r].

Since Tr ( ( X ^ ^ X a X ^ ) e C[Λ, ,/5,/r] and S^ - S'[fr] (cf. (3.5)), we must

have /6 = TrCXKXiXί)6'). Put u = 2e/3c2eiV. Then, by (2.5), Σί-idegίF,)

= (17w + 4)c2 and ΠLi deg(FJ = 72^2(3^ + 2 ) 4 Thus Πi-ideg(F<) =

3w + 2)ĉ  ^ (ΣLi deg (F,)/3)3 ^ (6M + l)sc|, which is a contradiction.

LEMMA 3.11. J/ d3 = 5 /or some 2 ^ j ^ 4, then G is conjugate to one

of G3, Gί, G4, G'<, G5, G .̂

Proof. We may suppose that c?4 = 5 (and have already known that

r< = 2 for i ^ 4) and c2 ^ c3. Since α44 — α42 is divisible by c2 (and c3), the

fact "JV42XS 6 S^" implies ( X ^ ' X ^ 2 e S^. Thus, under the assumption

that "SD = S'[fr]", e = 4c4, α44 = 3c4 and c2 ^ c3 = c4. Clearly

_ ί c t χ i + x« N* + w β 4 1 ^, iV43] if w;2α- = 1
4 ( " \C[XI + XI, iV42 + W^NH, iV4

2

3, iV43(iV42 - w^NJ\ otherwise

(note that (στ)2 e D). Assume that r4 = 4. Then r = 7 and S25 = S'[/7].

Put u = c3/c2 e iV. Since each /* satisfies ΨX/J Φ 0 for some jf, we can

easily compute deg(/ ) and, by (2.5), Σ? = 1 deg (F€) = (26w + 2)c2 and

ΠLideg(FJ — (32)Vc2, which is a contradiction. Hence r4 = 3.

Case 1 "c4 < c3 ( = c2)": Obviously (X.X^Xy2 £ S', and because Xj^Xf
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e C[X2, X,, X 4 ] ^ = C[X?, Xl\ Xl\ (X2X3)
C\ X2XΆL we easily see that

{X.X^Xy2 £ {{SV)Df and may identify /6 with Tr ({XxX^Xy*). X;-C*X? e

C[Xί} Xt]D

9 and so if c2 Φ e/2, e/4 = c2 ( = c3) and c2 = c4mod2c4. Conse-

quently the minimal system of generators of SD can be obtained, and G

is conjugate to G4, Gi, Gb or G$.

Case 2 "c4 = c3 ̂  c2"; Clearly S* - S'[fr] (cf. (3.9)) and 4c4 = e. If c3 >

c2, as in the proof of (3.10), we can similarly identify/6 with Tr (XftX&y*),

and, by (2.1), get a contradiction. Thus c2 = e/4. Z) is effectively deter-

mined by SD, which implies that G is conjugate to <73 or G'B.

Finally let us assume dj ^ 3 for all 2 <̂  j ^ 4, which implies S^ =

S't/J. Obviously r, = 2 0 ' = 2, 3). If d, = 2, c, = e, and especially if

d4 = 2, r4 = 2. We easily see that max {c2, c3, c4} = e/2, if max {c2, c3, c4} < e

(if max {c2, c3, c4} = c3, (X^J^XJ e S2', which shows c3 = e/2).

LEMMA 3.12. r5 = 2 for 2 ^ j <Lr.

Proof, Suppose that the assertion is false. Then r = 7 and 2c41 e in N*

As in the proof of (3.10), we can similarly identify /6 with Tr ((XjX^^XJ 0 4 )

(resp. Tr ((XjXJ^Xj)) if max {c2, c3, c4} < e (resp. if max {c2, c3, c4} = e). One

can easily compute the degrees of //s, and, by (2.1), get a contradiction.

We now can determine SD and see that G is conjugate to GΊ or G2~

Thus the proof of (3.1) is completed.

§4. Reducible groups

The purpose of this section is to prove

PROPOSITION 4.1. If SG is a C.I., then G Z) [G, G].

Let us assume that (4.1) is false, and let G be a minimal counter-

example with VG = 0, i.e., let G be a minimal subgroup such that VG =

0, SG is a C.I. and G ~fi [G, G]. Since G is generated by special elements,

by (2.4) and the minimality of G, we see that m = 2, rii = 2 (i = 1, 2) and

both F/s are C<Spe (G)>-irreducible (cf. [14, Sect. 3]).

LEMMA 4.2. Each ^«Spe (G))) agrees with pt(G). Moreover, for ί = 1

or 2, i/ G is primitive in GL(Vi), pi{Gl) can be identified with D2, < —1>,.

1 in GL(Vi), and otherwise Gι is cyclic.

Proof. It suffices to treat the case where i = 1. Let us identify ^(G1)

with one of Cu, Du (u ̂  2), Γ, 0, / in SL{Vτ). If MG1) equals Z)w (u > 2)r
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T, O or /, then SG1 = C[gu g2, g3] ® c Sym(y2) for some graded elements

ft (1 ^ i ^ 3) in Sym (Vt) with deg (ft) < deg (g2) < deg (ft) and pι(G)lpί(G1)

acts faithfully on C[ft, ft, ft], which shows [^(G), ^(G)] c ^(G1). Thus

G1 = Cw or Z>2. Suppose that G is primitive in GL(V^). By Clifford's

theorem, ρx{Gι) = < —1> or 1 in the case where G1 is cyclic. If <Spe(G)>

is imprimitive in GL{V^), /»i«Spe (G)» is equivalent to G(4, 2, 2) (cf. [4,

(2. 13)]), and we have G1 = 1. Thus ^((Spe (G)» is a primitive reflection

group. Then p1«βpe (G)» D ^(G1), which implies ^(G) = ^((Spe (G)».

Suppose that G is imprimitive in GL(V^), i.e., G is monomial on a C-basis

{-Xi, X2) of y iβ We may assume that ^«Spe (G)» is expressed as G(p, q, 2)

on this basis. If pi(Gl) contains a non-diagonal matrix, piiσG1) contains

a diagonal matrix for each σ e Spe (G), and p2(G2) z> /o2([Spe (G), Spe (G)]),

which is a contradiction. Thus /^(G1) is diagonal on {Xu X2}. Let τ be

an element of Spe (G) whose restriction to VΊ is not diagonal. Then Gιτ

c Spe (G), which shows ^«Spe (G)» D

Now, we assume r = emb(S*), S y m W = C[Λ,/2], Sym(V2)* = C[/3,/J,

2 = CX1 θ CX2 and V2 = CXS θ

LEMMA 4.3. One of pfs is primitive.

Proof. Let Pi(G) = G(piy qiy 2), ί = 1, 2. Put Spex(G) = {σ e Spe(G)|

pλ{σ) is non-diagonal and p2(σ) is diagonal}, Spe2 (G) = {σ e Spe (G) | p2(σ) is

non-diagonal and p^σ) is diagonal}, Sped (G) = {σ e Spe (G) | p^σ) (ί — 1, 2)

are diagonal} and suppose Spe2 (G) U Spe2 (G) is non-empty. Exchanging

the indices of Vi9 we can choose elements σ = diag [α, α"1, — 1,1] (1, 2)[4],

τ = diag [6, ft"1,1, -1] -(1, 2) [4] (α, 6 e C*) from Spβi (G). Obviously every

element in Speώ (G) is of odd order (in fact, if Sped (G) contains an element

of even order, p^G1) have a non-diagonal element). As Spβx (G) =̂ φ,

diag [c, c"1] e p^G1) and diag [c, c"1] e p2(G2) if diag [c, 1] or diag [1, c] (c e C*)

belongs to ^(Sped(G)). Therefore we easily see S<Spe*(G)> = C[Xe

l9 X
e

2, Xξ,

Xi, XtX2X9X^ for some e e i V and S* = C[Xf°9 XT, XV, XV, (^iX2)
e,

(XdX,)e, X&XiXt], where iV = (G1 UG2USpeώ(G)> and w, teN with we =

IG1!, te = |G2 |. Recalling the definition of G(pί9 qt9 2) and G = <Spe(G)>,

one has pxfqx = 2e if Spe2 (G) Φ φ, p^ — e if Spe2 (G) = 5̂, and pjq2 = 2e

(observe pjg f = |det (A(jpί, gί? 2)|; for definition of A(p, g, n), see [4]). Let

λ = diag [x, y, 2:, w] be an element of G which acts trivially on C[Xtw, XT,

XV, XV] and non-trivially on SN (λ^X^Y) = - (XiX2)
e, ^((^XJ6) = - (XJQe

as p2/g2 = 2β and ί e SL(V)). Because diag [x~% xe, 1,1] e G1 and diag [1,1,
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z-% ze] e G\ diag [-1, 1, - 1 , 1] = λe diag [x~e, xe, 1, 1] diag [1, 1, z~\ ze] and

consequently this element belongs to Sped (G), which is a contradiction.

Therefore G/N acts faithfully on C[Xtw, Xe

2

w, XV, X\% For any element

r = diag [c, c-\ d, d"1] -(I, 2) (3, 4) [4] e Spe (G) (c, d e C*), [σ, r] = diag [α2c"2,

α~2c2, —1, —1] and hence diag[α2cr2, a~2c2] e p^G1) if and only if t is even.

If Spe2 (G) Φ φ (we have already assumed Spβj (G) =£ $, [Spe2 (G), Spex (G)]

3—1. Thus Spe2 (G) = 0 in the case where only one of w and t is even.

