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QUOTIENT COMPLETE INTERSECTIONS OF AFFINE SPACES
BY FINITE LINEAR GROUPS
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§1. Introduction

Let G be a finite subgroup of GL,(C) acting naturally on an affine
space C™ of dimension n over the complex number field C and denote by
C"|G the quotient variety of C™ under this action of G. The purpose of
this paper is to determine G completely such that C*/G is a complete inter-
section (abbrev. C.1) i.e. its coordinate ring is a C.I. when n>10. Our main
result is (5.1). Since the subgroup N generated by all pseudo-reflections
in G is a normal subgroup of G and C"/G is obtained as the quotient
variety of C*/N = C" by G/N, without loss of generality, we may assume
that G is a subgroup of SL.(C) (cf. [6, 16, 24, 25]).

Stanley classified G in [21] such that C*/G is a C.l. under the as-
sumption that G = G*N SL,(C) for a finite reflection group G* in GL,(C),
and conjectured in [23] that if C*/G is a CI., G* D G D [G*, G*] for a
finite reflection group G* in GL,(C). In [17, 28], this conjecture was solved
negatively. On the other hand, Watanabe ([26]) and Watanabe-Rotillon
([29]) determined G such that C"/G is a C.I. respectively for abelian G
and for any G in SL,(C). In case of n = 2, it is well known and classical
that C*/G is always a hypersurface for every G in SL,(C).

Recently Goto and Watanabe showed that if C*/G is a C.I., then its
embedding dimension is at most 2n — 1 i.e. C*/G can be regarded as a
closed subvariety of C*"-! (cf. [27, 31]). This result follows from the main
theorem in [11] on rational singularities, because C"/G is a rational singu-
larity at the induced origin (cf. [10]). Moreover, using Grothendieck’s
purity theorem, Kac and Watanabe [9] showed that if C"/G is a C.I., then
G is generated by {¢ € G|dimIm (¢ — 1) < 2}. Thanks to the last theorem,
we can use a classification of some finite linear groups given by Blichfeldt,
Huffman and Wales (see the references in [14]), and consequently, for
example, have shown
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THEOREM ([13, 14]). Suppose that n > 10, (C™)° = 0 and G is contained
in SL,(C). Then C"/G is a hypersurface if and only if G = G*NSL,(C)
for a finite reflection group G* in GL,(C) in which all orders of pseudo-
reflections are equal to the index [G*: G].

The proofs of our theorems, which show that counter-examples for
Stanley’s conjecture are very few, depend not only on the above results
but also on some results on relative invariants of finite groups ([21]) and
regular elements of finite reflection groups ([19]). Furthermore the clas-
sification of finite reflection groups in [4, 24] plays an essential role in
this paper. The manuscript of this paper was completed in 1982. The
author was expecting the publication of a part of [27] in English, which
has been essentially used in this paper. After this paper was circulated,
he learned that Gordeev [32] announced (4.1) and some related partial results.
Further classification in small dimensions shall be published elsewhere.

The following notation will be used throughout.

N the additive monoid of all nonnegative integers

z the ring of all integers

det, or det determinant map on a vector space V

diag [a;, @, - -+, @,] the diagonal matrix whose diagonal entries are a,,
Qo -+, Ay

aln] the permutation matrix associated with ¢ in the sym-
metric group S, of degree n

Cn a primitive m-th root of unity

tn the cyclic group (. 1)

D, the binary dihedral group of order 4m

T the binary tetrahedral group of order 24

o the binary octahedral group of order 48

1 the binary icosahedral group of order 120

(| pto; HIN) the subgroup of GL,(C) defined in [4]

G(p, q, n) the monomial irreducible reflection subgroup in
GL,(C) defined in [4]

A(p, q, n) the diagonal part of G(p, g, n)

C, the group A(m, m,2)

w{) the group generated by pseudo-reflections induced
from a root graph I" (cf. [4])

[, 7] the commutator ozo~'z~! for elements ¢, z in a group G

[G, G] the commutator subgroup of a group G
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§2. Definitions, notations and preliminary results

Throughout this paper all rings are assumed to be commutative with
unity. For a ring R, let R* be the group of all unit elements in R, ht(a)
the height of an ideal a of R and RX the ideal of R generated by a subset
X of R.

An algebra A is defined to be N™-graded (m € N) if A is regarded as
a graded algebra with a graduation graded by the additive monoid N™
in the natural way, and, for i = (i, -- -, i,) € N", A, stands for the i-th
graded part of A. If f is an elements of A, f is said to be N™-graded
and the N™-degree (resp. j-th degree (1 < j < m), total degree) of f is defined
to be i = (i, -+, i,) (resp. i;, 2 7=, ;) which is denoted by deg™ (f) (resp.
deg; (f), deg(f)). We say that an N™-graded algebra A is defined over a
field K, if A, = K and A is finitely generated over K as an algebra, and in
this case denote by emb (A) the embedding dimension of A, i.e., dim A,/A?,
where A, is the graded maximal ideal of A. For simplicity, let us use
“graded”, “‘degree” and “‘deg(f)”, respectively, instead of ‘“N-graded”,
“N-degree” and “deg® (f)”. If A and B are graded algebras defined over
a field K, A ®x B is usually regarded as an N’-graded algebra with the
graduation {4, ®x B |(, j) € N%}.

By the theorem in [11] on pseudo-rational singularities, the following
result is obtained:

TaEOREM 2.1 (Goto-Watanabe [27, 31]). If R is a pseudo-rational local
ring and a C.I. whose residue class field is infinite, then emb (R) < 2dim R.

In the case where R is essentially of finite type over a field K of
characteristic zero, R is a pseudo-rational singularity if and only if it is
a rational singularity.

Remark 2.2. We can determine the relation ideals of graded algebras
A such that A,, are rational singularities. For example, if A are algebras
of invariants of reductive algebraic groups over fields of characteristic
zero, the minimal generating systems of A are constructive ([15]), and
hence their relation ideals are also constructive: In general, let A be
an N-graded algebra defined over a field K and K[X|, ---, X,] an n-dimen-
sional graded polynomial algebra over K. If A,, is pseudo-rational and ¢:
K[X,, ..., X,]— A is a graded epimorphism, then Ker o N K[X], - - -, X, ]4™4*!
C K[X,, -+, X,]. Ker o.
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For a finite dimensional vector space V over C, let Sym (V) be the
symmetric algebra of V which is naturally regarded as a graded algebra
defined over C. The rank of an element ¢ in End (V) (or M, (C)) is denoted
by rk (o), and, if { € C* is a root of 1, the eigenspace of ¢ corresponds to
the eigenvalue { is denoted by V (s, {), i.e., V(o, {) = {v e V]a(v) = Cv} ([19]).
An element ¢ of GL(V) is said to be a pseudo-reflection (resp. a special
element) if rk(c — 1) = 1 (resp. rk(¢ — 1) = 2), and a finite subgroup of
GL(V) is said to be a reflection group if it is generated by pseudo-reflec-
tions. For a finite group G, a subgroup N of G and a representation p:
G — GL(V) of G, we adopt the following notation and terminology: For
xeV, G, stands for the stabilizer of G at x and, for X C V, put Gy =
(MNeex Gz. G is said to be irreducible (resp. reducible, primitive, imprimi-
tive, monomial) in GL(V), if so is p, and moreover G is said to be irre-
dundant in GL(V), if there are not nonzero CG-submodules V; (i = 1, 2)
of V such that V= V,® V, and p(G) = p(Gir,) X p(Gr,y). Especially if
G is monomial in GL(V), {CX,, -+, CXyny} is a complete system of im-
primitivities of p and X = {X|, - - -, Xyimy} is a C-basis of V, we denote by
[1x (G) the permutation group of G on {CX,, - - -, CXymy} and by (CX,,, - - -,
CX,,) the usual cycle on {CX,, ---, CX; } in the symmetric group on the
letters {CX, - -+, CX4mv}. For N such that N is normal in G and p(V)
is a reflection group, a regular system {A,, - - -, hgm,} of graded parameters
of Sym (V)" is defined to be G/N-linearlized, if @427 Ch, is a CG-submodule
of Sym (V)¥, and it should be noted that such a regular system of parame-
ters of Sym (V)¥ always exists. Let V, be the CN-submodule > ,cy(c — 1)V
of Vand Z(V; N) the subgroup of p(IN) generated by all pseudo-reflections
in p(N). A subspace U of codimension one in V'is said to be a reflecting
hyperplane relative to N if V¢ = U for some ¢ € N. Denote by #(V, N)
the set consisting of all reflecting hyperplanes relative to N and by #,(N)
the subgroup {r € p(IN)| V<> D U} for Ue#(V,N). An element in N is
called a generic pseudo-reflection in N if it generates some #,(IN), and the
cardinalities |#,(IN)|(U € H(V, N)) are called orders of pseudo-reflections in
N. For each Ues#(V,N), let Ly (V,N) be a fixed nonzero element in
V,, v and, for a linear character X of G with Ker % D Ker p, put s,(V, N, X)
min {a € N|X(r) = det, (z)* for all z € #,(N)} and

fZ(V, N) = n L,(V, N)sv:¥%n
Uex(V,N)

Further Sym (V) denotes the set {f € Sym (V)| z(f) = X(z)f for = € N}, whose
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elements are known as X-invariants or invariants of N relative to X. Since
N acts naturally on s#(V, N), N\o#(V, N) stands for a set of all repre-
sentatives of #(V, N) modulo N, and, for U, U’ in #(V, N), we say that
U is equivalent to U’ if U and U’ are contained in an N-orbit. The group
homomorphisms (£, (N)|NU> U’> 3 ¢ — det, (zr) € (C*), induce the com-
mutative diagram

ow,
A(V; Ny =255 @D (C*)y = GLy o v, 1 (C)

UeN\#(V,N)

U (FIeN)INUs U’

VEN\Z(V,N)

where (C*), = C*, @, is a group homomorphism and @Py¢ .y o,m (C*)y
is diagonally embedded in GL,y\ ,¢ x (C) (cf. [12]). For a representation
d: H— GL(V) of a finite group H, (%(V; N), H, V) is defined to be a
Cl-triplet, if Z(V; N) D 6(H) D [%(V; N), Z(V; N)] and @, ,(5(H)) is conju-
gate to G,(C) in GL,y\ 4,3 (C) for some datum D (see [26], for definition
of Gp(C) and D). Moreover H is said to be extended to a Cl-triplet in
GL(V), if (H*, H, V) is a Cl-riplet for a finite reflection subgroup H* in
GL(V).

ProrositioN 2.3 ([12, Sect. 3]). Let G be a finite subgroup of GL(V)
where V is a finite dimensional C-space, and suppose G* O G D [G*, G*] for
some finite reflection subgroup G* in GL(V). Then Sym (V)¢ is a C.I if
and only if G is extended to a Cl-triplet in GL(V).

LemmA 2.4. Let G be a finite group and p: G — GL(V) a represen-
tation of G of finite degree over C. Then:

1) If Sym (V)¢ is a C.L, then, for any x € V and any CG-submodule
U of V, Sym (V)% and Sym (U)¢ are C.I’s.

(2) Suppose that p(G) = p(Giy,) X o(Gr,) and V=V, @ V, for some
nonzero CG-submodules V, (i = 1,2) of V. Then Sym (V)¢ is a C.I. if and
only if Sym (V))°(i = 1, 2) are C.1.’s. Moreover if U is a nontrivial irreducible
CG-submodule of V, one of Vs contains U.