If t is even, by these observations, we easily see [Spe (G), Spe (G)] g G ' χ G2,

which conflicts with our circumstances. Let δ be any element of G which

acts trivially on CX{W Θ CXξ°. If <5((XiX2)
e) = (XiX2)

e, exchanging δ by some

element in δN, we may assume δiX.X,) = X ^ . If £((XiX2)
e) =£ (XiXϋ)',

^((XjX,)6) = — (X^Y and hence Spe2 (G) ̂  ^? which implies w is odd. But

in this case, {XXX^ = δ&XJ™ = {δ({X,X2Y)Y = (-(X,X2)
eY = - (XΆ)ew,

and consequently δ^X^Y) = (X,X,)e. Since C[Xl9 X2]
N = C[XV°, XT, (X1X2)

el

by the Galois theory and the definition of N, we have δ e N. Therefore

the natural representation ft: G/N"-> GL{CXT ® CX?) of G/iV is faithful

and, because plN^SUY,) = ^(G1) and Pι([G, G]) g S^V,), (̂G/ΛΓ) is a

nonabelian reflection group i.e. it can be identified with the irreducible

reflection group G(pl9 ql9 2) (pl9 qx e N, q^pύ on the C-basis {Xf°9 Xξ°}.

Obviously <pi(σ ), jδi(r)> is abelian, and recalling that et is odd, one sees

that it is Klein's four group. Let [Yu Y2} be a C-basis of CXψ Θ CXT

on which jo^) and ^(r) are diagonal. <jδi(σ), p^τ)) = jό1«iV, Spβi (G)}IN)

is normal in jo^G/JV), and therefore {CYj, C72} is a complete system of

imprimitivities of ^ . Then it follows from [4, (2.13)] that (jî , 5J) = (2, 1),

(4, 4) or (4, 2). If s is even, recalling that (Spe2 (G) = φ and) p^q^ is odd,

we see (pu q^ = (4, 4) and if w is odd, Spe2 (G) Φ φ and (p1? g^ = (2,1) or

(4, 2). Consequently the action of G/N on S v may be given by one of

the following rules; Case 1: G/N = (σN, τN, φN), ^(G) = G(4, 4, 2), p(σN)

= diag [1, 1, - 1 , 1] (1, 2)[4], p(τN) = diag [-1, - 1 , 1, -1] (1, 2)[4], p(φN)

= diag KΓ1, ζ4,l, 1] •(!, 2) (3,

4; Case 2: G/N = (σN,

τN, φN, ψN), pί(G) = G(4, 2, 2), the action of σ, τ, ^ is the same one as in

Case 1, p(ψ) = diag [-1,1, ζ4, ζΓ1] -(3, 4)[4],

= ( X ^ S ψ ( X A X ^ = - (XΛX.Xa; Case 3: G/ΛΓ= <σiV, riV, ^ i

= G(2,1, 2), the action of σ, τ is the same one as in Case 1, Ίρ{φ') = diag [—1,

1,1,1]-(3, 4) [4], 9\
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XXX2XZX,\ where p: G/N-> GL(CXT Θ CX? Θ CXf Θ CXf) is the natural
representation of G/N and its matrix representation stated above is af-
forded by the basis {XT, XT, Xf, Xί}. Let X be a linear character of (σN,
τN, <pN}/N such that (X,X,)e is a Z-invariant of (σN, τN, φN)/N and put

yi = XT - XT, y2 = α * r + xr), y3 - xr, Λ - xr, y5 - (M) e , yβ =
(X,X4)% yΊ = X,X2X&. Clearly (S")K e r* = C[y\ + y2, * * , y\ + yl, y*y<, (y,

+ y2)(y3 + yd, (3Ί - y3)(ys - y*), y5, y*> yλ (since Ker X is an abelian group,

a set of generators of the ring of invariants can easily be obtained). The

element σiV(KerZ) acts on (SN)Kevχ as follows; σ(y1y2) = — yλy2,

Thus (S0<^'^'^> = CWΛ y5, ^ +
, y?, yiy2(y2y3 + yiyj, yiy2y7, y^y^ + y ^ ) , y6y7,

yiyj? y^s + y2y4] and we denote by Ωf this generating system of the algebra.

Let Ω be a minimal system of generators of (SN)<σN'τN'φN> contained in Ω\

First we will consider the case where e Φ 1. By the computation of

degrees of elements in Ω\ y2

7 e Ω. Assume Ω 3 yiy2yβ. Then y1y2y& e C^y^)2,

y5, yl+ yl, yl y*yi, yiy2y7, yiy3 + y2y,, y?], which implies t^2. if t = 2, y,y2y&

e Cfy^s + y2y4> y?, y5], and substituting 0 for Z4, we see yiy2y6 e C[y?9 y5],

which conflicts with ^ y ^ = ζ,{X\ewXiX\ - X\ewXlXt). When ί = 1, we

similarly get a contradiction. Hence {y?, yiy2y6} Q Ω. Next, suppose e = 1.

Clearly y,y2yQ e Ω. If y,(y2y3 + y^^ g β, for some u, vυ e C,

+ yd + yf2( Σ ^

y2y<)(yl + yί) + vm

and we obtain u = 0 (, substituting 0 for X4). Then y2y3 +

^o(ί+2)/4y^/2y6/2, which is a contradiction. We see {yiy2y6, y6(y2y3 + y^)} Q

Ω, and consequently, Ω always contains invariants hu h2 such that

4̂(̂ 1) = ^i(h2) = 0 where y4: S—> S is the C-algebra map defined by v^Xi)

= Xt (l£ί£ 3), v,(X,) = 0. We may suppose that fx = Zί e w + X2

4eω, /2 =

(XiXί)6, v4(/3) = Xlet and y4(/4) - 0. Clearly C[XU X8, X3]
<D'σ> is minimally

generated by X,2- + XJ ", ( X ^ - , X3

2eί, XΓXS* - XΓXΓ

Case 1. As emb(SG) £ 7, ι̂ 4(S
G) = C[y4(Λ), v4(/2), P4(/3), I;4(Λ,)] for some

7V2-graded element hz in SG. On the other hand ΣiθeG/Dθ(XeTXV) is a

nonzero invariant of G, and so deg(2) (Λ8) = (ew, et). VSΣXKQ/D θ(X\ewXγ)) =

(X[ew - Xlew)Xtι belongs to v,(SG), which implies that it is an element of

C[f2, v4(/i3)] (compare degrees of the invariants). Substituting 0 for X2, we

see X\ewXγ e C[v4(hs)], a contradiction.
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Case 2. Let us choose an iV2-graded element hz from S which satis-

fies SG = C[fu f2, /3, Λ, K K hi Then v,(SG) = C[y\y\, yl, yt, (y2y3)\ y&y*

y\yl y*A ttJΊΛ, yiVΆ - ^(S*) h(λ,)] = C[y\yl yl yi v£K)l Since y^y, e

C[ylvJJι,)], deg2(y,yίyz) = et and deg2(v,(hz)) = et, and hence vjjτ,) may be

identified with one of y^yly^, ysJΊJV On the other hand, computing degrees,

we see ybyl e C[vJJτz)] and choose elements u' eC, r! e N such that y^y\ =

Therefore r' = 2 and deg(2) (v,(hz)) = (e, et), which conflicts with

In Case 3, we can obtain a generating set of SG and similarly get a

contradiction as in Case 1. (Let Γ be the set consisting of nonzero iV2-

graded elements in SG which do not belong to SG. Let h[ be an element

of Γ whose deg2 is minimal in Γ and let hi be an element of Γ — (Ch[ + SG)

whose deg2 is minimal in this set. Then SG must be generated by ft

(1 ^ i <J 4), h'l9 hi, hi for some 7V2-graded element hf

z in S and vXh[) — vffii)

= 0. From this we deduce a contradiction.) Consequently Spe! (G) U

Spe2(G) = φ. G can be identified with (D, ξ = (1, 2) (3, 4)[4]> where D is

a diagonal group, and D is generated by Sped (G) U {ξβ\β e Spe(G) —

Suppose Sped(G) = ^. Since SG is free over C[X[Gl\ Xι

2

G1], X^, X[G2ψ

(note XXX2, X3X4 e SG), we may assume Gι = G2 = 1. Then D is a cyclic

group. If | D | = 2, pj(G) is abelian, and if | JD| = 3, each ρt(G) is conjugate

to W(A2), which conflicts with [14, (4.1)]. Moreover, recalling that G is

generated by Spe (G), we may suppose D = <diag [ζd, ζ^1, ζc

d, ζ^c]> where d =

| D | and c € iV such that (c, d) = 1. As emb (C[XU X,]D) = 5 and emb (C[X»
X4]

D) = 3, emb(S^) = 4 + emb (C[XU X,]D) - 2 + emb (C[X» XΛD) - 2 = 8,

and therefore Sped (G) ^ φ.

Suppose Mw = XtX2XzXi belongs to a minimal system of generators

of SD consisting of monomial matrices. Put e = \{β\cxx\β € Sped (G)}|, u =
I{β\CXl\βeD}\, v = \{βU\βeD}\, N, = (X&Y, N2 = (XJQ<9 respectively.

There are monomials Mt (1 <ΞJ i ^ q; q may be zero) such that {X?, X2,

Xξ, Xl, Nu N2, Mi (1 ̂  i ^ ^), Moo} is a minimal system of generators of

the C-algebra SD. Then q ^ 4, since embίS^) = r ^ 7 and M^ is an in-

variant of G. Obviously g = 0, 2 or 4. If q = 0, SG = S^[(X? - X2

M)

(X? - Xj), M J , which implies G ̂  [G, G] (observe that (Xj* - X?)(Z3

υ - Xϊ)

and M are relative invariants of G). Suppose g = 4. Exchanging indices

of M, and Xj9 we have ^(Λί,) = Mu deg(2) (M,) = deg(2) (M2), deg(2) (Af,) =

deg<2) (M4) and SG = C[X? + X2

W, M, X3

ϋ + Xϊ , Ni9 M1 + Mi9 M2 + M4, M J .

https://doi.org/10.1017/S0027763000021334 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021334


18 HARUHISA NAKAJIMA

If v,{Mz) = p4(M4) = 0, v&Xϊ - XϊXMi ~ M2)) = (Xf - X ί W e C[X? + X?,

JV;, MJ, as (Xί - X2

W)(M1 - M2) e SG and deg^AQ < υ, and this implies

X? - Xt e C[Xΐ + X?, iVJ. So we may assume v,{Mz) = M3 and deg2(M3)

= degϊ(M1). Observing that (X? - X2

W)(M3 - M4), (Xξ - Xt){M, - M2) and

(Xl — X4XM3 — M4) are invariants of G, by a similar reason, moreover we

may assume that Mx = X?X3

δ, M2 = XξX», Mz = X2

αX3

δ and M4 = X^X\ for

some α, b e TV. Clearly iS^ is contained in the normal ring C[Xf, X*, XiX2,

X3, XJ and this implies G1 a diag [ζα, ζ" 1 ,1, 1]. On the other hand X ? ^

+ X2

WM2 e SG and v,(XΐMi + X%M2) = X?Mt e C[X? + X?, 2Vi, M1? MJ, which

shows that X?JMi = JVj*'Λf3 for some M' e iV. Hence e | a in iV and 2a = M,

It follows easily from these facts that /o1(G)//o1(G
1) is abelian, which is a

contradiction. Let us treat the case that q = 2. As f(ilίi) = M2 and

emb (SG) £ 7, SG = J5[Λ,], where J5 - C[X? + X2

M iVi, X? +XJ, iV2, Λ^ + M2,

M J and Λ, is one of the polynomials (X? - XyX^ - M2), (XJ—Xj)

(Mi - M2) and (Xf - X2

W)(X? - Xί). As in case of q = 4, we can similarly

show that, for each 1 ^ 7 ^ 4, {ί ly/M*) =56 0} Φ φ where vs denned by

(1 — δtj)Xt (δij is Kronecker's δ), and using ι>j9 easily see that (Xf — X

- M2) * B[(Xf - XfXMι - M2)], (X? - X;χMι - M2) e B[(X; -XlXM, - M2)}

and (Xx

w - Xi)(Mt - M2) & B[(X? - X?XXj -X?)]. This is a contradiction.

Therefore both XiX3 and X2X4 are contained in the minimal system

of generators of SD consisting of monomials, and we conclude that G1 =

G2 - 1. Then SD - C[Xf°\ XT\ XΓ\ X?, (XiX2)% ;(XA)% XA, X2X4,

(xf-%)*, (xr-»xD% ..^(x.xr-1)6, (xr-1^)6, (χ?'-aχ?)% •• ,(χ2χf- i)i.
From the above equality, as e ^ 2, we can easily infer emb (SG) >̂ 8 (in

fact, the polynomials X f + Xf', ( X ^ S ί X ^ J , Xf + X f , X^s + X2X4,

Xf°' + 1X, + X?°/ + 1X4, X!X2X3X4 and XxXf + l + X2XΓ/ + 1 are contained in a

minimal system of graded generators of SG), which is a contradiction.

EXAMPLE 4.4. Suppose that ^(G) = W(L2) in GL(V%), i = 1, 2. Since

SG is not a hypersurface (cf. [14]), r is equal to 6 or 7. Exchanging indices

of Ti and Fi9 we may suppose that deg(Γ4+1) fg degίϊ^+g) ^ , deg(2<\) ^

deg(F2) ^ and deg(F€) > deg(Γ4+ί), because KerΦ is contained in the

square of the graded maximal ideal of A. Degrees of W(L2) are known

and thus, by (2.5), Σ ί - ί (deg(2) (Ft) - deg(2) (Γ4+<)) = (8.8). Since fi+ί£

SymίyOUSymίVλ 2 ^ deg(Γ4+1), and if deg(7;+ί) = 2, deg<8>(Γ4+4) = (1, 1).

Let σ be an element of Spe (G) and let {Xίl9 Xί2} be a C-basis of Vt on

which |θi(σ) is represented as
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Lo i j

Then Sftu = CXnXn Θ CZ12Z22, and hence, if dim Sf1A) = 2, XnXn e Sa,

which conflicts with the irreducibility of p^. If G1 = G2 = 1, because both

ft are faithful and Z(W(L2)) (the centre of W(LJ) = <-l>, G contains - 1.

Thus Sf2>1) = SfliS) = 0, and we always have deg(T4+1) ^ 2, deg(Γ4+ί) ^ 4

(i > 1). Obviously Sg^ = 0 in case of G ' s f f s <-l>. By (2.5),

24{1

yτ r-t ι / Ί ._ / TTT \ T / m \\ I ,n -^ '

otherwise .

We examine this in all possible cases, and easily deduce a contradiction.

Remark 4.5. Using Stanley's theorem (cf. [22]), as in [15, p. 364], we

similarly see that deg (ft) <̂  Σ%x deg (/7) — 4 and moreover, by [3, 22], have

LEMMA 4.6. Suppose that both p^s are primitive and G1 is not iso-

morphic to D2, Then:

(1) G2 is isomorphic to G\

(2) ρx{G) is conjugate to p2(G) in GL2(C) (where we identify GL(Vτ)

with GL2(C)).

(3) If G1 Φ 1, then Sym2 (p^) is equivalent to Sym2 (ρ2) modulo a tensor

product of a linear character of G.

(4) Suppose that G — <J, G1) for a normal subgroup Δ such that

Δ Π G1 = 1. Unless, on Δ, p2 is equivalent to a tensor product of p^ and a

linear character of Δ, then pι(G) = μlul and u is not divisible by 5.

(5) If the Shephard-Todd number of p^G) is none of 8, 9, 10, 11, 12,

14 then ρx is split.

Proof. (1) and (2) are easy. (3) and (4) follow from the character

theory of D2, T and /. For the proof of (4), observe that the stabilizer

of G at any point of V is generated by special elements. To check (5),

we need only to consider a Sylow 2-group of G and use the above fact

on stabilizers.

LEMMA 4.7. One of pt's is imprimitίve.
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Proof. We assume that both pt

9& are primitive and shall give a contra-

diction. Suppose G1 Φ D2. Since the proofs are similar (cf. (3) of (4.6)),

we may treat only the case where ρx is split. Let Δ be the subgroup

defined in (4) of (4.6). Assume that, on Δ, p2 is never equivalent to a

product of px and a linear character of J. Then Pi(G) = μ2ul and u = 2,

3 or 6. Because Sym' (F2) <g>c Sym' (V2) - Sym* (V1) ®c Sym' (V;) (j = 3, 4,

5 (5)) as Cρϊ\I) (Ί J-modules. By this we can estimate (calculate) the lower

terms of the Taylor expansion of the Poincare series of S^ and get a

contradiction; say u = 3. There are nonzero iV2-graded elements gt

(1 rg i£ 3) in SJ with deg<2>(ft) - (9, 3), deg<2)(&) = (27, 3) and deg^(g3) =

(3,9), which requires embS G >7. Thus, on Δ, p2 is equivalent to X^ for a

linear character X of Δ such that X2 = det^. For a simplicity, let us treat

only the case where 1 = det^. Let W, = C72 Θ C72 and W2 = CY3 Θ CY4

be CJ-modules such that W1 = Vj as CJ-modules, CY3 is a trivial CJ-module

and σ(YA)/Y, = detΓ l (σ)"1, σ € J. Putting PF = Wx Θ W2 and 5 = Sym (W^

Sym(W2) (the Segre product of graded algebras), we naturally regard Sym (WO

and B as 7V2-graded C-algebras. There is a J-equivariant C-algebra

epimorphism ψ: S -> B whose kernel is generated by a graded element w

of degree 2. Clearly w is an invariant of Δ, and it is a relative invariant

of G satisfying w2 e SG if G Φ Δ. So, G always acts on B and one has

the natural epimorphism SG -> BG. Let dl9 d2 be the degrees of the reflec-

tion group pi(G), c the least common multiplier of the orders of pseudo-

reflections in p^G) and put d3 = deg(/det (Vu G)). Let gt (1 ^ i ^ 3) be

graded elements in Sym (WQ of deg (ft) = dt such that Sym ( ^ ) J = C[gί9 g2]

and Sym(Wi)δL(1Γl)n' l lF l = C[ft,&,gJ. Then B J = Sym(W) J nβ = ΰΓΊC[ft,

SiigzYto Ysy yj]- Because d1? c?2 ^ 4, ZU or M;2 belongs to a minimal system

of graded generators of SG (, and emb (BG) £ 6 (cf. (2.1))). By the above

observations, one can easily give a contradiction as follows: As the proofs

are similar, for example, let p^G) = {μQ\μ± , O\T). Then dx = 8 , d2 = 12,

d3 - 6 and c = 4. The polynomials gιY\, gιY\, giYJd\ g*Yf, gJlYl g^Jl
and ft YJ2 are members of a minimal system of graded generators of BG,

which conflicts with emb (BG) <: 6.

We see Gι = G2 = D2 and Pί(G) = ( ^ | μu O | Γ) or μ2uθ. Let ft, (1 ^

jf ^ 3) be graded elements in Sym (VJ such that Sym(Vέ)
Gi = C[gn, ft2, ft3],

deg(^π) = deg(ft2) = 4, deg(ft3) = 6. # i 3's are relative invariants of G:

Since £2

3 € C[ftlf ftj, S σ l χ G 2 = S θ Sft, θ % 2 3 ®βgug2i where S = C[ftlf ft2,

g"2i,^22]. We may suppose that {fu - ",fd}dSG and {fd+i9fd+29--,fr}c:
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for some 2 < d < r. SG is partly generated by
2, α / d + 1 , • . - , / , } n s # 2 3 ) 2 a n d ( { / d + 1 > •-.,/,} n

Sgng2sy. From these we can easily deduce a contradiction as follows: For

example, let us suppose Pi(G) = (μ8|μ4; O\T) in G ^ ^ ) , £ = 1, 2. Then a

minimal system of graded generators of SG contains seven elements of

degree ^ 12 (cf. [14, Sect. 4]). On the other hand gi3 g SG (i = 1, 2). So

d = 7 ^ r, and SG = SG. The last equality shows that G1 contains //4Z>2,

which conflicts with our assumption.