Proof. (1) and the first assertion of (2) follow from [14, 21]. To show
the last assertion, we assume UZ V,; (i = 1,2). Then since U can be
embedded in V, = V/V, and V, = V|V, respectively, as CG-modules, U C
Ve Yol = (VE@ V)N (V. @ VE), and this shows U¢ = U, a contra-
diction.
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From now on we will study our subject under the circumstance as
follows: Let S be Sym (V) of an n-dimensional C-space V and G a finite
subgroup of SL(V). Let V, (1 <i < m) be irreducible CG-submodules of
V with dim V, = n, which satisfy V= ®,V,, and p,;: G— GL(V,) the
representation of G afforded by the CG-module V,. Let G, be {s ¢ GL(V)|
V)=V, A<j<m), oy, =1@G+j), ol,€p{G)}, and put G=G, X ---
X Grny G'= Migjzn i Gy 1 <1 <m) and Spe(G) = {eGlo2 Uicicn G
and ¢ is special} respectively. If G is generated by special elements in
GL(V), then p(G) = pG)o: ((Spe (B)) = p(G)p(A(V; G)) (L < i < m) and
G (resp. G) is generated by Uicicn G'U(Z(V; G)NG) (resp. Ui<ism GPU
A(V; G)). Since S = Sym (V,) ®¢ - - - ®¢ Sym (V,,), we regard S as an N"-
graded C-algebra in the natural way and Sym (V)¢ is an N™-graded sub-
algebra of S. Let {f, ---, f.} be a generating system of S¢ as a C-algebra
consisting of N™-graded elements and let A = C[T}, ---, T,] be an r-dimen-
sional N™-graded polynomial algebra over C with deg™ (T,) = deg™ (f).
Moreover let @: A — S¢ be the N™-graded C-epimorphism defined by @(T)
= f;,. Then Ker @ is minimally generated by N™-graded elements F; (1 < i
< s).

LEmmaA 2.5 (e.g. [14, 27]). If S¢ is a C.I., then:

@ (=ny -, —n,) =25 deg™ (F,) — 27, deg™ (T).
(2 T[li-1deg(T)) = |G| [1:-1deg (F)).

Proof. For the proof of (1), see [14]. If {f, ---, f,} contains a system
{fi, -+ -, f.} of parameters of S¢ CI[T,., ---,T,] is a free module over
CIF, ---, F] of rank [[i.,deg(F)/[i-n.deg(T;) where F, = F,0,---,0,
T, Tpio ---, T,), and hence (2) follows. The general case can easily

be reduced to this case.

§3. Certain monomial groups of dimension four

In this section, we suppose that n =4 and G is monomial on the C-
basis X = {X,, X,, X;, X}} of V such that []x(G) = {(CX,, CX)(CX,, CX),
(Cle CXB)(CX2, CX4)>'

ProposiTioN 3.1. S¢ is a C.I if and only if G is conjugate to one of
the groups listed in Table 1.
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TaBLE I
Groups Generators Conditions
G, 71y 7oy 01, 0y ale
G, Vs, Tsy 1oy 0y, 0y a<el2 ale2 2|e
G, T3 15 1o 01, 0y 4|e
G; 5 15 Top 01, 0y 4le, a = 4e
G, Yo 725, 7oy 01, Oy dale, b - a = e[2, a < e[4, bla = 3(4)
G, Ty 14 7e 0, 0, dale, b — a = ¢/2, a < e/4, bja = 3(4)
G, Yoo Vs, Vs Gy, O, dale, b — a = e/2, a < e/4, bjla = 3(4)
G} Yoo sy Ve, GL, O dale, b — a = e/2, a < e[4, bla = 3(4)

n=dagl, 1,1, ;7. =diag[1, 1, ,, §']; 75 = diag [Cep, Cons 1, 115

7. =diag[l, &, &% 115 75 = diag [1, Lo Con 115 76 = diag [C7%7, £, 8077, Col;
T, = diag [C,, £ 60, C5 o0 = (1, 2)(3, D[4]; 0. = (1, 3)(2, 9)[4];

oy = diag[1, 1, &4, &3lloy; @, b, ee N .

The rest of this section is devoted to the proof of (3.1).
For any element w in S, let Tr(w) (or Trs (w)) denote > ,cq/0, o(W).

LEemmaA 32. S% (1<Li<5)and S% (3<i<5) are CL’s.

Proof. By a direct computation, we easily have S = C[Trg, (X9),
Tre, (X X0)9), Tre (X:X)°), Tre (X.X)%), Tre (X XD, XX.XX] S =
ClTrg, (X3), Tre, (X.X0%), Tre (XiX)™), Tre (XX)77), Tre, (Xi+X3),
XX, X, X)), 8% = C[Trg, (X9), Tre, (X.X)), Tre, (X*Xi), Tre, (XiX)7),
Tre, (X X)), X,XX.X,], S% = C[Trg (X9, Tre (XiX)7?), Tre (X7 Xi),
Tre; (X, X)), Tre (X X)), XXX.X,], S = C[Tre, (X3), Tre, (XiXo)),
Tre, (X,X0)"), Tre, (XiX0), Tre, (X.X))*), Tre (X:X)*Xy?), XXX, X], S%
= C[Trg (X)), Tre (XiX)"), Tre (XiX)™), Tre (XiX3), Tre (XiX)™),
Tre; (X, X)X, X\ X, X, X\], S = C[Trg, (X3), Tre, (X X)), Tre, (X, X)%),
Tre, (X, X)), Tre, (X1X3), Tre, (XiX)*X5%), X\ X,X,X\] and S% = C[Tr¢, (X3),
Tre, (XX, Tre, (X.Xy)""), Tre (XiX9), Tre (XiX)™), Tre (XiX)°XY),
XX, X,X,]. Then S%(1<i<3) and S% are C.L’s (cf. [25, 18]). Suppose
G =G, or G, and put u = bfa, f, = Tr (X?), f, = Tr (X, X)**), f; = Tr (X, X,)*"),
fo=Tr(XiX}), f; = Tr (X.X)**), f; = Tr (X,X)*X?"), f = X XXX, We
effectively find all relations of degree < 2(a + b): deg (F)) = e, deg (F,) =
deg (F,) = 2(a + b), and 2(a + b) < deg(F,) < deg(F;) < --- if s > 3. (For
our purpose, it suffices to show (F,, F,, F;)A = Ker @, but this is not easy).
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Assume that S¢ is not a CI. and let

0——>L3—q)-3—>Lz-a>Ll~a>Lo(= A)——@—)SG——>O
be a minimal free resolution of S¢ where each L, is a graded free A-
module @; AY;;, with graded elements Y,; (1 £j <rankL,) and @, is a
graded homomorphism. Since S¢ is a Gorenstein ring, L, = A and there
is a pairing {, »>: L,®,L, — L, = AY, which preserves the graduation and
induces an isomorphism L, = L¥ = Hom, (L,, A) (cf. [3, 22]). Thus we may
suppose deg (Y;;) + deg (Y;;) = deg (Yy), deg(Y,) = 2(u — 1a, deg(Y,,) =
deg (Y;,) = 2(u + Da. On the other hand deg (Y;) = >.7..deg (f;) — 4 (cf.
[22] and the proof of [14, (2.8)]). Moreover, because F, = T,T, + w for
some graded element w in C[T, T, T}, T,, T;], s = 5 and there is a 5 X 5
alternating matrix @ = [v,;] whose entries are graded elements of positive
degree in A such that Pf(®,) 1 <i < 5) generate Ker @ (cf. [3]). Here
0, 1s the 4 X 4 submatrix of 6 deleted the i-th column and i-th row from ©
and Pf (0,) is the Paffian of ©,, We may suppose that v,; = (Y;;, 9,(Y,,)) Y3
(cf. [3]), and deg(v,;)=deg(Y,,)+deg(Y,,)—deg(Y;,), which implies deg (Pf(0,))
= 2. deg (Yy)) — 2deg (V) = 2 deg (Y.) — 21,4 deg (Yy,); deg (Pf(6) =
8ua — deg (Y,,) — deg (Yy), deg (Pf(6y) = (Bu + 4)a — deg (Y,,) — deg (Y1),
deg (Pf (0,)) = (Bu + 4)a — deg (Y,,) — deg (Y3;), deg (Pf(6,) = (6u + 2)a —
deg (Y,), deg(Pf(0;)) = (6u + 2)a — deg(Yy). As deg(Y,) = deg(F) >
deg(Y,), deg (Pf (6)) = deg (Pf (6,)) > deg (Pf (8,)) = deg (Pf (0,))>deg (Pf (6)))
and hence deg (Pf(0,)) = deg (Y;,;) and deg (Y,,) + deg(Y;;) = deg (Y;;). Then
deg (v,;) = deg (Y,,) + deg (Y,;) — deg (Y,,) = 0, which requires v; = 0 and
Pf(0,) = VU5 — V0. Obviously deg(vy;) >0 (=2, 3; j=4,5) Substi-
tuting 0 for T, (i + 2, 3), one sees deg (v,,) = deg (T}) = deg (T}) = deg (vy;)
or deg (vy) = deg (T,) = deg (T}) = deg (v,;), which shows deg (Y,,) = deg (Y).
Therefore deg (v,,) = deg (v,,) = deg (vy;) = deg (vy), and v,; € C[Ty, T] ® CT,
@ CT,. This conflicts with the expression of F,, and consequently S¢ is
a C.IL. Similarly we can prove that S% and S% are C.I.’s (in this case,
deg (F)) = deg(F,) = 2(a + b) and deg (F,) = 2e).

In order to show the “only if” part of (38.1), we suppose that S¢ is
a CIL and may assume that the subgroup D consisting of all diagonal
matrices in G is nontrivial. Clearly G is generated by D and the elements
g = diag [1, u, v, w](1, 2)(8, 4)[4], = = (1, 3)(2, 49)[4] = o,, since G is generated
by special elements. Here u, v, we C* with uvw = 1. Moreover we may
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suppose # = 1 and v = w-'. Let us assume r = emb (S%). Because G is
transitively monomial, f; may be identified with Tr (M,) for some monomial
M, of variables X, (1 <j < 4) such that M, is divisible by X, in S and
moreover G, is equal to the stabilizer of G at the line CM,. For each
2<Lj<4, let ;0 S— C[X,, X;] be a C-algebra map defined by (X)) =
X, v,(X) =X, vX)=0(@+#1,j) and let S’ be a C-subalgebra of S
generated by U..; C[X, X;]°. Clearly v,(S° = Cly(f)|M, e C[X,, X}]],
Po(S9 = C[X,, X7, (89 = C[X,, X;]*7, (S = C[X,, X,]**? and
CIX]?=C[X] (1<i<4) for some eecN. Put r; =emb (+,(S%) and d,
=emb C([X,, X;]?), 2<j £ 4. Exchanging the indices of f;, we assume
V(8¢ = Cllf), ¥alf), -+ -5 Wl 2], V(S = CLu(f), Vo fraen)s Wolfre)s - -+,
‘I"s(frﬁr,—l)] and ‘!’4(86) = C[‘I’l(fl), \I/‘4(fr2+ra), ‘l/'4(frz+r3+1)) Tty 11/‘4(fr2+73+u—2)]-

Lemma 33. 24 235, —1) <.

Proof. As D is nontrivial, X, X,X, X, is not contained in ((SV)%* Thus
this lemma follows from the above observation and (2.1).

We may suppose f, = X X,X;X,. Let §;: D—->GL(CX,®CX)) 2L
< 4) be the natural representation of D whose matrix representation is
afforded by {X,, X}, and ¢, the order of pseudo-reflections in §,(D), which
equals to |3,(D.,)| (note that Z(CX,® CX;; D) = (diag[¢., 1], diag[1, £.])).
Since C[X,, X;, X,]°%: is a C.L (cf. (2.4)), Dy, is equal to one of {(diaglZ,,,
£, 11, diag [1, Loy £1> (@l s ¢ = ©), (diag [C.,, £, 1], diag (2., 1, 25T (el e,
c, =c), {diagl¢.,, ¢} 1], diaglC.,, 1,&;')> (ci]es, ¢; =¢) on the C-basis
{X,, X, Xi} (cf. [26]). Obviously D/Dy, is a cyclic group of order e, and
3;(D)/Z(CX, ® CX;; D) is also cyclic. Let N;, = X¢ X" 2<j<4; 114
< d,) be defined to satisfy that {IV,;|1 <7 < d,} is a minimal generating
set of C[X, X}]?P and ¢, L a,, < --- Z @

jage

LemMma 3.4. For any 2 < j < 4;

D 0=a;<a,< - <@,

2 au= bjd,-in,

) a, = ¢, divides ay,

4) a;, + b, < e, and especially if a;, + b,, = e, then a;, = (i — L)c,,
B r,=Id; + /2] ([ ] is Gaussian symbol).