According to (4.7), we may assume that ρx is primitive and p2 is im-

primitive. Let {Xl9 X2} be a C-basis of Vx on which /0i(G) is represented

as one of the groups listed in [4, (3.6)], and {X3, XJ a C-basis of V2 on

which p2(G) (resp. |O2(G
2)) is represented as G(p, q, 2) (resp. A(u, u, 2)).

LEMMA 4.8. pι{G) is not equal to μl2θ.

Proof. Suppose ρx{G) = μ12θ. Since [μ12θ, μ12θ] = Γand Hom(μ12O, C*)

= Z/2ZΘ Z/2ZΘ Z/3Z, the subset Ωx consisting of all pseudo-reflections of

order 3 in μ12θ is two conjugate classes of this group ([12, (3.3)]) and the

subset of all pseudo-reflections of order 2 is a union of two conjugate

classes Ω2, β3. px induces the maps pγ : {σ e Spe (G) | ord (σ) = 3} -> Ωx

{σ e Spe (G) | ord (σ) = 2} -> Ω2 U β3. Let L be the subgroup of G generated

by {σ e Spe (G) | ord(o ) = 3}. Then L is irreducible primitive in GL(Vt) and

furthermore ^(L) = μ6T. As ^(L) is diagonal, we must have p^G1) Z) D2 =

px([L, L]) and hence assume Pl(Gι) = D2. Then 2p2/qu = \ G(p, q, 2) |/| A(u, u, 2) |

= I ίo1(G)//o1(G
1)I = 36. Obviously p/q = 3 or 6. Suppose p\q = 3 i.e., p2(G)

= G(6u,2u,2). On the other hand, since G a SL(V), we have (^(G)Π

SLί^^/^iί^1) = (ft(G)ΠSL(Vj)lp2((?). However ( f t(G)ΠSL^V^MG 1) = Sz

and ^2(G) Π iSL( Vg) is diagonal, which is a contradiction. Therefore pjq

= 6 i.e. u is divisible by 2 and p2(G) = G(6u', u', 2) where v! = u/2. μ12T

is generated by Ωx and one of Ωt (ί = 2, 3), say Ω2 is so. Put H = (βϊXΩl),

pϊXΩ2)y. Suppose that every element in p2(pϊ\Ω2)) is non-diagonal. Then

pzipΛΩd) is diagonal. Since p2{H)lp2{H(λG2) is abelian, p2{G)jp2{H (ΊG2) is

abelian, a contradiction. Thus p2(pϊ\Ω2)) is diagonal, and /02(iD =

1, 2), A(3, 1, 2)>. Putting H' = <#, G2>, we have [G: # ' ] - [^.(G):

= 2 and ^(jfί7) = A(6α;, u', 2). Let Zέ (1 ^ i ^ 3) be a linear character of

μ12-T = Pl(H) defined by 8ϋJ(Vl9 Pl(H), Xt) = δtJ (l^j £ 3). Here C7, are in-

equivalent hyperplanes in VΊ relative to pι(H) such that J^u^p^H)) — {1} ^

Ω2 (cf. Sect. 2). Up to sealer multiplication, any element in a minimal
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iV2-graded generating system which does not belong to C[XU X2] U C[XZ, XJ

is expressed as (Xlu/Y(Xluy(XzX,)cfx(Vu Pl(H)) for some 1 e Horn (Pl(H), C*).

Computing deg! of invariants, we may suppose that Xlu'fXί, Xlu'fX2, (X3X4)%9

are contained in a minimal system of graded gererators of SH', where fXi

denotes fIt(Vl9 Pl(H)). Put /5 = X\»'flx + X\»'fw /• = (X?' - Xr)(X3X4)
3/J

f7 = (X8X4)
8/χ/zβ. Then {/< 11 ^ i £ 7} is a minimal generating set of SG

(this follows from the computation of deg! of elements in a generating

set). On the other hand, XzXJnfX2fX3 e SH', and as G — (H\ ε> for some

ε e Spe (G) such that a £ H', ε{fJJx) = fJJXz ([20, (4.3.3)]), which implies

XSXJJJK € SG. But X3XJnfJX3 e C[Λ, , Λ], a contradiction.

LEMMA 4.9. ^(G) is not equal to μ^O.

Proof. Suppose ρx(G) = /̂ 4O. Since the order of every pseudo-reflection

in μ, O is equal to 2, p2(G) = G(p, g, 2) = G(2g, g, 2) or G(g, g, 2). We

easily see that px{Gι) is equal to one of Z>2, T and <?, and so assume Pl(Gl)

= Z)2, which implies p = 2g and 2g = 3u (as S3 ̂  (/o1(G)ΠSL(Vi))/^(G1) ^

(p2(G) Π SL (V2))lPi(G2)). The subgroup iVx of ô̂ G) generated by one of Pι(G)-

conjugate classes in Pι(Spe(G)) can be identified with G(4, 2, 2) in GL(V^)

and the subgroup N2 of Pί(G) generated by the other io1(G)-conjugate class

in Pl(Spe(G)) is equal to (μ,\μ2;O\T). Put K, = <σ e Spe(G)|Pl(σ) e Nt}

(i = 1, 2). Because pl{K^)jpl{Kx Π G1) is abelian, we immediately have ft(JEΊ)

= A(2,1, 2) and hence ^2(̂ 2) = G(2g, 2g, 2). There are graded elements

gu g<ι> g* with deg fa) = deg (g2) = 4, deg(^3) = 6 in C[Xt, X2] which satisfy

ClXu X*Γ = C[g» ft, ̂ J . Then SG1><G2 = C[ft, ft, ft, X3

W, X?f XΛ] and both

elements g3, X3X4 are invariants of K2. Since S^1 = C [ ^ , g2, XI, XI, g3X3Xi]

= C[ft, ft8 X3

2, Xϊl Θ C[ft, ft, X3

2, X4

2]^3^3^ and C[ft, ft, X3

2, X3 is a G-stable

subalgebra, we have SG = C[ft, ft, X3

2, X2]* Θ C[ft, ft, X3

2, Xψg&X^ There-

fore C [ ^ , ̂ 2, XI, Xl]G is also a complete intersection ([1]). Clearly the

natural representations of G on Cgx ® Cg2 and CXI ® CXI are respectively

irreducible imprimitive. Applying (4.3), we see that C[gu g2, XI, Xi]G is not

a complete intersection, which is a contradiction.

LEMMA 4.10. Pl(G) is not equal to (μί2\μ6; O\T).

Proof. Suppose Pί(G) = (μ12\μ^ O\T). Since orders of pseudo-reflec-

tions in (μί2\μ6; O\T) are 2 and 3, N= (σ e Spe (G) | ord (σ) = 3> satisfies

Pι(N) = μ6'T and p2(N) = A(3,1, 2). Thus [^-Γ, ̂ 6 Γ] = A is contained

in ^(G1), and we assume ^(G1) = Z>2. Let ft, g2, gz be graded elements in
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C[XU X2] with deg(ft) = deg(£2) - 4, deg(^) = 6 such that C[XU X2]
G1 -

C[g» ft, ft]. In GL(Vύ, Z>2 - G(4, 2, 2) Π SLiV,) where G(4, 2, 2 ) is defined

on a C-basis of Vt. By [13, (4.2)], C[Xlf X2Γ = C[X,, X2]
G(4'2'2)[/det (^ , G(4,

2, 2))] which shows that C[ft, ft] - C K , X2F
4 '2 '2 ) and ft = /det (Vu G(4, 2, 2))

(up to sealer multiplication). Obviously B = C[ft, ft, -X3, XJ is a G-stable

subalgebra over which S is integral. Because the degrees of (μ12\μ6; O\T)

are 6 and 24, gs is an invariant of G and hence BG is a C.I. Put Wx =

Cgt Θ Cft. W2 = V2, W = ^ Θ W2 and let θ: G -+ GL(W) (resp. θt: G ->

GL(Wt), ί = 1, 2) be the representation of G on W (resp. W<). Both 0,(G)

are reflection groups in GL(V^) and moreover, as |#i(G)| = 18, Θ^G) is

irreducible imprimitive. Suppose that, for an element σ, θ(σ) is a pseudo-

reflection in GL(W). If Θ2{σ) = 1, σ e G\ and so θ&σ) = 1. For some τ e G1,

ô̂ o ) == ̂ (r), which shows στ~ι is a pseudo-reflection of G. Therefore Θ(G)

is contained in SL(W) and, applying (4.7), we must have #i(G[ΐF2]) 3 [#i(G),

Θ^G)] Φ 1, which is a contradiction.

LEMMA 4.11. ^(G) is not equal to (μ4\μ2; O\T).

Proof. Suppose px{G) = (μi\μ2; O\ J) . Since the degrees of (μi\μ2; O\ T)

are 6 and 8, as in the proof of (4.10), we can easily show pXG1) Φ D2.

(μi\μ2; O\T) contains only pseudo-reflections of order 2 and hence {p, q)

= (2g, q) or (q, q), which conflicts with the isomorphism Tjp^G1) = (pι(G)

Let us complete the proof of (4.1). Assume that G1 is trivial or of

order 2. If p^G) contains a pseudo-reflection of order Φ 2, putting L =

<σ e Spe (G) I ord (σ) Φ 2> and using [4, (3.6)], we see that p^L) is irreducible

primitive and p2(L) is diagonal, which implies p^G1) Z) pi([L, L]) ZD H = Z>2

for a subgroup Jϊ. Hence, by (4.9) and (4.11), pι(G) = /i4/ (cf. [loc. cit.,

(3.6)]). Clearly (p, q) — (2q, q) or (q, q) and this conflicts with the iso-

morphism (//<-l> or / s ) (ft(G) Π SLiVMpW) s (ft(G) ΓΊ SL(V2))/MG2).

Consequently ^(G1) = Z>2. By (4.8), (4.9), (4.10) and (4.11), the Shephard-

Todd number of p^G) is not greater than 11, and px(G) contains a pseudo-

reflection of order 4 (cf. [4, (3.16)]). Then, putting U = <σ e Spe (G) | ord (σ)

= 4), we see that p2(Lf) is diagonal and px{Lf) is irreducible primitive

(precisely, is conjugate to (μ8|μ4; O\T)). Thus px{Gι) (z> [^(L7), /ô LO]) con-

tains a subgroup which is conjugate to T, a contradiction.
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§5. The classification

In this section we shall prove

THEOREM 5.1. Suppose that G is irredundant in GL(V). Moreover

suppose that n > 4 if G is irreducible imprimitive in GL(V) and that n > 10

if G is irreducible primitive in GL(V). Then SG is a C.I. if and only if

the following conditions are satisfied:

(1) G is generated by special elements in GL{V).

(2) {0t{V\ G), Ί%(V; G)f]G, V) is a Cl-triplet.

(3) For each 1 ̂  ί ^ m:

Case A "0t{V; G) is irreducible in GL(Vτ)".

If pJlβt(V\ G)) Φ Pi(G) (i.e. Gt is not generated by pseudo-reflections),

up to conjugacy, the groups pt(G), pt(0l(V\ G)), pi(Gl) are listed in one of

lines of Table II.

Case B "pi{β(V\ G)) is reducible in GL(Vi) and not abelian (i.e. not

diagonalizabhy\

( i ) Λ4 = 4.

(ii) pi(G)/pi(&(V; G)) is conjugate in GL(®\=1 Ch^ to one of the groups

listed in Table I or can be extended to a Cl-triplet in GL(®\=1 Cht) where

{hu - - , h±} is a Gj&t(V\ G)-lίnearίzed regular system of graded parameters

(iii) For any nonzero x e Vt with άivn(V^^Gi)x — 3 (for this notation,

see Sect. 2), (Gι)x is extended to a Cl-triplet in GL((V^){Gi)) or conjugate to

one of the groups listed in [29, Sect. 3].

(iv) //, for an irreducible C&(V; G)-submodule U of Viy (Gι)m (for

this notation, see Sect. 2) is not contained in £%(V\ G), up to conjugacy, the

groups pi(£%(V; G))m, Pi(G)m and p^G1)^ (stabilizers, cf. Sect. 2), respec-

tively agree, in GL((Vz)Pί{9t{v.fQ))ίu) (^GL2(C)\ with plβ(V\G)), p,(G) and

pi(Gι) listed in one of the lines with nt = 2 of Table II.

Case C "piβ(V\ G)) is reducible in GL(Vτ) and non-trivial abelίan".

For each σ e G\

TABLE II

Pi(G) plG1) Conditions

G(p, p, 2) <pi(@( V; G)), ?Ί> pt(G) Π SL( Vτ) b > 1

μ,D2 μj
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G(p,p,S) <

G(p, q, 3) <

G(3, 3, 3) <

W(H3) f.

W(L3) f

W(M3) t

W(J3(4)) t

G(p, q, 4) <

W(Dt)

W(At) t

W(H<) /

W(F4) /.

W(Ft) <

W(U) t

EW(Nt) ,

W(A5) t

W(E6) i

r, = diag [ζ2h -

Λ = (μuW(L3))

Λ = th.[W(FΪ

λ2 = 1, ^W(F 4 )

Wφt)dW(Ft)

\Pι(β(y-,G)), - i ;

P l («(y ; G)), r2>

>,(Λ(y; G)), Λ>

WASHY; G))

wiβHy , G))
^ ^ ( V ; G))
^3 | O i(^(y; G))

W ^ ^ ; ό», r3y
ίpt(!my; G)), Λ>

^ ( ^ V ; G))
•upA&ty; G))

/4 ( O i(^(F; G))

^ F ; G)), Γ3>
, 1 2 ( O i (^(F; G))

W«(V; G))
^2/Oi(^(V; G))

^ ( « ( V ; G))

^(GXΊS^F,)
> Pi(G)Γ\SUVd pe2Z+l

<G(p, w', 3) Π SL( Vί), r2> p > 1

PiiGjΠSUVt)

pt(G)(λSL(Vt)

Pi(G)ΠSL(Vd

PiiG^ΓiSLiVi)

PAG)Γ\SL(yd
{G(p,qq',A)f\SL(Vi),r3y p>l

PiiCfynsLiVi)

PiiGjΠSLiV,)

Ptic^nsLiVi)

μΛW(Fά W(F<)]

/OiCOnsί-ίVi)

PiWnsuVi)

Pi(G)ΠSL(Vt)

piiGynsLiVi)

p^nsuv,)
- Cai1] Γ2 = d i a g [ζ3'p, ζ3p, Cap] T> — d i a g [ζ 2 ί , ζ2h ζ ί 1 , C2""*1]

i n SL(V ) (« =
), W(F4)] (u = 1,

= WiFJX); G(3,

1,9) or [W(LS) n SL(Vd, W(L,) Π SL(Vt)]

2 ) ; Γ 3 = /«4, , ζ 4 ^ o r j u 4 ^ ( W ( F 4 ) 3 λ e < S L 4 (

3,3) c W(M3) W(L3) c W(M3)

N3qf = p/q or p/2^; iV9 6, 2 s-1 | |p

Π sjk = 1 ,

where sjk (1 ^j,k^ nt) are entries of the matrix [sjlc] of ρt(σ) afforded by

a C-basis on which pjlβtiy; G)) is represented as a diagonal group and Gι

is conjugate, in GL(Vi), to one of G(p,p, nt) Π SL(Vi) (p > 1, nt > 2)

(G(p,p, 4 ) n S L ( y , ) , d i a g [ζ 2 δ, ζ2h Cί 1 , C2-,1]) ( 2 δ - Ί | p , 6 ^ 1 , ^ = 4), the groups

in Table I, (G(p,p, S)f)SL(Vi), άiag[ζ^y ζ8p, ζ3p]> (p ^2,nt = 3), <G(p,p, 3)

nSZTO, diag K7p, ζ^, ζ7"
3]> (p > 1, Λ, = 3).

Case D "pl9t(V\ G)) = 1".

m — \ and G can be extended to a Cl-triplet in GL(V) (i.e., G = G#Π

SL(V) /or a ^mίe reflection subgroup G# o/ GL(V) m which all orders of

pseudo-reflections are equal to the index [G*:G]).
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Remark 5.2. The conditions in Case B of (3) of (5.1) can be replaced

by a concrete classification of some subgroups in GL(Vi). However it is

rather complicated.

For convenience sake, put 9t = 0t(V\ G) and A = {X e Horn(G, C*)|

χ(G) = 1}. We suppose that G is irredundant in GL(V), n > 4 if G is

irreducible imprimitive and n > 10 if G is irreducible primitive, and fur-

thermore may suppose that G is generated by special elements. If SG is

a C.I., then G 3 [G, G] (i.e. ^(G*) 3 [^(G), ^(G)]) and, for each 1 ̂  ί ^

m, both Sym(V,)* (cf. [21, (5.2)]) and Syrn(V;)G£ ([14, (2.6)]) are also C.I.'s

(cf. (2.4)). Conversely if 0tΓ\ G 3 \β, @\, one easily sees G 3 [G, G], since

x •• ^ G

LEMMA 5.3. Suppose that fχ(V, G) e sf /or α/Z XeA. Then SG is a C.L

if and only if (β,0tς\G, V) is a Cl-triplet and all Sym(y,)G (1 ̂  i ^ m)

are C.Vs.

Proof. By the above observations, (in case of "if" part or in case

of "only if" part of this lemma,) we always have SG = ®χeΛ Sf =

, G) (cf. [21]). Since fχ(V, G) = ft(V, ®\ S^G = ®χeΛ S j =

and therefore SGI(SV)GSG ^ S*nGl(SV)*S^G. Clearly Sδ

is a C.L if and only if Sym(F,)G (1 S i < m) are C.I.'s. The closed fibre

of the flat morphism (Ssv)
e -> (SSV)

G is isomorphic to that of the flat

morphism (Ssvy -> (Ssvy
nG and hence the assertion follows from [1].

In order to prove (5.1), by (5.3) we need only to show that (a) if SG

is a C.L, then the condition (3) in (5.1) holds, and (b) if the condition (3)

in (5.1) holds, then Sym(V,)G is a C.L and fx(Vi9 ^(G)) e Sym(VV)Gί for each

1 £ i < m and all 1 e Horn (^(G), C*) with l(plG1)) = 1, because fx(V, G)

= ΠΓ-i/z(Vi, Gt) and fx(V, G) e SJ for % e Hom(G, C*) ([21]). So let us fix

1 rg ί ^ m and divide the proof of the above assertions into the cases as

follows:

Case A "3t is irreducible in GL{Vt)". Since the "not if" part follows

immediately from [21], we may suppose that SG is a C.L (in the proof of

the last assertion in (b), we do not use this assumption, and use the first

assertion in (b)) and Pί{G) Φ 9i{β) (then ^(G*) g p^St) Π SL(V,)). It should

be noted that f^(Vu Pi(G)) e$ym{Vτ)
Gi ([21, 25]).