Proof. (1) and (2) are known ([30]), and (5) follows easily from (2).
To show (3) and (4), we may assume that ¢; = 1. Then (D) = (diag[C,, &>
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for some 1 < k< e with (k,¢) = 1. Thus the assertions are evident (cf.

[30D).
LemMA 3.5. For some 1 <j<4,if d,; =6, then r; = 4.

Proof. If d; = 7, this assertion follows from (3.4), so we suppose d,
=6 and r; = 3. Say j < 4. Since ;(S°) is obtained as the ring of invariants
of some monomial subgroup L of GL(CX,® CX}) in B = C[X,, X], B*¢*®CxsL)
is equal to C[X?, X?] (p e N) or C[X? + X7, (X, X))1] (p,qe N, q|p). If the
former case occurs, B” is a hypersurface ([25]). Therefore B*¢X:®C¥sL) —
CIX? + X2, (X,.X))]. Since (X,.X))*"'(X? — X?) = fu-(CX, ® CX,;, L) is a
det *-invariant of L (cf. [25, 21]), X? — X? is a relative invariant of L,
and hence both X? 4+ X? and (X,X,)? are relative invariants of L. Clearly
L/Z(CX, @ CX;; L) is cyclic, and we must have S* = [C(X? + X9)*, (X, X))**,
X? + X5 (X,X,)Y] for ueN. On the other hand, by our assumption,
¥,(S must be written as C[N,, + Ny, N;, + N, N + Ny ], which con-
flicts with the above computation (cf. (3.4)).

LemmMmA 3.6. If r, = 4 for some j, then;
1 8?=8[XXX.X],

2 CIX, X)) = CIX;, X5, (X X))l (G #1J,
B) ap;+ by =e.

Proof. For simplicity, we assume j' = 2. Since ,(S¢) is generated
by ¥,(f;) such that M;e C[X, X)], r="7 and f, = X, X,X,X,, we see that
S? = S'[f,] and, for j + 2, ¥(S¢) are polynomial rings over C, which implies
(2). As N,X:X?» is an invariant of D,

thlzs—aszgzs—anXi?zz—azz e C[Xh XZ, XJD
= C[Mh R} dez’ (X1X4)“’ Xfy (sz)c:;]
(ef. (1)), and hence Xgm-omXlu-enXln-ae C[(X X)) (X;X)*] (cf. (3.4)).
From this it follows that a,, + b,; = @, + b, which proves (3) (cf. (2)).

Suppose one of d,’sis = 6, say d, = 6. Thenr,=4and r="7. Clearly
deg (f,) = deg (f,) = deg (f,) = e, deg (f;) = 2¢,, deg(f;) = 2¢,, deg(f;) = 4 and
ifd,=6

otherwise .

2
deg (£) ={ ‘

By (3.5)
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5e 4+ 2¢, + 2¢, = 30c, + 2¢, + 2¢, ifd,=6

3
d F’L = .
?“:1 eg (F) {4e + 2¢, + 2¢, = 4d,c, + 2¢, + 2c, otherwise ,

and

@

8e’c,c,/| Dy, | ifd,=6

deg (F,) = _
1 e (F) {4636‘304/!DXII otherwise

%

where |Dy,| = min {c, ¢, ¢,}-max {c,, ¢;, ¢,}. From these equalities and
f.odeg (Fy) < (O3, deg (F,)/3)°, we easily deduce a contradiction. (For
example, suppose ¢, = ¢, (and so ¢,|¢;) and d, = 6. As >, deg(F,) < e,
$_1deg (F,) = 8e’cy/c, < 27¢*. Thus c;/c, = 3, and >}, deg (F;) < 6e, which
implies 8e’c,/c, < 8¢®. Consequently ¢, = ¢, = ¢,, and >}, deg (F,) = 34c,.
However [[i.,deg (F,) = 8¢ > (3 3.,deg (F,)/3)}, a contradiction.) Hence
d; <5, 2574
Since C[X;, X,]” is normal and r; <4, a;;, = 2a;,, 2(a; — a;) = e, 4a;|e
and a;/a;, is odd, in case of d; = 5.

Lemma 3.7. |{j|r, =38} =1L

Proof. We assume that this lemma is false, and may suppose {j|r; = 3}
= {3,4}. Then r,=2 and d, < 3. We need only to consider this in the
following cases; Case 1 ““d, = 4, d, = 5"; Case 2 “d; =5, d, = 3”; Case 3
“d, =4, d, =4"; Case 4 “d, =4, d, = 3"; Case 5 “d, =5,d, = 5".

Case 1: N,Xi=X is an invariant of D, and this implies (X, X,)** =
(X, X)) 22 ¢ C[X, X,]°. On the other hand, as r, =3, C[X,, X;]? = C[X},
XerXier, X2erXe X¢], which conflicts with the above argument.

Case 3: a, — a, (=e/2) is divisible by c, and c,, respectively, in N.
On the other hand ,(S% = C[X:— X (X¢ + X)X X)), (X.X)*1].
Since Tr (X, X)4(X,X,)**®) € (SV)¢), substituting 0 for X, we see that
(X X)X, X,)** is a product of monomial in C[X,, X;]” and a monomial in
CIX;, X,]J?. Therefore X{(X,X,)** = (X, X,)**(X,X,)**s, which implies ¢, = 2c,
and ¢, + 2¢, = ¢, i.e., e = 4¢; = 2¢,. As some two elements of c,, ¢, ¢, agree
each other, the degrees of {f,} can be calculated. Then, by (2.5), [[:.,deg (F,)
= 2048¢; < (33, deg (F,)[3)° = (32¢,/3)* < 1331c;, which is a contradiction.

In Cases 2, 4 and 5, we can similarly deduce a contradiction.

In case of d; =4, r; = 3 if and only if @;, + a;; = e. Thus, by (3.6),
we have:
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Lemma 3.8. If r; =4, then d; = 5.

LeEmMma 3.9. If, for some 2 <j <4, d, <3 and c¢; = min {c, ¢, ¢},
then S? = SI[f,].

Proof. Let M be a monomial in S? such that, for 0 < i < deg (M),
the i-th graded part of S? is contained in S’[f,]. We may suppose j = 2
and M = X¢XvX:for x,y, ze N. Since X¢X:is contained in C[X,, X,,X,]?%
(which equals to C[X%, Xg, Xg, X, X. X, (X;X)]) and ¢,|c; (=¢), M is
divisible by (X;X))>. On the other hand, by our assumption, C[X,, X,]°
= C[X;, X, (X,X,)2], which shows M/(X,X,)**e S”. Thus the assertion
follows.

LemMA 3.10. d; # 4 for 2 <j £4.

Proof. Suppose, for example, d, = 4. Then r, =3, ¢, = a,, = ¢/3, a,
= 2¢/3, r;=2and d; = 3 (j #4). By (3.7), we may assume that f; = Tr (X?),
f. = Tr (X.X)*), fi = Tr (X.X)™), fi = Tr (X{2X¥H), fi = Tr((X.X))"). e/3
is divisible by ¢, and c,, respectively, in N. Suppose ¢, < ¢, (this implies
¢, =c, = ¢e/3). Clearly Tr (X4X,X,)?) is not contained in CI[f, - - -, fs -]
Since Tr (X, X)X, X)) € Clfy, - -+, [, f] and S? = S'[f,] (cf. (8.5)), we must
have f, = Tr (X4(X,X,)*?). Put u = 2¢/3c,e N. Then, by (2.5), >, deg (F)
= (17u + 4)c, and J[i.,deg (F;) = 72u*(Bu + 2)ci. Thus [[i.,deg(F,) =
72u*(3u + 2)ct < (O3, deg (F,)[3)° < (6u + 1)’ci, which is a contradiction.

LemMma 3.11. If d, =5 for some 2 < j <4, then G is conjugate to one
Of GS’ G:;a G-b Gi’ G5a Gg'

Proof. We may suppose that d, = 5 (and have already known that
r,=2for i #4) and ¢, < ¢,. Since a, — a,, is divisible by ¢, (and ¢,), the
fact “N,X:e S?” implies (X, X)X¢*e S?. Thus, under the assumption
that “S? = S’[f,]”, e = 4c,, a,, = 3¢, and ¢, < ¢; = ¢,. Clearly

C[Xg + X:, MZ + waﬂM” N43] if ll)za42 =1

m@%={ B . .
C[X¢ + Xi, N, + w*sN,, N, N43(N42 — w*eN,)] otherwise

(note that (¢7)’€ D). Assume that r,=4. Then r =7 and S? = S'[f].
Put u = ¢;fc,e N. Since each f, satisfies ¥ ,(f;) # 0 for some j, we can
easily compute deg(f,) and, by (2.5), ¢ _.deg (F) = (26u + 2)c, and
3_.deg (F;) — (32)*u’ci, which is a contradiction. Hence r, = 3.
Case 1 “¢, < ¢, (=¢;)”: Obviously (X, X,)**X¢* ¢ S’, and because X¢2X¢
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e ClX,, X;, X,]°0 = C[Xg, X2, X¢, (X, X)), X, X, X,], we easily see that
(X, X)X ¢ (SV)?)* and may identify f; with Tr (X, X)) X¢?). X¢X¢e
C[X,, X,)°, and so if ¢, = ¢/2, e/4 = ¢, (= ¢;) and ¢, = c,mod 2¢c,. Conse-
quently the minimal system of generators of S” can be obtained, and G
is conjugate to G,, G;, G; or G;.

Case 2 ‘¢, = ¢; = ¢,”’; Clearly S? = S’[f,] (cf. (3.9)) and 4¢, = e. If ¢, >
¢;, as in the proof of (3.10), we can similarly identify f; with Tr (XX, X,)"),
and, by (2.1), get a contradiction. Thus ¢, = ¢/4. D is effectively deter-
mined by S?, which implies that G is conjugate to G, or Gi.

Finally let us assume d; < 3 for all 2 <j < 4, which implies S? =
S’[f,]. Obviously r, =2 (j =2,3). If d,=2, ¢, =e, and especially if
d, =2, r,=2. We easily see that max {c, c;, ¢,} = ¢/2, if max {c,, ¢c;, ¢,} <e
(if max {c,, ¢;, ¢,} = ¢;, (X;X))**X5e S?, which shows ¢, = ¢/2).

LemMma 312, r;=2for2<j<r.

Proof. Suppose that the assertion is false. Then r = 7 and 2¢,|e in N.
As in the proof of (8.10), we can similarly identify f, with Tr (X, X;)*(X.X,)**)
(resp. Tr (X, X))X?)) if max {c;, ¢;, ¢,} < e (resp. if max{c, c;, ¢} =e). One
can easily compute the degrees of f’s, and, by (2.1), get a contradiction.

We now can determine S” and see that G is conjugate to G, or G,.
Thus the proof of (3.1) is completed.

§4. Reducible groups

The purpose of this section is to prove
ProposiTioN 4.1. If S¢ is a C.IL, then G D [G, G].

Let us assume that (4.1) is false, and let G be a minimal counter-
example with V¢ =0, i.e., let G be a minimal subgroup such that V¢ =
0, S¢isa CI and G % [G, G]. Since G is generated by special elements,
by (2.4) and the minimality of G, we see that m =2, n, =2 (@ =1, 2) and
both Vs are C{Spe (G)>-irreducible (cf. [14, Sect. 3]).

LemMA 4.2. Each p({Spe (G))) agrees with p(G). Moreover, for i =1
or 2, if G is primitive in GL(V)), p(G?) can be identified with D, {—1),
1 in GL(V)), and otherwise G* is cyclic.