Subcase 1 'Vi(^) is primitive and nt — 2". Assume that pt{β) = (μab\μa'r

for some subgroup H of SL(Vt) and natural numbers α,
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b. Since (H, pt{G) ΓΊ SL( V*)) is a finite group containing H and /o*(G) Π

SL(Vt) as normal subgroups respectively, we must have HΏ, pi(G) Π SL(Vi)

or ^(GjΠSLίVi) Ξ2 iϊ. Our assumption and this imply ^(G) Ξ2 μah'(p%(β)

DSLiVJ), which shows ^(G) = Pi{3t) (cf. [4, (3.6)]). Therefore pjίβt) may

be identified with μa-(Pi(@)Γ\SL(Vϊi) for a natural number α. Because

j«α * (/θi(G) Π SL( VJ) is not a reflection group, α = 6 and the groups pt{G) Π SL( V<)

and ^(^ΠSLίVί) can be regarded as O and T respectively. Because O

Ώ Pi(G*) 2 A = [fh T, μ6'T] (cf. (4.1)) and Pi(&) £ Pi(O) Π SL{Vτ), Pi{&)

= O = ^(G)nSL(FJ. ftot(VuPi(G)) is a graded element of degree 8 in

S y m ^ ) which is an invariant of O (in fact f&et(Viy Pi(G)) = f^t(Vi9 μ^-T)

is a unique nonzero invariant of degree 8 of T (up to constant multiple)

and O has a graded nonzero invariant of degree 8). If a linear character

X of Pi(G) satisfies X(^(G*)) = 1, X = detω on V, for some M e N. Clearly

ί 1 if u ΞΞ 0 mod 3

Λβt-( Vif Pί(G)) = / d e t (F, , Λ (G)) if K = 1 mod 3

[faet-ι(Vu Pi(G)) if u = 2 mod 3

for u e N and hence the rest of the assertions follows.

Subcase 2 "pSJfl) is a primitive Coxeter group {rti > 2)". Let σ e Pi{Gl)

be any special element which does not belong to 0t and let (V^)R be a G-

stable real structure of Vt. plβ) may be regarded as a subgroup of GL(( Vί)R).

Since p^Sti) is absolutely irreducible in GL({V^)R) and tf/)^) = pi(&)σ, for

some c e C * , c σ belongs to GL((V,)Λ). By [2, p. 232, Exc. 16] and [4] we

can similarly show the assertion as in the next case.

Subcase 3 "pSβt) = W(L3)". pt{β) can be regarded as a subgroup of

W(M3) generated by all pseudo-reflections of order 3 in W(MS). For a

special element σ e pjίβ1) with σ <£ pSβt), by [4, (5.14)], there are a natural

number a and τ e W(MS) such that σ — ζa τ and dim V^τ, ζ"1) = 1. Since

the degrees of W(L3) are 6, 9,12 and S y m ^ ) ^ is divisorially unramified over

SymίVί)6 ([7]), exactly one of ζj, ± ζ j , C is equal to 1. Moreover, as det(τ)

e μ6 = detίWίMg)), α = 9. There are regular elements μ of W(M3) and μ'

of W(L.) of order 9 ([4, (4.16)]) satisfying dim Vt(μ9 ζά1) = dim Vt(j/, ζ"1) = 1

([19, (4.2), (ii)]). Then μ and μ! are conjugate to τ in W(MZ\ and as VF(L3)

is normal in W(MZ), τ e W{LZ\ i.e. Λ(G) = ft W(L>). Using deg (/det( V4, Pi(G)))

= 12 and a€SL(y{), we see that fάet(Vi9 Pt(G)) is an invariant of σ ([19]).

The assertion in (b) follows from the fact "Horn (W(L3), C*) = {1, det, det"1}"

and U-ι (Vi9 Pi(G)) = fUVu Pi(G)Y.
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Subcase 4 "ρ%{β) = W(MZ)". Let σ be any special element in

such that σ£9i{β). By [4,(5.14)], a = ζα τ for some τ e W(M3) with

dimV O, ζ"1) = 1. Since the degrees of W(MS) are 6, 12, 18 and det(τ)e

μ6, we have α = 9 or 18 and by [19, § 4], find τ, which is regular, in W(M3).

The rest of the assertions follows from [21] and the following computation

of the degrees of f^Vu ^(G)); deg(/ d e W (^, ^(G» = 21, if 7 = 1; = 24, if

j = 2; = 9, if j = 3; = 12, if 7 = 4 ; = 33; if 7 = 5 (cf. [4, (4.16)]).

Subcase 5 "pjlβt) is a primitive complex reflection group (n* > 2)".

Using [loc. cit., (5.14)], we can prove the assertion by the similar method

as in Subcase 3.

Subcase 6 "ρt is monomial and nt = 2". Let {Xu X2} be a C-basis on

which Pi(G) is monomial and pjlβt) agrees with G(p, q, 2). Let σ be a

special element in Gι which does not belong to 0£. Then, on {Xl9 X2},

p.(σ) — diag [c, d] (1, 2)[2] for some c, d eC with cd = — 1. Assume p\q > 2.

By ^(G) - <fr(Gf), ^(Spe (G))>, we find an element r in Spe(G) with

oτά(pi(r)) = ord(r) > 2 such that ^(r) is diagonal on {X» X2}. Put L =

G[(@y_tiFj.χr>] (the stabilizer) and choose an element Z from V satisfying

(ϊ — lXΦ^V,) = CZ. Clearly ?̂XL) is irreducible and is not conjugate

to <diag [ζα, ζ"1], (1, 2)[2]> (α ^ 2) (it should be noted that, in [29, Theorem

1], these groups are deleted). Because C[X» X2, Z]L is a C.I., by [29,

Theorem 1], p^L) contains diag[— 1, 1], which implies pjq is even. Then

from the equality "Γί/iβt-XVi, pt(Gf))) =/det-XV<, ρt(G)) (this polynomial can

be identified with (X.Xy^XXϊ - Xξ))" it follows that cp = dp = 1. Hence

if p φ qf p.(σ) e piiβ} — G(p, q, 2), which conflicts with our choice. We

see that p = q and moreover, by the invariance of /det-i( Vi9 Pi(G)), p is even.

In G(p, q, 2) there are exactly two equivalent classes in ^(V*, G(p, q, 2))

(cf. [12]). Since Xf/2 - Xf2 and Xf/2 + Xψ are relative invariants of

G(p, q, 2), for any 1 in Hom(^(G), C*) with Z ̂  1 and X(^(G')) = 1, fx(Vi9

Pt(G)) can be identified with one of the polynomials Xp/2 - X\'\ Xp/2 +

Xp/2 and XI-Xξ. Obviously σ2em, which implies σ(fx(Vίy ^(G))) =

±fi(Vi,pi(G)). However cp = d p = - 1 and hence Z = det"1 on ^(G),

i.e. pί(Gi) = pί(G)ί)SL(Vi).

Subcase 7 "piiβΐ) is imprimitive, pXG) is primitive and Πi = 2". Ac-

cording to [4, (2.13)] we see that plβ) is conjugate to G(4, 2,2) or G(2,1, 2)

in GL{V^). In both cases, each orbit in ^(Vi9 pt{^t)) under the action of

plβ) consists of two hyperplanes, and so, because pt(G) = pSβfypiiβ1) is

not monomial, pt(G) acts transitively on J^(Vi9 pΊ(&)). Let σ be any ele-
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ment in Spe (G) such that ^(σ) Φ 1. Putting L' = GC(@yi.ίF<σ>], we easily

see that Pi{Lf) = Pί(G), dim Vv = 3 and SymCV^)*' is a C.I., Then, by

[29], pi(U) is conjugate to /v T and ^(GO = pt{G) (Ί SL( Vi). If a nontrivial

1 e Horn(^(G), C*) satisfies Z(ft(G*)) - 1, Λ(^, ft(G)) = /**-*( V,, ft(G)), which

shows the assertion in (b).

Subcase 8 "pt is monomial and nt > 2". Let X = {Xl9 , XTC.} be a

C-basis of Vt on which pt{G) is monomial and ^ ( ^ ) is identified with

G(p, q, n<). Since ft(G0 2 [<*,(#), pt(O)] - G(p, p, Λ<) Π SL( V«), Πx WGO) is

isomorphic to Sni or An<. Suppose ^(G*) — /o^^) contains σ = diag [a b, c, 1,

• , 1] .(1, 2)[nt] satisfying (1) ab = — 1, c = 1 or (2) α& = 1, c = — 1. Using

σG(p,p9 n^σ-1 = G(p,p, rat), we easily see α23 = 6P = cp = 1 if nt > 3 or if

Πi = 3 and c = 1. In this case p/q is odd, and hence σ(/dβt_i(Vi, pi(G))) =

~/det-i(^ί? IOXG)), which is a contradiction. Consequently n* = 3, c = — 1

and b = α"1. Whenp is even, exchanging σ, we may suppose c = 1. Thus

it should be assumed that /? is odd. By [29], we can identify pjίβ1) with

<G(p,p, S)Γ\SL(Vi), d i a g [ - l , - 1 , -1] (1, 2)[3]>. Assumep Φ q. Then there

is an element τ in Spe (G) such that p^τ) = diag [ζu, 1, 1] with u ^ 2.

Putting if = G^φ^^ωj, we see p^H) is equal to </o<(G
<), ^(μ)> or (p^G*),

Pt(μ), (1, 2)[3]), since i ί is generated by special elements. Here μ is an

element of Spe (G) such that </z) 3 τ. In both cases, by a direct computa-

tion, emb (Sym (VH)H) >̂ 8, a contradiction. Consequently ^(G) = (G(p, p, 3),

~1>, p^G^Ώp^G) OSLiVi) and fUVt, Pi(G)) is an invariant of pJtG1).

For the rest of cases, by [8, 29], we infer that the assertion holds.

Subcase 9 "pt(G) is not monomial, piiβ) is imprimitive and n^ > 2".

pJiβt) may be identified with G(3, 3, 3) or G(2, 2, 4) (cf. [4, (2.13)]). Suppose

plβ) = G(3, 3, 3) and regard ρt(G) is a subgroup of μ^-W(M^). Because

piiG*) is irreducible primitive and Sym(Vi)Gi is a C.I., by [29], pt(Gι) is

in (μ*W(L3))Π SL(y,) - (μ,W(MJ)n SLίVJ. Clearly f^(Vi9Pi(G)) = U*{V»

W(MZ)) is an invariant of W(Lι)C\SL(Vt)9 and the assertion follows from

[29]. We can similarly treat the case "ptfβfy = W(A)"

Case B %xpx{β) is reducible and not abelian". Suppose that S σ is a

C.I. Then, as SymίVJ0 is a C.I., by [14,(4.3)] (the circumstance of [14,

(4.3)] is somewhat different from our present circumstance, but its proof

is applicable), nt = 4. Let {Xu X2, Xi9 X^ be a C-basis of Vt on which

matrices are always defined and suppose that CXX 0 CX2 and CX3 Θ CX4

axe irreducible C^-submodules of Vt. Denote by H the decomposition

group of Sym(Vi)(Xl9 X2) under the action of pt(G), and let ψji H—>
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GL{CX, 0 CX2) and ψ2: H-> GL(CX3 © CX4) be the natural representations

of H. We may suppose that pt(G) = (H, (1, 3)(2, 4)[4] = r>, and there are

canonical isomorphisms ψ^jy^ψ^ίf) and ψi(^i(^)) = ψ2(/θj(^)). Clearly Pi(βt)

is the direct product of Ker ψ j Π plβ) and Ker ψ2 Π plβ). Moreover H is

generated by the union of Pi(G%ZltZin, pt(G%z%tZiΏ9 plβ\

Ll = {[F F-] \Fe GLϊ{C)) n / ° i ( G 0

and L2 = {βe ^(G*) Π H\ ψ^β) and ψ2(β) are pseudo-reflections in GL2(C)}. If

H\plβ) is abelian, the assertion (a) is evident and so we assume HjpJlβC) is

not abelian. If, for a normal subgroup Gr of ρt{G) generated by some

pseudo-reflections, the pair of degrees of ψ^G') is consisting of distinct

numbers, H\ρlβ) is abelian, because ψ1(iϊ)/ψ1(G/) and ψ2(H)/ψ2(G') act

faithfully on C[X» X2\
G' and C[XS, X4]

G' respectively. Suppose that ^(p^))

is primitive. Then since the degrees of ψ^p^)) are equal, by [4, (3.6)],

Ψi(pi(&)) is identified with one of μ12 Γ, μu O and μ60 / in GL2(C). Let N

be a subgroup of ^(G) generated by all pseudo-reflections of order 3 in

Pi(G). The pair of the degrees of ψ^ΛΓ) is consisting of distinct numbers

([4]), which is a contradiction. Thus ψ^p^)) is imprimitive, and further-

more, by [4, (2.13)], ψ^p^)) (resp. ψ2(^(^))) may be identified with μ^D2

on the C-basis {Xu X2} (resp. {X3, X4}). Using a classification of finite

subgroups of GL2(C) (cf. [4, (3.1)]) and our assumption on ψ1(H)lψι(pί(^)),

we easily see that ψi(iϊ) is equal to μ2u O or (μiu\μ2u; O\T) on {Xu X2},

where u e N is even. There are homogeneous polynomials gl9 g2 (resp. g3,

ft) in C K , XJ (resp. C[X3ί XJ) such that r(ft) = ft, Γ(ft) = ft and {ft, g2,

g3, g4} is a G/^-linearized regular system of graded parameters of S y m ^ ) * .

Let Ψl: H\plβ)^GL(Cg,®Cg2) and φ2: H\pl<%) -> GL(Cg3® Cgd be the

canonical representations. Moreover, since ψjfJSlpJlβt)) (j = 1, 2) are meta-

belian groups, we may suppose that pi(G)lpi(3S) is monomial on the C-basis

g = {ft, ft, ft, ft} and #(Cft Θ Qr2; fl/ft(Λ)) (resp. <%(Cg3 Θ C^4; HIPi(O))) is

represented as a diagonal group or G(p, g, 2) on {ft, g2} (resp. {̂ 3, ft}).

Claim "If <τ is an element of H such that ft, ft are relative invariants

of σ, then ft and g2 are also relative invariants of σ". We may suppose

that σ belongs to one of pi(G%ZuZ%Ώ, pi{G%x^x,Ώ, Lx and L2. If a e Lx U

M^^cί^i.^a}]' ^ e assertion is evident. Suppose ΨΊ(H) = μ2u (9. ^t{CXx 0

CX2; i/) is equal to μ4 0, ^8 O, //12 O or /i^-O in GL2(C) and hence $!(Cft

0 C^2; Hip^01)) and ^(C^ 3 0 Cg4; H\plβt)) are regarded as one of the groups
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G(3, 3, 2), G(69 6, 2), G(3, 1, 2), G(6, 2, 2) in GL2(C). If σ e L2, by the defini-

tion of pX^), ord (φ^σp^))) = ord (φ2(<rpι(&))), which implies our assertion.

So we assume σ e pi(G%Xz,x^. Then ψ^σ) e ψ^H) Π SL2(C) = O g ^(CX 0

CX2; i ϊ), and ovdiφ^σp^))) = 1, 2 or 3. Since ψxiσp^)) is not a pseudo-

reflection in GLiCg&Cgz) and belongs to ^(C&ΘCfe; E\plβ))9 φippiβ)) is

diagonal. We now suppose ψ^Jff) = (μ4M|μ2tt; <?|Γ). 0t{CXx®CX2\ H) is

identified with /vA, /ίu Γ, (μ 8 |μ 4 ;O|Γ) or (/;24|/;12; 0 | Γ). 9t(Cgx®Cg2\

Hjpi(M)) and Λ(Cg8ΘCft; Hlp^)) may be regarded as one of a diagonal

group, G(3, 3, 2) and G(3,1, 2). We can similarly show this claim.

By Claim, Π,(ft(Φ/ft(Φ) = <(Cgu Cg2)(Cgz, Cgd, (Cgl9 Cg3)(Cg2, Qr4)>,

which proves (ii) of (3). For any nonzero x e Vi9 Sym((y ί) ( G ί )J
σ^ is a C.I.,

and hence (iii) of (3) is satisfied ([29]). (iv) of (3) follows immediately

from the assertion in Case A (we can replace G and G* by Gί{X3iXi]1 and

G[{χ3,χ4}] respectively and apply the assertion (3) in Case A). Thus the

proof of (a) is completed.

Next we suppose that the condition (3) in (5.1) holds. The first part

of the assertion (b) is evident. Let 1 be a non-trivial linear character of

plG) satisfying %(^(G')) = 1 and put f? = fx(CXt ® CX2, 3C) and /f = fx{CX,

®CX<,&). Then ft(Vu Pί(G)) = fχ(Vu 9iψt)) = /f/f in S and, if /<>> is

regarded as a polynomial g(-XΊ, X2) with the variables Xu X29 /χ

(2) can be

identified with g(XZ9 X4). Let σ be any element in (pi(G%XliχiΏ U iθi(G
i)Πx3,x4}]

UU U A) - ?<(#). It suffices to show σ(fx(Vu Pt(G))) = fz(Vi9 Pi(G)). If σ e L1?

this assertion is trivial (note that fx(Vu pi(G)) is a relative invariant of

Pi{G)). On the other hand, if σ e Pi(G%Xs>XiΏ, by (iv) of (3) / f = /^.(CX;

θ CZ2, ̂ ) for some ueN- {0}, which shows (7(/χ

(1)) = /χ

(1) (cf. the proof

in Case A, Πi = 2). Finally, suppose σ e L2. {ψ^p^)), ψi(<7)> and

ψ2(σ)} are reflection groups in GL2(C) which properly contain ψ

ΫtiPiiO)). If <ψiW«)), Ψi(σ)> is primitive and <ψ2(M^))> ψaW> is im-

primitive, as in the proof in Subcase 7 in Case A, we see f{

x

l) = fάet~ι(CXί

θ CX2, ψ ^ Λ ) ) ) , and hence / f = /det-i(CX3 0 CX4, ψ2(^(^))). Since /det-iί V,,

^(G)) is a det" ̂ invariant of ^(G), in this case, the assertion follows. So

we assume that (ψj(pi(&)), Ψ/tf)), Ψj(pi(&)) (j = 1? 2) are simultaneously

primitive or imprimitive in GL2(C).