Proof. It suffices to treat the case where i = 1. Let us identify p,(G")
with one of C,, D, (w>=2), T, 0, I in SL(V,). If o(G") equals D, (u> 2),
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T, O or I, then S¢ = C[g,, &, &] ®cSym (V,) for some graded elements
g (1<i<3) in Sym(V)) with deg(g) < deg (g < deg (&) and p,(G)/o(G")
acts faithfully on Clg, &, &), which shows [p,(G), p.(G)] C p«(G"). Thus
G' = C, or D,. Suppose that G is primitive in GL(V)). By Clifford’s
theorem, p,(G') = (—1) or 1 in the case where G' is cyclic. If (Spe(G))
is imprimitive in GL(V)), p,({Spe (G))) is equivalent to G(4, 2, 2) (cf. [4,
(2. 13)]), and we have G' = 1. Thus p,({(Spe (G))) is a primitive reflection
group. Then p,((Spe (G))) D p(G"), which implies p,(G) = p,({Spe (G))).
Suppose that G is imprimitive in GL(V)), i.e., G is monomial on a C-basis
{X,, X;} of V.. We may assume that p,((Spe (G))) is expressed as G(p, q, 2)
on this basis. If p,(G') contains a non-diagonal matrix, p,(¢G') contains
a diagonal matrix for each o€ Spe (G), and p,(G®) D p([Spe (G), Spe (G)]),
which is a contradiction. Thus p,(G") is diagonal on {X|, X,}. Let z be
an element of Spe (G) whose restriction to V, is not diagonal. Then G'r
C Spe (G), which shows p,({Spe (G)>) D p(G").

NOW, we assume r = emb (SG)’ Sym(Vl)G = C[fl, fZ]’ Sym(VZ)G = C[fs’ f4]1
Vi=CX,®CX, and V,= CX,® CX,.

LeEmMA 4.3. One of p/’s is primitive.

Proof. Let p(Q) = G(p:, q5, 2), i = 1, 2. Put Spe,(G) = {c ¢ Spe(G)|
0:(0) is non-diagonal and p,(¢) is diagonal}, Spe,(G) = {o € Spe (G)|p(0) is
non-diagonal and p,(¢) is diagonal}, Spe, (G) = {s € Spe (G)|pi(0) (i =1, 2)
are diagonal} and suppose Spe,(G) U Spe,(G) is non-empty. Exchanging
the indices of V,, we can choose elements ¢ = diag [a, a~*, —1, 1]-(1, 2)[4],
v = diag [b, b-', 1, —1]-(1, 2) [4] (a, b € C*) from Spe,(G). Obviously every
element in Spe, (G) is of odd order (in fact, if Spe, (G) contains an element
of even order, p,(G") have a non-diagonal element). As Spe, (G) +# ¢,
diag [c, c'] € p(G") and diag [c, ¢c™'] € p(G?) if diag [c, 1] or diag[1, c] (c € C*)
belongs to p,(Spe,(G)). Therefore we easily see S®e¢@ = C[X}, X¢, Xg,
X X, X, X, X,] for some ee N and SY = C[X%, X, Xg¢, X, (X, X)),
(XX, X, X,X,X,], where N = (G'UG*USpe, (G)) and w, te N with we =
|G'], te =|G*. Recalling the definition of G(p,, q;,2) and G = {(Spe (G)),
one has p,/q, = 2e if Spe, (G) # ¢, p,/q, = e if Spe,(G) = ¢, and p,/q, = 2e
(observe p;/q; = |det (A(p,, 9, 2)]; for definition of A(p, g, n), see [4]). Let
2 = diag[x, y, 2, w] be an element of G which acts trivially on C[X%, X,
X¢, X¢] and non-trivially on S¥ (A((X,X,)*) = — (X X,)*, /(X X))*) = — (X, X))*
as p,/q, = 2e and 1€ SL(V)). Because diag[x~¢, x°,1,1] € G* and diag[1, 1,
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2=, 21e G diag[—1,1, —1,1] = 2°diag [x~°, x¢, 1, 1]diag 1, 1, 2"¢, 2] and
consequently this element belongs to Spe,(G), which is a contradiction.
Therefore G/N acts faithfully on C[X%, X3, X5, X¢*]. For any element
T =diagc, ¢, d,d"]-(1, 2) (3, 4) [4] € Spe (G) (¢, d € C*), [o, 7] = diag [a’c7?,
a~*c’, —1, —1] and hence diag [a’c™? a~*c*] € p,(G") if and only if ¢ is even.
If Spe, (G) ++ ¢ (we have already assumed Spe, (G) # ¢), [Spe, (G), Spe, (G)]
5 —1. Thus Spe,(G) = ¢ in the case where only one of w and ¢ is even.
If ¢ is even, by these observations, we easily see [Spe (G), Spe (G)] S G' X G,
which conflicts with our circumstances. Let § be any element of G which
acts trivially on CX @ CX¢. If 6((X,X,)°) = (X, X,)°, exchanging 6 by some
element in 6N, we may assume (X, X,) = X X,. If o((X X)) # (X X,)e,
(X, X)*) = — (X,X;)* and hence Spe, (G) # ¢, which implies w is odd. But
in this case, (X;X))** = (X, Xp)** = (d(X,.X)))* = (—(X. X)) = — (X X)),
and consequently §((X,X))°) = (X, X,)°. Since C[X,, X,]¥ = C[X?, X3, (X, X,)°],
by the Galois theory and the definition of N, we have § e N. Therefore
the natural representation p,: G/N — GL(CX{ @ CX%) of G/N is faithful
and, because p,(IN)NSL(V,) = p(G") and p([G, G]) S SL(V,), p5(G/N) is a
nonabelian reflection group i.e. it can be identified with the irreducible
reflection group G(B, 7, 2) (B, G € N, G,|P;) on the C-basis {X%, X¢}.
Obviously {p,(0), p:(r)) is abelian, and recalling that et is odd, one sees
that it is Klein’s four group. Let {Y}, Y,} be a C-basis of CX® @ CX¢
on which p,(¢) and p,(c) are diagonal. <{p,(0), p:(z)) = B:,((IV, Spe, (G))/N)
is normal in p,(G/N), and therefore {CY,, CY,} is a complete system of
imprimitivities of p,. Then it follows from [4, (2.13)] that (B, @) = (2, 1),
(4,4) or (4,2). If s is even, recalling that (Spe,(G) = ¢ and) p,/q; is odd,
we see (B, §,) = (4, 4) and if w is odd, Spe,(G) # ¢ and (p,, §,) = (2, 1) or
(4,2). Consequently the action of G/N on S¥ may be given by one of
the following rules; Case 1: G/N = (oN, N, oN), 5,(G) = G(4, 4, 2), p(¢N)
=diag[1,1, —1,1] - (1, 2)[4], p(zN) = diag [—1, —1, 1, —1] - (1, 2)[4], p(¢N)
= diag [¢7%, ¢1, 11-(1, 2) 3, H[4], o((X,.X))*) = t((X, X)) = o((Xi X)*) = (X, X.)",
(X, X)) = (X X)) = — (X X)), o(XX)) = (X,X)°, oX X, X, X)) =
(XXX X) = — XX, X.X,, o(X. X, X, X)) = X, X,X,X,; Case 2: G/N = (oN,
N, ¢N, +N>, p.(G) = G4, 2, 2), the action of o, 7, ¢ is the same one as in
Case 1, p(y) = diag [-1, 1, §, '] (3, D[4], W(XXo)) = — (X X)°, (X, X))
= (X, X)), (X, X, X, X,) = — (X, X, X,X,); Case 3: G/N = (6N, zN, ¢/ N), p,(G)
= G(2, 1, 2), the action of ¢, ¢ is the same one as in Case 1, p(¢’) = diag [—1,
1, 1,11-3, 4[4, ¢(XX)) = (XX, ¢(XX)) = (XX), ¢ (XXX X,) =
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X, X, X, X,; where p: G/N — GL(CX® @ CX* ® CX ® CXY) is the natural
representation of G/N and its matrix representation stated above is af-
forded by the basis (X%, X¢, X%, X¢}. Let X be a linear character of (¢N,
N, oN)|N such that (X,X,)° is a X-invariant of (N, N, pN>/N and put
=X — X 3 =C0XP + X)), v, =X, yo=XY, ys = (XX), ye =
(X: X)), y, = X, X,X,X,. Clearly (SY)* = Clyi + 35, %155 %5 + ¥ YsYo (O
+ ¥)(¥s + ¥, (1 — ¥ X5 — ¥u), ¥s, Yo, ¥i] (since KerX is an abelian group,
a set of generators of the ring of invariants can easily be obtained). The

element o N(Ker X) acts on (S¥)¥'* ag follows; a(y,y,) = — y1¥s, 0(¥5) = ¥s,
o(y; + 5D =y + ¥h 0(¥) = — ¥, (D15 + Y2l = NiYs + Yol 0(3eYs + Y1y
= — %Y — %Yy 0(y) = —y. Thus (S ™™ = Clylyi, y5 5 + ¥i Vo

N1 YeYsr (¥2)s + Y1305 Vi, VYA 32Ys + Y13 Y1YeYrs Yo Yos + Y1¥a)s Yo ¥ ¥eds +
Y10, ¥i¥s + ¥.¥.] and we denote by £’ this generating system of the algebra.
Let 2 be a minimal system of generators of (S¥)“"¢¥ contained in £’.

First we will consider the case where e 1. By the computation of
degrees of elements in £, y2¢ 2. Assume 22 ¥,5,Y,. Then y,y,¥; € Cl[(y.3.),
Yo Vit Vi, Yo YoV Y182V N1Ys + ¥2¥s ¥7l, which implies ¢ < 2. If t =2, y,5,¥,
€ Cly.y; + .9 %, ¥s], and substituting 0 for X,, we see y.,y,5 € C[y7, yil,
which conflicts with y,y,y, = {(X¥*X:X¢ — X2 X:X%. When t =1, we
similarly get a contradiction. Hence {3%, ¥,5.5:} & £. Next, suppose e = 1.
Clearly y,v,ys€ 2. If yo(3.y: + ¥, € 2, for some u, v,; €C,

Yo(¥eYs + ¥ = w(yys + Yoy )(¥i 4+ ¥D) + 38 20 v (05 + yDE)

2t +dj=0+2

= W(y1Ys + 220003 + YD) + Vg enyuddPy8E27

and we obtain u =0 (, substituting 0 for X,). Then y,y, + yy. =
Usie +ys¥s”°ys”?, which is a contradiction. We see {y,y:ys, ¥(3.¥: + %90} &
£, and consequently, £ always contains invariants A, h, such that
vi(h)) = vy(h,) = 0 where v,: S— S is the C-algebra map defined by v (X))
=X, 1513, v(X)=0. We may suppose that f, = Xi** + X3*, f, =
(X.Xy)e, v(f) = Xt and v(f) = 0. Clearly C[X], X;, X;]****> is minimally
generated by Xi* + X, (X X)), X3, X Xst — X X5,

Case 1. As emb (S%) <7, v (S = Cu(f), vify), vify), vihy)] for some
Ni-graded element A, in S% On the other hand >, (X XS) is a
nonzero invariant of G, and so deg® (h,) = (ew, et). v,(3 scq/p (X XE)) =
(X3 — X3*)X¢ belongs to v,(S¢), which implies that it is an element of
Clf,, vi(h,)] (compare degrees of the invariants). Substituting 0 for X,, we
see X¥»X¢ e Clv(h,)], a contradiction.
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Case 2. Let us choose an N2-graded element A, from S which satis-
fies S¢ = CIf, fo, for s By, hoy By). Then v(S€) = C[y1yi, 5, 3, (¥295)° Y1¥i¥s
YiVE 525 ¥sdiYs Y1¥il = v(SO) i(h)] = Clyiys, i, ¥3, vi(hs)l.  Since y.y.y;¢€
C[3% vihy)], deg, (¥s¥.y,) = et and deg, (v,(h,)) = et, and hence v (h,) may be
identified with one of y,y3y,, ¥s¥:¥:. On the other hand, computing degrees,
we see ¥,y: € Clv,(h,)] and choose elements u' € C, r’ € N such that y,y; =
Wy (h;)”. Therefore r’ = 2 and deg® (v,(h,)) = (e, et), which conflicts with
deg, (,53ys) # e # deg, (¥:Y1¥s)-

In Case 3, we can obtain a generating set of S¢ and similarly get a
contradiction as in Case 1. (Let I' be the set consisting of nonzero N*-
graded elements in S¢ which do not belong to S¢ Let A] be an element
of I whose deg, is minimal in I" and let A} be an element of I' — (Ch; + S°)
whose deg, is minimal in this set. Then S¢ must be generated by f;
(1<i<4), h, hj, hi for some N*-graded element A; in S and v,(h)) = v,(h})
= 0. From this we deduce a contradiction.) Consequently Spe, (G)U
Spe, (G) = ¢. G can be identified with (D, ¢ = (1, 2) (3, 4)[4]> where D is
a diagonal group, and D is generated by Spe,(G)U {£8]|8 € Spe (G) —
Spe, ()} UG' UG~

Suppose Spe, (G) = ¢. Since S¢is free over C[X|?, X|®, X} X|e*1]¢
(note X, X,, X,X, € S%), we may assume G' = G* = 1. Then D is a cyclic
group. If |D|= 2, p(G) is abelian, and if |D|= 3, each p,(G) is conjugate
to W(A,), which conflicts with [14, (4.1)]. Moreover, recalling that G is
generated by Spe (G), we may suppose D = {diag [{,, {57, £5, ;1) where d =
|D|and c e N such that (¢, d) = 1. As emb(C[X,, X,]®) =5 and emb (C[X,,
X]?) =3, emb(S% =4 + emb (C[X,, X,]°) — 2 + emb (C[X,, X,]°) — 2 =8,
and therefore Spe, (G) # ¢.

Suppose M, = X, X, X, X, belongs to a minimal system of generators
of S? consisting of monomial matrices. Put e = |{B|cx,|B € Spe, (G)}], u =
[{Blex,|B€ D}, v =|{Blex,|B€D}|, N, = (X, X)), N, = (X,X))°, respectively.
There are monomials M, (1 <i < q; ¢ may be zero) such that {X¥, X%,
X, Xy, Ny, Ny, M,(1<i<q), M.} is a minimal system of generators of
the C-algebra S?. Then g < 4, since emb(S°) =r <7 and M, is an in-
variant of G. Obviously ¢q =0, 2 or 4. If ¢ =0, S¢ = S°[(X* — X}¥)-
(X? — X?), M..], which implies G 2 [G, G] (observe that (X* — X¥)(X? — X7?)
and M are relative invariants of G). Suppose g = 4. Exchanging indices
of M; and X,, we have v,(M)) = M,, deg® (M,) = deg® (M,), deg® (M;) =
deg® (M,) and S¢ = C[X¢ + X¥ N, X2 + X?, N,, M, + M,, M, + M,, M._].
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If v(M,) = v(M,)) = 0, v(X} — X3)M, — M) = (Xt — X{)M, e C[X} + X%,
N, M}, as (X¥ — X¥)(M, — M,) e S¢ and deg,(M,) < v, and this implies
Xy — Xt e C[X¥ + X¢, N]. So we may assume v, (M,) = M, and deg, (M,)
= deg,(M)). Observing that (X¥* — XYM, — M), (X} — X?)(M, — M,) and
(X7 — X)(M, — M,) are invariants of G, by a similar reason, moreover we
may assume that M, = X¢X?, M, = X;X., M, = XX} and M, = X2X? for
some a, be N. Clearly S? is contained in the normal ring C[X?, X?, X, X,,
X;, X,] and this implies G'> diag [¢,, ;% 1,1]. On the other hand X*M,
+ X¥M, e S¢ and v(X¥*M, + X2M,) = XM, ¢ C[X* + X¢, N,, M,, M,], which
shows that XM, = NV M, for some v’ € N. Hence e|a in N and 2¢ = u,
It follows easily from these facts that p,(G)/p(G") is abelian, which is a
contradiction. Let us treat the case that ¢ =2. As &M, = M, and
emb (S < 7, S¢ = B[h,], where B = C[X* + X¥ N, X? +X?, N,, M, + M,,
M_.] and h, is one of the polynomials (X* — X¥)M, — M,), (X? —X?)-
(M, — M,) and (X¥ — X¥)(X? — X?). Asin case of ¢ = 4, we can similarly
show that, for each 1 <j <4, {i|v,(M)) # 0} + ¢ where v, defined by v,(X))
(1 — 6,)X; (8;; is Kronecker’s 4), and using v,, easily see that (X? — X})(M,
— M) ¢ B[(Xy — X3) (M, — M,)], (X¥ — Xi)(M, — M,) e B[(X3 — X)(M, — M,)]
and (X¥ — XM, — M,) ¢ B[(X? — X¥)(X? —X?)]. This is a contradiction.
Therefore both X, X, and X,X, are contained in the minimal system
of generators of S? consisting of monomials, and we conclude that G' =
G*=1. Then 8? = C[X#', X, X, X', (X X)), (X;X)°, X.X;, X, X,,
XX, (XY 2XDe, -, (XXY ), (XY X)), (XY XD, -, (XY )]
From the above equality, as e > 2, we can easily infer emb (S¢ = 8 (in
fact, the polynomials X% 4+ X&' (X, X))*(X;X)*, X + X', X X, + X, X,
XX, + Xerr' X, XX, XX, and X X'+ 4+ X, X2'*' are contained in a
minimal system of graded generators of S¢), which is a contradiction.

ExXAMPLE 4.4. Suppose that p,(G) = W(L,) in GL(V,), i =1, 2. Since
S¢ is not a hypersurface (cf. [14]), r is equal to 6 or 7. Exchanging indices
of T, and F,, we may suppose that deg (T,,) < deg(T\.) < ---, deg(F) <
deg (F)) < --- and deg(F,) > deg(T..,), because Ker @ is contained in the
square of the graded maximal ideal of A. Degrees of W(L,) are known
and thus, by (2.5), >.izf(deg® (F,) — deg® (T,,,) = (8.8). Since f,.; ¢
Sym (V) USym (V,), 2 < deg(T,.,), and if deg(T},,) = 2, deg® (T\.,) = (1, 1).
Let ¢ be an element of Spe(G) and let {X,, X,,} be a C-basis of V, on
which p,(¢) is represented as
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* 0

o o
Then S¢§, = CX,; X, @ CX,,X;,, and hence, if dim S§,, = 2, X, X, eS¢,
which conflicts with the irreducibility of p,. If G'= G* =1, because both
p. are faithful and Z(W(L,)) (the centre of W(L,)) = (—1), G contains — 1.

Thus S%, = Sf, =0, and we always have deg(7,,,) = 2, deg(7,.) =4
(i >1). Obviously 8%, =0 in case of G' = G* = (—1). By (2.5),

24{1 + (deg (F) — deg (T))/2}~"
fG@=G=1,

12{1 + (deg (F) — deg (T\))/4}~"
otherwise .

T {1+ (@eg () — deg (T..))/4} =

We examine this in all possible cases, and easily deduce a contradiction.

Remark 4.5. Using Stanley’s theorem (cf. [22]), as in [15, p. 364], we
similarly see that deg (f;) < >77., deg (f;) — 4 and moreover, by [3, 22], have
deg (F\) < 2 j-1deg (f)) — 4.

LEMMA 4.6. Suppose that both p’s are primitive and G' is not iso-
morphic to D,. Then:

(1) G* is isomorphic to G

(2) 0(G) is conjugate to p(G) in GL,(C) (where we identify GL(V,)
with GL,(C)).

(3) If G' = 1, then Sym®(p,) is equivalent to Sym’®(p,) modulo a tensor
product of a linear character of G.

(4) Suppose that G = {4, G*> for a normal subgroup 4 such that
ANG' = 1. Unless, on 4, p, is equivalent to a tensor product of p, and a
linear character of 4, then p(G) = p, I and u is not divisible by b.

(5) If the Shephard-Todd number of p(G) is none of 8,9, 10, 11, 12,
14 then p, is split.

Proof. (1) and (2) are easy. (3) and (4) follow from the character
theory of D,, T and I. For the proof of (4), observe that the stabilizer
of G at any point of V is generated by special elements. To check (5),
we need only to consider a Sylow 2-group of G and use the above fact
on stabilizers.

LemMmA 4.7. One of p’s is imprimitive.
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Proof. We assume that both p,’s are primitive and shall give a contra-
diction. Suppose G' # D,. Since the proofs are similar (cf. (3) of (4.6)),
we may treat only the case where p, is split. Let 4 be the subgroup
defined in (4) of (4.6). Assume that, on 4, p, is never equivalent to a
product of p, and a linear character of 4. Then p/(G) = w,, I and u = 2,
3 or 6. Because Sym'(V)) ®,Sym’(V,) =~ Sym’ (V) ®;Sym’ (V) (j = 3, 4,
5 (5)) as Cpr'(I)N 4-modules. By this we can estimate (calculate) the lower
terms of the Taylor expansion of the Poincare series of S and get a
contradiction; say u = 3. There are nonzero N3-graded elements g,
(1<i<3)in S with deg®(g,) = (9, 3), deg®(g,) = (27,3) and deg®(g,) =
(3,9), which requires emb S>7. Thus, on 4, p, is equivalent to Xp, for a
linear character X of 4 such that 1* = det;%. For a simplicity, let us treat
only the case where X = det;l. Let W, = CY,® CY, and W, = CY,® CY,
be C4d-modules such that W, =V, as C4-modules, CY, is a trivial C4-module
and o(Y,)/Y, = det, (6)"', 0 € 4. Putting W= W, ®W, and B = Sym (W)#
Sym (W,) (the Segre product of graded algebras), we naturally regard Sym (W)
and B as N’graded C-algebras. There is a d4-equivariant C-algebra
epimorphism ¢: S — B whose kernel is generated by a graded element w
of degree 2. Clearly w is an invariant of 4, and it is a relative invariant
of G satisfying w?e S¢ if G+ 4. So, G always acts on B and one has
the natural epimorphism S¢ — B¢ Let d,, d, be the degrees of the reflec-
tion group p(G), ¢ the least common multiplier of the orders of pseudo-
reflections in p,(G) and put d, = deg(fi, (V}, G)). Let g, (1 < i < 3) be
graded elements in Sym (W) of deg (g;) = d; such that Sym (W,)? = C[g,, &.]
and Sym (W)S:Wondws — C[g,, g,, &]. Then B? = Sym (W)‘NB = BNC|g,
2, 8.Y, Y, Y. Because d,, d, = 4, w or w® belongs to a minimal system
of graded generators of S¢(, and emb (B°) < 6 (cf. (2.1))). By the above
observations, one can easily give a contradiction as follows: As the proofs
are similar, for example, let p,(G) = (#%|w; O|T). Then d, =8, d, =12,
d, =6 and ¢ = 4. The polynomials g,Y%, g,Y%, g(Y.Y.), 8.Y?, g,Y3Y, 8.Y:Y}
and g,Y} are members of a minimal system of graded generators of B¢,
which conflicts with emb (B¢) < 6.

We see G' = G* = D, and p,(G) = (o | ptu; O|T) OF 1, 0. Let g;; 1<
j < 3) be graded elements in Sym (V) such that Sym (V))¢' = C[g.,, 8, &2,
deg (g,) = deg(g;,) = 4, deg(g;) = 6. g.’s are relative invariants of G:
Since g € Clgu, 8, ST*% = S @ ggls @ ngs ®~§gmgza where S = Clgu, 8
g, 8x). We may suppose that {f, ---,f,}CS¢ and {fs.s, fose -+, fi} C
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(Sg.)° U(Sg.)° U(Sg,8.)°¢ for some 2<d <r. S¢ is partly generated by
{fl: c ',fd}y ({fdn’ . "fr}mSglz)zy ({fd+l> Y fr} ﬁSg‘z:«))2 and ({fd+l’ Tty fr} ﬂ

Sgi.g:.).. From these we can easily deduce a contradiction as follows: For
example, let us suppose p(G) = (gg|p; O|T) in GL(V)), i =1,2. Then a
minimal system of graded generators of S¢ contains seven elements of
degree < 12 (cf. [14, Sect. 4]). On the other hand g, 2S¢ (i =1,2). So
d="T7=>=r and S¢ =S¢ The last equality shows that G' contains D,
which conflicts with our assumption.