Subcase 1 "(σ - 1 ) ( C X Ί 0 CX2) = (σ, - l)Vt and (σ - 1)(CX,0 CX4) =

(σ2 - l)y, for some ^, σ2e«^". Suppose <ψi(^(^)), ψ^σ)) (resp. (ψ2(pi(&)),

ψ2(σ))) is monomial on the C-basis {X1? X2] (resp. {X3, X4}) and especially

is represented as G(p, g, 2) on {Xί9 X2} (resp.
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{X3, XJ). Because g(Xu X2) is a relative invariant of G(p, q, 2), there is

a polynomial g'(Xu X2) e C[X1? X2] and an element 1; e N such that g(Xi> X2)

= (X,X2Yg\Xu X2) and £'(X1? X2) is not divisible by Xx and by X2 in

C[XUX2]. If ψx(σ) is not diagonal, oτά(σ) = 2, and so ψ^σ) = ψx(pi(σx))

and ψ2(/°) = Ψi{Pi{σzi)> which implies σ — pi{o^Pi(a^ & pί(&)> Therefore ψ;(σ)

(j = 1, 2) are diagonal. Since σ{g\Xu X2)) = g'(Xu X2) and σ(g'(X3, X4)) =

g'(Xz, X4), σ(Λ( V,, /><(G))) - det ( ψ ^ σ ) ) ^ det (ψ8(e;))Yf = /z( V4, ft(G)). Sup-

pose ($j(pi(βlί), Ψj(<ύ) (j = 1, 2) are primitive in GL2(C). Since ψ^σ) g

(if ψxW e Hpm\ σ e 9i(β)) and (^(σ) - l)(CXi ® CX2) -

i Θ CXΰ, by a classification in [4, (3.5)], we see that

( = oτd(σ)) — 4, ord(^i) = ord(σ2) = 2 and σ2 = ptiσ^). In any primitive

2-dimensional reflection group, the set of all pseudo-reflections of order 4

is empty or a conjugate class. Thus tyι(pi(βt)) does not have a pseudo-

reflection of order 4, and using [4, (3.5)] again, we can identify

with μι% T. By the definition of f? (cf. [20, (4.3.3)]), σ(/z

(1>)/Λ(1> =

= (Kf**-ι(CX1ΘCXi,&))lfύBt-1(CXι®CX2,O) otherwise, where 17' is the

reflecting hyperplane in CXX Θ CX2 associated to ψ^PίiσJ) i.e.

Similarly σ(/f )//f > = 1 if X(Pί(σ2)) = 1; = σ(/det^(CZ3 Θ CZ4,

0t) otherwise, and therefore, observing 1 = X(σ2) =

and σ(fάe^(Vu Pί(G))) = άet(σ)-1fto-i(Vi,pi(ty)=ftot-i(Vi,Pi(G))

(cf. [21]), we always have σ(fχ(Vίy Pi(G)) = fx(Vi9 Pt(G)).

Subcase 2 "(σ - ΐ)(CXί ® CX2) = (σx - 1) V, for some σx e & and

(σ - 1)(CX, θ CX4) ^ (r - 1)V; for every τ e 9t". Since σ(/f) = /f ([20,

(4.3.3)]), we need only to show σ(f™) = f?\ Suppose (ψ/M^)), ΨX )̂>

(jf = 1, 2) are primitive in GL2(C). Then, as in Subcase 1, we similarly

have σ(/f)//f = 1 if Xipfa)) = 1; = σiU^CX, ® CX2, O))lf^-i(CX1 θ
CX2, St) otherwise. Thus the assertion follows from the equality f^%-i{Vu

Pί(G)) = σ(fάeU Vi9 Pi(G))) - σ(fdet-1(CX1 θ CX2, M))f**-ι(CXz ® CX4, &). Next,

suppose that (Ψί(pi(^)), fi(σ)} (resp. (ψ2(pi(&))9 ψ2(^)» is monomial on {Xx,

X2} (resp. {X3, X4} and especially ψfajlβfy) (resp. ψ2(pί(&))) is represented

as G(p,q,2) on {X1? X2] (resp. {X3) ZJ), where p , g e TV with q\p. Since

ΨiW « Ψi(M^)) and (ψ,(σ) - ^ ( C ^ θ CX2) = (f^P&d) - 1KCX, ® CX2\

ψiiσ) is diagonal on {Xl9 X2}, and using our assumption in this case, we

easily see that ψ2((y) is not diagonal on {X3, X4}, which requires ord (σ) = 2.

Obviously it may be assumed that diag [— 1, 1, a, α" 1 ]-^^)^] for some

a e C*, and hence p/q is o d d ( ^ 3). Because Pi([9t9 dί\) g ^(G'),
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is irreducible and not conjugate to <diag [ζu, ζ"1], (1, 2)[2]> (ueN — {0})

in GL2(C). Applying [29, Theorem 1] to Pi(G%2 (cf. (iii) of (3)), we see

diag [—1,1, — 1, 1] e Pi(G0x2, which implies pjq is even (cf. (iv) of (3)). This

is a contradiction.

Subcase 3 "(σ - 1)(CX, θ CX2) Φ(τ - 1) V, and (σ - 1)(CXS 0 CX,) Φ

(τ - 1) V< for every τ € ^ " . Clearly f™ and / f are invariants of τ. Thus

the assertion follows.

Case C "pι(3t) is reducible and non-trivial abelian". Let X = {Xu ,

XWi} be a C-basis of Vt on which ^(^9 is diagonal and every matrix is

defined, pjfi1) is a transitively imprimitive group with the complete

system {CXl9 , CX*,} of imprimitivities and plβ) = <diag[ζc, 1, , 1], ,

diag[l, •••, 1, ζc]> for some ceN with c ^ 2. Hence {fx{Vu pt{G))\l e

Hom(^(G), C*), Z(ft(G')) = 1} £ {(Xi Xnt)
Ό\0 ^ i; < c}. The last asser-

tion of (b) follows immediately from the condition (3) and so we assume

SG is a C.I. and G is a minimal counter-example for the assertion that

X1 - Xn. e SGί with respect to | G\. Then it may be seen that i = 1, m = 2

and dim V2 = 1 (in fact, for an element σ e Spe (G) with ord (pi(σ)) > 1,

G[(@i9,iFj)<σ>] is also a counter-example).

Claim " |{ i | l ^ j ^ ^ , V ^ a l j } ! < ^ — 2 for any special element a

in G1". We suppose that this Claim is false. Then one may suppose px{σ)

= diag[—1, 1, ••-, 1] (1, 2)[n1]6p1(G1) for some σeG\ and by the mini-

mality of G, dim Vj = n, = 2. Because C[XU X2]
G is a C.I., /dθt-i(Vi, G) =

(X1X2)
c~ι is an anti-invariant of G, which requires c is odd. This conflicts

with [29].

Applying [14, (4.2)] to G\ we have nx = 3 or 4. By [8, Table II] and

our assumption, ΠxipiiG1)) is conjugate to neither Anj nor {(CXU CX2)(CX39

CXd, (CX» CX3)(CX2, CX4)> Suppose Uxip^G1)) = <(CXU CX2), (CX3, CZ4),

(CXU CXZ)(CX2 CX4)> (Λ l = 4). Then Pϊ{Gι) a diag [1 1, - 1 , 1] (1, 2)[4] and

since, on CXΊ0CX2,G^is not conjugate to <diag [ζu, ζ'1], (1, 2)[2]> in GL2(C)

and C[XU X29 Xsi0** is a complete intersection, by [29], ^(G1) 9 diag [—1,

1, -1,1] . Hence ^(G1) 3 diag [1, - 1 , 1,1] •(!, 2)[4], which is a contradiction

(cf. Claim). By Claim, [8, 29] and the minimality of G, n, = 3 and ^(G1)

may be identified with <diag[ζα, ζ~\ 1], diag[l, 1, -1] (1, 2)[3], d i a g [ - l , 1,

1] (2, 3)[3]) where a is an odd natural number and c\a in iV. Moreover

G = (G\ ϊ) for an element ϊ e 9t. Clearly Sym (V,)01 = C[X\a + XT + Xf,

XϊXϊ + XϊXϊ - XϊXϊ, (XΆX*)\ XWiX! - X? + Xϊ\ (Xΐ + X?)(X? +
- Xf)] (cf. [29]) and because ϊdX&Xtf) = ζHX&Xtf, r{X,X2X,{Xϊ
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- X? + Xf)) = ζcXxX2Xz{Xί - Xξ + X?) and ϊ(Z) = ζ 'Z, it follows easily

from (c, 2) = 1 that SG is not a C.I., where Z is a nonzero element of V2,

which is a contradiction.

We always conclude X1 Xni e SGί if (3) holds or if SG is a C.I.,

and so assume Xί Xn< e S0". Then, if G* is generated by special ele-

ments, YlxipίiG*)) is generated by double transpositions and 3-cycles and

does not contain a transposition, i.e. especially if rc* 5g 4, ΠiWG*)) =

A4 (ra, = 4), Z/2Z xi S2 (rit = 4) or A3 (n, - 3) ([8]). On the other hand,

if PiiG1) is conjugate to the groups " 5 " or "6" in [8, Table II], we can

easily show emb(Sym(Vr

ί)
<?i) >̂ 8, a contradiction. Furthermore, if PiiG1)

is conjugate to <G(p,p, 4)ΠSL(V,), diag[ζ2δ, ζ2δ, &\ C51]) (2δ"Ί|p, b ^ 1),

Sym(Vr

i)
Gi is a Gorenstein ring with e m b i S y m ^ ) 6 ) = 6, and is a C.I..

By our assumption on G\ Sym(yj G is a C.I. if and only if Sym(Vi)Gi is

a C.I., since the closed fibre of the flat morphism (Sym(Vi)
<3)(Sym(F.)F.)ί?

-+(Sym(Vi)Gi){sYm(Vi)Vi)Gi is a hypersurface. Therefore the rest of the as-

sertion follows from the above observations, [14, (4.2)] and [29, Theorem 2].

Case D "pt(β) = 1". Claerly m = l. When G is imprimitive, see [14,

(4.2)]. When G is primitive, as in the proof of [14, (4.6)], this follows

from (4.1).

Thus the proof of (5.1) is completed.

Notes added in proof. There are errors in the author's classifi-

cation of irreducible groups of dimension ^ 10 and its proof published

in LNM 1092 (Springer) and manuscripta math. 48, 163-187 (1984). A

revised classification shall be given in a part of a forthcoming paper.

Case A of the classification of reducible groups in those notes must be

replaced by Case A in (5.1) of this paper. [32] must be added to their

references. In [33] the author generalized the result in [26].
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