According to (4.7), we may assume that p, is primitive and p, is im-
primitive. Let {X|, X;} be a C-basis of V; on which p,(G) is represented
as one of the groups listed in [4, (3.6)], and {X,, X,} a C-basis of V, on
which p,(G) (resp. p.(G") is represented as G(p, q, 2) (resp. A(u, u, 2)).

LeMMA 4.8. p,(G) is not equal to p,,0.

Proof. Suppose p,(G) = p,,0. Since [¢,0, 14,,0] = T and Hom (¢,,0, C*)
=Z[2ZPD Z|2Z D Z[3Z, the subset 2, consisting of all pseudo-reflections of
order 3 in p,,0 is two conjugate classes of this group ([12, (3.3)]) and the
subset of all pseudo-reflections of order 2 is a union of two conjugate
classes 2,, 2, p, induces the maps g, : {s€Spe(G)|ord(c) = 3} — 2;;
{0 € Spe (G)|ord (0) = 2} —> 2,UL,. Let L be the subgroup of G generated
by {o €Spe (G)|ord (¢) = 3}. Then L is irreducible primitive in GL(V)) and
furthermore p,(L) = 1,T. As p(L) is diagonal, we must have p,(G") D D, =
0:(IL, L]) and hence assume p,(G') = D,. Then 2p*/qu =|G(p, q, 2)|/| A(x, u, 2)|
= |p(G)/p(G")| = 36. Obviously p/q = 3 or 6. Suppose p/qg = 3 i.e., p(G)
= G(bu, 2u, 2). On the other hand, since G < SL(V), we have (p(G)N
SL(V)) oG = (0(G) N SL(V2))[0G?). However (o(G) N SL(V)))[p(G") = S,
and p,(G)NSL(V,) is diagonal, which is a contradiction. Therefore p/q
= 6 i.e. u is divisible by 2 and p,(G) = G(6v/, v/, 2) where v’ = u/2. p,T
is generated by £, and one of 2, (i = 2, 3), say £, is so. Put H = {p7'(2)),
57(22,)). Suppose that every element in p,(7'(2,)) is non-diagonal. Then
pp7'(£2,)) is diagonal. Since p,(H)/p(HN G is abelian, p.(G)/p.(H NG? is
abelian, a contradiction. Thus p,(57'(2,)) is diagonal, and p,(H) = (A(2,
1,2), A3, 1,2)). Putting H' = (H, G*), we have [G: H'] = [p(G): p,(H")]
= 2 and p,(H') = A(6u/, v/, 2). Let X, (1 <i < 3) be a linear character of
M- T = p(H) defined by s, (V,, o,(H), %) = 6,; 1 £j < 3). Here U, are in-
equivalent hyperplanes in V, relative to p,(H) such that ., (o,(H)) — {1} &
0, (cf. Sect. 2). Up to scaler multiplication, any element in a minimal
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Ni-graded generating system which does not belong to C[X,, X,]UCI[X,, X,]
is expressed as (X3*)“(X)(X, X)) f(V,, p(H)) for some X € Hom (p,(H), C*).
Computing deg; of invariants, we may suppose that X;*'f,, X1*f,., (X, X\)'f,,
are contained in a minimal system of graded gererators of S#, where f,,
denotes f,(V,, p(H)). Put f; = X3¥f,, + Xifr, fi = (X3 — XPUX, XD
fi = (X;X)f,fre Then {f;|]1 <i< T} is a minimal generating set of S¢
(this follows from the computation of deg, of elements in a generating
set). On the other hand, X, X.f,.f..f,, € S™, and as G = (H’, ¢) for some
e e Spe (@) such that e ¢ H', &(f,.f1f0) = fufuly ([20, (4.3.3)]), which implies
XX f i [fuufvs €S¢ But X, X.f,.f.f., € Clfy, - -+, fi], a contradiction.

LemMma 4.9. o(G) is not equal to p,0.

Proof. Suppose p,(G) = ¢, 0. Since the order of every pseudo-reflection
in -0 is equal to 2, p(G) = G(p, q,2) = G(2g,q,2) or G(q, q,2). We
easily see that p,(G") is equal to one of D,, T and O, and so assume p,(G")
= D,, which implies p = 29 and 2q = 3u (as S; = (p,(G) N SL(V})) [p(G") =
(0(G) N SL (V))/0(G*). The subgroup N, of p,(G) generated by one of p,(G)-
conjugate classes in p,(Spe (G)) can be identified with G(4, 2, 2) in GL(V))
and the subgroup N, of p,(G) generated by the other p,(G)-conjugate class
in p,(Spe (G)) is equal to (u|m; O|T). Put K, = (o e Spe(G)|p(o) € N,>
(i =1,2). Because p,(K))/p(K,NG") is abelian, we immediately have p,(K,)
= A(2,1,2) and hence p(K;) = G(2q,2q,2). There are graded elements
g., 8., 8, with deg (g) = deg (g,) = 4, deg(g,) = 6 in C[X,, X;] which satisfy
ClX, X,)¥ = Clgi, &, &]. Then S**% = Clg, g, &, X3, X¢, X,X,] and both
elements g,, X;X, are invariants of K,. Since S¥' = C[g, g., X3, X2, g, X,X\]
= Clg, 8. Xi, Xi] ® Clg, &, Xi, Xil8,X,X, and C[g,, &, X3, Xi] is a G-stable
subalgebra, we have S¢ = C[g,, g, X}, X}]°® Clg,, 8, X3, Xi1°g, X, X,. There-
fore Clg, &, X3 Xi]° is also a complete intersection ([1]). Clearly the
natural representations of G on Cg, ® Cg, and CX;® CX;} are respectively
irreducible imprimitive. Applying (4.3), we see that C[g,, g,, X3, X}]¢ is not
a complete intersection, which is a contradiction.

LemMmA 4.10. p,(G) is not equal to (p,|s; O|T).

Proof. Suppose p,(G) = (2| tts; O|T). Since orders of pseudo-reflec-
tions in (u,|; O|T) are 2 and 3, N = (o € Spe (G)|ord (¢) = 3) satisfies
os(N) = ps-T and p(N) = A3, 1,2). Thus [g-T, ps-T] = D, is contained
in p,(G"), and we assume p,(G') = D,. Let g, g,, g, be graded elements in
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C[X,, X,] with deg(g) = deg(g,) = 4, deg(g,) = 6 such that C[X,, X,]° =
Clg, 8, 8] In GL(V), D, = G4, 2, 2) N SL(V,) where G(4, 2,2) is defined
on a C-basis of V. By [13, (4.2)], C[X,, X,]* = C[X,, X,]¢*2[fs.. (V;, G4,
2, 2))] which shows that C[g, g,] = C[X,, X,]?*>? and g, = fu. (V,, G4, 2, 2))
(up to scaler multiplication). Obviously B = Clg, &,, X;, X\] is a G-stable
subalgebra over which S is integral. Because the degrees of (u.|us; O|T)
are 6 and 24, g, is an invariant of G and hence B¢ is a CI. Put W, =
Cg®Cg. W=V, W=W,®W, and let §: G- GL(W) (resp. 0,: G —
GL(W,), i = 1,2) be the representation of G on W (resp. W,). Both 6,(G)
are reflection groups in GL(W,) and moreover, as [6,(G)| = 18, 6,(G) is
irreducible imprimitive. Suppose that, for an element o, #(¢) is a pseudo-
reflection in GL(W). If 6,0) =1, c € G, and so 8,(¢) = 1. For some 7 e G,
0:(0) = py(z), which shows or~' is a pseudo-reflection of G. Therefore (G)
is contained in SL(W) and, applying (4.7), we must have 6,(G.y,;) D [6.(G),
0.(G)] # 1, which is a contradiction.

LEmMa 4.11. p(G) is not equal to (w,|p.; O|T).

Proof. Suppose p,(G) = (| p; O] T). Since the degrees of (| p; O|T)
are 6 and 8, as in the proof of (4.10), we can easily show p(G') # D,.
(4] 125 O| T) contains only pseudo-reflections of order 2 and hence (p, @)
= (2q, q9) or (g, q), which conflicts with the isomorphism 7/p,(G") = (o(G)
NSL(V))/eG) = (p(G) N SL(V)/ 0 G).

Let us complete the proof of (4.1). Assume that G' is trivial or of
order 2. If p,(G) contains a pseudo-reflection of order = 2, putting L =
{o € Spe (G)|ord (¢) + 2) and using [4, (3.6)], we see that p,(L) is irreducible
primitive and p,(L) is diagonal, which implies p,(G") D ps([L, L]) D H = D,
for a subgroup H. Hence, by (4.9) and (4.11), o(G) = pI (cf. [loc. cit.,
3.6)]). Clearly (p,q) = (29,9 or (g, q) and this conflicts with the iso-
morphism (I/{—1) or I=) (p,(G) N SL(V)/0GY) = (0G) N SL(V)/p(Gy).
Consequently p,(G") = D,. By (4.8), (4.9), (4.10) and (4.11), the Shephard-
Todd number of p,(G) is not greater than 11, and p(G) contains a pseudo-
reflection of order 4 (cf. [4, (3.16)]). Then, putting L’ = (o ¢ Spe (G)|ord (o)
= 4), we see that p(L’) is diagonal and p(L’) is irreducible primitive
(precisely, is conjugate to (45| wm; O|T)). Thus p(GY) (D [p(L)), p(L)]) con-
tains a subgroup which is conjugate to T, a contradiction.
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§5. The classification

In this section we shall prove

THEOREM 5.1. Suppose that G is irredundant in GL(V). Moreover
suppose that n> 4 if G is irreducible imprimitive in GL(V) and that n > 10
if G is irreducible primitive in GL(V). Then S¢ is a C.I. if and only if
the following conditions are satisfied:

(1) G is generated by special elements in GL(V).

@ (@V;G), ZV; G)NG, V) is a Cl-triplet.

8) For each 1 <1< m:

Case A “%(V; G) is irreducible in GL(V))".

If p(%(V; G)) + Q) (i.e. G; is not generated by pseudo-reflections),
up to conjugacy, the groups p/(G), p(Z(V; é)), 0{G?) are listed in one of
lines of Table II. '

Case B “p(2(V; G)) is reducible in GL(V,) and not abelian (i.e. not
diagonalizable)”.

(i) n,=4.

(i1) pdG)/p(A(V; G)) is conjugate in GL(®:., Ch,) to one of the groups
listed in Table 1 or can be extended to a Cl-triplet in GL(®:., Ch;) where
{hy, -+ -, h} is a GIR(V; G)-linearized regular system of graded parameters
of Sym (V,)*:&,

@iii) For any nonzero x e V, with dim(V,)4s,, = 3 (for this notation,
see Sect. 2), (GY), is extended to a ClI-triplet in GL((V})«:,) or conjugate to
one of the groups listed in [29, Sect. 3].

(iv) If, for an irreducible CZ(V, G)-submodule U of V., (G")py (for
this notation, see Sect. 2) is not contained in Z(V; G), up to conjugacy, the
groups p(Z(V; G‘))w], 0@y and p,(GY)yy (stabilizers, cf. Sect. 2), respec-
tively agree, in GL((V.),.ewionpyy) (2 GLAC)), with p(A(V; G)), o(G) and
0:(G?) listed in one of the lines with n, = 2 of Table 1L

Case C “p(Z(V; G)) is reducible in GL(V,) and non-trivial abelian”.
For each o€ G,

TasBLE IT
0 R(V; B)) 04(G)  e(G)  Conditions
G(p,p, 2  {oR(V;G), 1)  pGDNSLV) b>1
D wT p{GNSL(V,)
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T 10 5 p(G)NSL(V)

G(p,p,3)  {pHV;G), —1)  p(G)NSLV) pe2Z+1
Gp,9,3)  {(RV;G), 7> (G(p,qq, HNSLV), 1) p>1
G3,3,3) (ol AV; ), Ty pG)NSL(V)

W(H,) 1A V5 B)) pAG)NSL(V)
W(L,) 1o (V5 G)) (G NSL(V,)
W(M,) 1o (V' G)) G NSL(V,)
W(J(4)) 10 #(V; G)) 0{(G)N SL(V )
G(p, q,4) ol H(V; G)), Ty (G(p,qq’, HYNSL(V ), 7y p>1
W(D,) dA(V;G), I'y  pG)NSLV)
W(A) 10V G)) pG)NSL(V,)
W(H,) 1ol Z(V; Q) p(G)NSL(V,)
W(F) tap(( V; f;)) I W(F), W(F)]
W(F,) BV, G), Iy p(G)NSL(V)
W(L,) 1120:(Z( V; g)) p{G)N SL( V)
EW(N,) 104 Z(V; G)) pG)NSL(V,)
W(Ay) 10 Z(V; G)) 0{(G)NSL(V,)
W(E,) 10 (V; @) e G)NSL(V))

7, = diag[Cp, — L3']; T, = diag [$5), Gop Copls 75 = diag [Ca, Ly G5, G3')5

Iy = (g, W(L)) N SL(VY) (u = 1,9) or [W(Ly)NSL(V,), W(Ly)NSL(V)];
Iy = m,[WEF), WF) (u=1,2); I'y = p, 2 & or pA(W(F,) 2 e SL(R),
2 =1, AWF,) = WF); GB,3,3)C W(M,); W(L,)C W(M,);
W(D)CW(F); N>q =p/q or p/29; N2 b, 2°'||p

ns]kzl’

$jk#0

where s;, (1 £ j, k < n,) are entries of the matrix [s;,] of p.¢) afforded by
a C-basis on which p(%(V; G)) is represented as a diagonal group and G'
is conjugate, in GL(V)), to one of G(p,p,n) N SL(V) (p>1, n,>2)
{G(p, p, YN SL(V)), diag [Cu, Cu, &', Ca']) (2°~'[lD, b = 1, n; = 4), the groups
in Table 1, {G(p, p, 3) N SL(V), diag (s}, Loy Cp)) (P = 2, 0y = 3), (G(p, p, 3)
NSL(V), diag [¢:,, & C2 1D (2 > 1, 1y = 3).

Case D “po (A(V; G)) =17.

m =1 and G can be extended to a Cl-triplet in GL(V) (i.e., G = G*N

SL(V) for a finite reflection subgroup G* of GL(V) in which all orders of
pseudo-reflections are equal to the index [G':G)).
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Remark 5.2. The conditions in Case B of (3) of (5.1) can be replaced
by a concrete classification of some subgroups in GL(V,). However it is
rather complicated.

For convenience sake, put Z = Z(V; G) and 4 = {X e Hom (G, Cc)]
X(G) = 1}. We suppose that G is irredundant in GL(V), n >4 if G is
irreducible imprimitive and n > 10 if G is irreducible primitive, and fur-
thermore may suppose that G is generated by special elements. If S¢ is
a CL, then G 2 [G, G] (i.e. p(G) 2 [04G), p(@]) and, for each 1<i<
m, both Sym (V)¢ (cf. [21, (5.2)]) and Sym (V))¢* ([14, (2.6)]) are also C.L’s
(cf. (2.4)). Conversely if ZNG 2 [#, #), one easily sees G 2 [G, G], since
E=RNG X -+« XZNG,.

LEMMA 5.3. Suppose that f(V, G)es? for all Xe A. Then S¢isa C.I
if and only if (%, ZN G, V) is a Cl-triplet and all Sym(V)* 1 <1< m)
are C.I.’s.

Proof. By the above observations, (in case of “if” part or in case
of “only if” part of this lemma,) we always have S¢=@,,S¢=
®,es ST (V, B) (cf. [21]). Since f(V, G) =f,(V,B), 8% =@,.,S7 =
D,cs S°f(V, Z) and therefore S¢/(SV)®S¢ = S2n¢[(SV)*S2n¢.  Clearly S¢
is a CI if and only if Sym(V,))* 1 <£i< m) are CL’s. The closed fibre
of the flat morphism (Sg)¢ — (Ssy)¢ is isomorphic to that of the flat
morphism (Sg,)* — (Sgr)*"¢ and hence the assertion follows from [1].

In order to prove (5.1), by (5.3) we need only to show that (a) if S¢
is a C.L, then the condition (3) in (5.1) holds, and (b) if the condition (3)
in (5.1) holds, then Sym (V)¢ is a C.I. and f(V,, p(G)) € Sym (V)¢ for each
1< i< m and all X ¢ Hom (p(G), C*) with %(o(G?) = 1, because f,(V, G)
=TI™.f(V,, G) and f(V, G) e 8 for x e Hom (G, C*¥) ([21]). So let us fix
1 < i< m and divide the proof of the above assertions into the cases as
follows:

Case A “Z isirreducible in GL(V,)”. Since the “not if”’ part follows
immediately from [21], we may suppose that S¢ is a C.I. (in the proof of
the last assertion in (b), we do not use this assumption, and use the first
assertion in (b)) and p(G) # p(%) (then p,(G?) Z p(#)NSL(V.)). It should
be noted that fi.-«(Vi, 0(G)) € Sym (V))¢* ([21, 25]).

Subcase 1 “p,(%) is primitive and n, = 2”. Assume that p,(%) = (05| tta;
H|p(Z)NSL(V,)) for some subgroup H of SL(V,) and natural numbers a,
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b. Since {H, p{G)NSL(V,)> is a finite group containing H and p/(G)N
SL(V,) as normal subgroups respectively, we must have H 2 p,(G)NSL(V)
or p(G)NSL(V,) 2 H Our assumption and this imply p(G) 2 g, (0(X%)
NSL(V;)), which shows p/(G) = p(%) (cf. [4,(3.6)]). Therefore p(Z%) may
be identified with g, -(0(Z)NSL(V,)) for a natural number a. Because
Lo (0(G) N SL(V})) is not a reflection group, a =6 and the groups p,(G) N SL(V,)
and p,(#Z)NSL(V,) can be regarded as O and T respectively. Because O
2 0(G) 2 D, = [+ T, pts- T] (cf. (4.1)) and p(G%) Z p(%) N SL(V)), o(G?)
= 0 = p(G)NSL(V). fuVs pG)) is a graded element of degree 8 in
Sym (V,) which is an invariant of O (in fact fi (Vi pA@)) = fae( Vi, 15+ T)
is a unique nonzero invariant of degree 8 of T (up to constant multiple)
and O has a graded nonzero invariant of degree 8). If a linear character
X of p,(G) satisfies 2(p(G?)) = 1, X = det* on V, for some ueN. Clearly

1 if u=0mod3
fael Vi, 04(@) = 3 faee( Vi, 0(G)) if ©=1mod3
fdeb—l(Vi7 pz(G)) if u = 2 mOd 3

for u e N and hence the rest of the assertions follows.

Subcase 2 “p,(%) is a primitive Coxeter group (n, > 2)”. Let o€ p,(G?)
be any special element which does not belong to #Z and let (V) be a G-
stable real structure of V.. p,(%) may be regarded as a subgroup of GL((V))g).
Since p{Z) is absolutely irreducible in GL((V,)z) and cp (%) = p(Z#)s, for
some c¢ € C*, c-o belongs to GL((V))z). By [2, p. 232, Exc. 16] and [4] we
can similarly show the assertion as in the next case.

Subcase 3 “p (%) = W(L,)”. p(%) can be regarded as a subgroup of
W(M,) generated by all pseudo-reflections of order 3 in W(M,). For a
special element o € p,(G*) with ¢ ¢ p,(%), by [4, (5.14)], there are a natural
number a and e W(M,) such that ¢ =, -7 and dim Vi(r, ;') = 1. Since
the degrees of W(L,) are 6, 9, 12 and Sym (V,)* is divisorially unramified over
Sym (V)¢ ([7]), exactly one of &, -+, {2 is equal to 1. Moreover, as det ()
€ s = det (W(M,)), a = 9. There are regular elements px of W(M,) and p/
of W(L,) of order 9 ([4, (4.16)]) satisfying dim V(g V) =dim V(¢/, ;) =1
([19, (4.2), (i1)]). Then g and g are conjugate to r in W(M,), and as W(L,)
is normal in W(M,), = € W(L,), i.e. p(G) = p,W(L;). Using deg (foll Vi, 0G)))
= 12 and ¢ € SI(V)), we see that f.(V,, p(G)) is an invariant of ¢ ([19]).
The assertion in (b) follows from the fact “Hom (W(L,), C*) = {1, det, det~'}”
and fiw-1 (Vi, 04G)) = fae Vi, Pi(G))Z-
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Subcase 4 “p(Z%) = W(M,)”. Let o be any special element in p,(G?)
such that o p(%). By [4,(5.14)], ¢ =(,-t for some e W(M,) with
dimVy(z, ;") = 1. Since the degrees of W(M,) are 6, 12, 18 and det(z) e
U, We have a =9 or 18 and by [19, § 4], find =, which is regular, in W(M,).
The rest of the assertions follows from [21] and the following computation
of the degrees of fi. (Vs pAG)); deg (fue (Vi p(@) = 21, if j = 1; = 24, if
J=2;=9ifj=38;=12, if j =4; = 33; if j = 5 (cf. [4, (4.16)]).

Subcase 5 “p(%) is a primitive complex reflection group (n, > 2)”.
Using [loc. cit., (5.14)], we can prove the assertion by the similar method
as in Subcase 3.

Subcase 6 “p; is monomial and n, = 2”. Let {X|, X,} be a C-basis on
which p(G) is monomial and p,(%) agrees with G(p,q,2). Let ¢ be a
special element in G' which does not belong to #Z. Then, on {X|, X},
p«0) = diag [c, d]-(1, 2)[2] for some ¢, d € C with cd = —1. Assume p/q > 2.
By p(G) = {o(G?), pSpe (G))), we find an element 7 in Spe(G) with
ord (p(1)) = ord (¥) > 2 such that p,(7) is diagonal on {X, X;}. Put L =
Gr@,.v o (the stabilizer) and choose an element Z from V satisfying
O —D@®,.,V,) =CZ. Clearly p(L) is irreducible and is not conjugate
to {diag[¢,, 3, (1, 2)[2]> (a = 2) (it should be noted that, in [29, Theorem
1], these groups are deleted). Because C[X,, X,, Z]* is a C.I., by [29,
Theorem 1], p(L) contains diag [~1, 1], which implies p/q is even. Then
from the equality “V(fii-:(Vi p(@)) = foei-1(V,, 0AG)) (this polynomial can
be identified with (X, X,)?/?-(X? — X?))” it follows that ¢ = d? = 1. Hence
if p # q, pi0) € p%) = G(p, q, 2), which conflicts with our choice. We
see that p = ¢ and moreover, by the invariance of f;.,-«(V,, p.(G)), p is even.
In G(p, q, 2) there are exactly two equivalent classes in #(V,, G(p, q, 2))
(cf. [12]). Since X?? — X?* and X?* + X} are relative invariants of
G(p, q, 2), for any X in Hom (0(G), C*) with X == 1 and 2(p,(G?)) = 1, f(V,,
p{@)) can be identified with one of the polynomials X?? — X772 X?* 4+
X?* and X? — X?2. Obviously ¢*€ #, which implies o(f,(V,, 0.(Q))) =
+7(V;, 0{G)). However c? =d? = —1 and hence X = det™' on p,(G),
Le. p(G") = pG)NSL(V)).

Subcase 7 “p/(%) is imprimitive, p,(G) is primitive and n, = 2”. Ac-
cording to [4, (2.13)] we see that p(Z%) is conjugate to G(4, 2,2) or G(2, 1, 2)
in GL(V)). In both cases, each orbit in #(V,, p(%)) under the action of
0{%#) consists of two hyperplanes, and so, because p(G) = p(%)p(G?) is
not monomial, p,(G) acts transitively on #(V,, p(Z%)). Let ¢ be any ele-
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ment in Spe (G) such that p,(0) #1. Putting L' = G[(@j#”gn], we easily
see that p(L) = p(G), dim V,, =3 and Sym(V,)* is a C.I., Then, by
[29], p(L’) is conjugate to p,-T and p(G*) = p(G)NSL(V,). If a nontrivial
x € Hom (p,(G), C*) satisfies X(0(G%) = 1, f(V}, 0(B)) = faer-( Vs 04G)), which
shows the assertion in (b).

Subcase 8 “p, is monomial and n;, > 2”. Let X ={X,, ---,X,,} be a
C-basis of V; on which p,(G) is monomial and p,(%) is identified with
G(p, q, no). Since p(G°) 2 [pd %), pd#)] = G(p, p, n) NSL(VY), [[x (0GY)) is
isomorphic to S,, or A,,. Suppose p(G?) — p(%) contains ¢ = diag [a b,c, 1,
.-, 11-(1, 2)[n,] satisfying (1) ab= —1, c=1lor (2) ab =1, ¢ = —1. Using
oG(p, p, n)o ! = G(p, p, n;), we easily see a? =b? =c? =1 if n, > 3 or if
n; =3 and ¢=1. In this case p/q is odd, and hence o(fi.-(V;, p(Q))) =
— faer-1(Vi, pG)), which is a contradiction. Consequently n, =3, ¢ = —1
and b = a~'. When p is even, exchanging ¢, we may suppose ¢ = 1. Thus
it should be assumed that p is odd. By [29], we can identify p(G*) with
{G(p, p, HINSL(V), diag[—1, —1, —1]1 (1, 2)[3]>. Assume p #* q. Then there
is an element 7z in Spe(G) such that p,(c) = diaglZ,, 1, 1] with © = 2.
Putting H = Gyg,,.r¢2, We see p(H) is equal to {plG%), 01)) or {p(G),
o), (1, 2)[3]), since H is generated by special elements. Here p is an
element of Spe (G) such that () > 7. In both cases, by a direct computa-
tion, emb (Sym (V)¥) = 8, a contradiction. Consequently p,(G) = {G(p, p, 3),
— 1, p{GY) 2 p(G) NSL(V,) and fi(V,, p(G)) is an invariant of p,(GY).
For the rest of cases, by [8, 29], we infer that the assertion holds.

Subcase 9 “p,(G) is not monomial, p(%) is imprimitive and n, > 2”.
p{%) may be identified with G(3, 3, 3) or G(2, 2, 4) (cf. [4, (2.13)]). Suppose
%) = G(3, 3, 3) and regard p,(G) is a subgroup of pu. - W(M,;). Because
0(G?) is irreducible primitive and Sym (V) is a CI., by [29], p(G?) is
in (1, W(Ly))NSL(V,) = (1, W(M)) N SL(V).  Clearly fuoi-«(Vi,0/@) = fue( Vi,
W(M,)) is an invariant of W(L,)NSL(V,), and the assertion follows from
[29]. We can similarly treat the case “p(%) = W(D,))”.

Case B “p (%) is reducible and not abelian”. Suppose that S¢ is a
C.I. Then, as Sym(V,)¢ is a C.I, by [14, (4.3)] (the circumstance of [14,
(4.3)] is somewhat different from our present circumstance, but its proof
is applicable), n, = 4. Let {X,, X,, X,, X} be a C-basis of V, on which
matrices are always defined and suppose that CX,® CX, and CX,® CX,
are irreducible CZ%-submodules of V,. Denote by H the decomposition
group of Sym(V))(X,, X,) under the action of p,(G), and let +,: H—
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GL(CX, ® CX,) and +,: H—> GL(CX, ® CX,) be the natural representations
of H. We may suppose that p,(G) = (H, (1, 3)(2, 49)[4] = '), and there are
canonical isomorphisms v,(H) =+r(H) and (0 %)) = ¥(0{(Z%)). Clearly p(%)
is the direct product of Ker i Np(%) and Ker 4,N p(Z%). Moreover H is
generated by the union of p(G%)x,,x41 0G)ixs xe3 0B,

L= (" gl

and L, = {8 € p(G*) N H|4¥(B) and ,(B) are pseudo-reflections in GL,(C)}. If
Hp(Z) is abelian, the assertion (a) is evident and so we assume H/p,(%) is
not abelian. If, for a normal subgroup G’ of p,(G) generated by some
pseudo-reflections, the pair of degrees of v, (G’) is consisting of distinct
numbers, H/p(%) is abelian, because ,(H)[(G") and .(H)/y(G’) act
faithfully on C[X, X,]¢ and C[X,, X,]¢ respectively. Suppose that (o(%))
is primitive. Then since the degrees of y,(p.(%#)) are equal, by [4, (3.6)],
V(0(#)) is identified with one of py,-T, - O and py,-I in GL(C). Let N
be a subgroup of p,(G) generated by all pseudo-reflections of order 3 in
0{G). The pair of the degrees of y(IV) is consisting of distinct numbers
([4]), which is a contradiction. Thus ~(p;(%)) is imprimitive, and further-
more, by [4, (2.13)], ¥(0(ZX)) (resp. ¥.(p(%#))) may be identified with y,-D,
on the C-basis {X, X,} (resp. {X,, X\}). Using a classification of finite
subgroups of GLJ(C) (cf. [4, (3.1)]) and our assumption on v(H )/ (0(R)),
we easily see that ¥ (H) is equal to ,-O or (u,|t.; O|T) on {X,, X}},
where u e N is even. There are homogeneous polynomials g,, g, (resp. g,
&) in C[X,, Xj] (resp. C[X,, X,]) such that 7(g) = g, 7(g) = &, and {81, &
g, 8.} 1s a G/Z%-linearized regular system of graded parameters of Sym (V)%
Let ¢,: H/p(#) — GL(Cg, @ Cg,) and ¢,: H/[p(%#) — GL(Cg, ® Cg,) be the
canonical representations. Moreover, since ¢;(H/p(%)) (j = 1, 2) are meta-
belian groups, we may suppose that p,(G)/p(%) is monomial on the C-basis
g = {81 & & &} and A(Cg, ® Cg,; H|p(R)) (resp. #(Cg,D Cg,; H|p(R))) is
represented as a diagonal group or G(p, q, 2) on {g,, g,} (resp. {g:, &D).
Claim “If ¢ is an element of H such that g,, g, are relative invariants
of g, then g, and g, are also relative invariants of ¢”’. We may suppose
that ¢ belongs to one of p(G')x,,x7 PG )ixsxa1y Ly and L,. If ce LU
0G)1x1, 2, the assertion is evident. Suppose ¥(H) = 1,,-0. Z(CX, D
CX,; H) is equal to p,-0, p-0, py,-0 or p,-0 in GL(C) and hence Z(Cg,
@ Cg,; Hlp ) and Z(Cg, D Cg,; H|p(%)) are regarded as one of the groups

F e GL(O)| NG

https://doi.org/10.1017/50027763000021334 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021334

QUOTIENT COMPLETE INTERSECTIONS 31

G(@3,3,2), G6,6,2), G@3,1,2), G6,2,2) in GL(C). If ¢¢ L, by the defini-
tion of p(Z), ord (¢, (cp(Z))) = ord (p,(vp(Z))), which implies our assertion.
So we assume ¢ € p(G)(xyx0- Then (o) e Y, (H)NSL(C) = O € #(CX, D
CX,; H), and ord (p(cp(%))) = 1, 2 or 3. Since ¢,(cp(%)) is not a pseudo-
reflection in GL(Cg,®Cg,) and belongs to #(Cg,DCg.; H/pR)), o(cpR)) is
diagonal. We now suppose V(H) = (| ton; O|T). R(CX, D CX,; H) is
identified with p,-D,, T, (s pti; O|T) or (gt ptie; O|T). Z(CE D Cgy;
Hlo, (%)) and Z(Cg,® Cg,; H/p.(%)) may be regarded as one of a diagonal
group, G(3,3,2) and G(3,1,2). We can similarly show this claim.

By Claim, [, (0{G)/oR)) = {(Cg:, C&.)Cg:, C8), (Cg;, CgXNCg; C8)),
which proves (ii) of (3). For any nonzero x e V,, Sym((V))s,)% is a C.L,
and hence (iii) of (8) is satisfied ([29]). (iv) of (8) follows immediately
from the assertion in Case A (we can replace G and G' by Gix, x,; and
Gix,xg; respectively and apply the assertion (3) in Case A). Thus the
proof of (a) is completed.

Next we suppose that the condition (3) in (5.1) holds. The first part
of the assertion (b) is evident. Let X be a non-trivial linear character of
p«Q) satisfying X(p,(G")) = 1 and put f = f(CX, ® CX,, %) and [P = f(CX,
®CX, #). Then f(V,, p(G)) = fV,, pA®) = fOf in S and, if [ is
regarded as a polynomial g(X,, X,) with the variables X, X, f{” can be
identified with g(X,, X,). Let ¢ be any element in (0(G");(x,,x7Y 0(G) iz
UL,UL,) — p(%). It suffices to show o(f(V,, p®))) =f(V,, 0(Q@)). IfseL,
this assertion is trivial (note that f(V,, p.G)) is a relative invariant of
p{@)). On the other hand, if ¢ € p(G%);(x,,x,47 DY (V) of B) f¥ = faeru(CX,
® CX,, Z#) for some ue N — {0}, which shows o(f") = f{* (cf. the proof
in Case A, n, = 2). Finally, suppose o € L,. {J,(0X)), ¥(0)> and (VoA %)),
¥{0)> are reflection groups in GL,(C) which properly contain +(p,(%)) =
Vol Z). I {4(odR)), ¥i(0)) is primitive and (Yo%), ¥,(0)) is im-
primitive, as in the proof in Subcase 7 in Case A, we see [ = fi..-(CX,
® CX,, ¥:(0{R))), and hence [ = foo-(CX, ® CX,, Vo0R))). Since fao-«( Vs,
0/Q)) is a det ’-invariant of p,(G), in this case, the assertion follows. So
we assume that {V,(p(%)), ¥(0)), V(X)) (j = 1,2) are simultaneously
primitive or imprimitive in GL,(C).

Subcase 1 “(¢ — I(CX,® CX,) = (6, — 1)V, and (¢ - I)CX, P CX,) =
(0, — 1V, for some o, 0,€ Z”°. Suppose {V(0(R)), ¥:(0)) (resp. (V0 A),
¥{0)>) is monomial on the C-basis {X], X;} (resp. {X;, X,}) and especially
Yo%) (resp. Vy(o;(#))) is represented as G(p, q,2) on {X, X} (resp.
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{X,, X.}). Because g(X,, X,) is a relative invariant of G(p, g, 2), there is
a polynomial g'(X,, X;) € C[X,, X;] and an element v e N such that g(X,, X;)
= (X X,))'g'(X,, X,) and g'(X,, X,) is not divisible by X, and by X, in
C[X, X;]. If y(0) is not diagonal, ord(s) = 2, and so (o) = Yoo}
and V() = ¥y(p(0,), which implies ¢ = p,(0,)p:(02) € p(%). Therefore (o)
(j =1, 2) are diagonal. Since o(g'(X,, X)) = g'(X,, X,) and ¢(g’(X,, X)) =
8'(X;, X)), o(f Vi, pQ))) = det (vi(0))f;? det (v 0))’f = f(Vi, 0(G)). Sup-
pose Y, (pR), v(0)y (j=1,2) are primitive in GL,(C). Since (o) ¢
‘Pl({oa(ﬂ)) (if V(o) € ‘V!(Pi('%)), ge Pz(‘%)) and (¥,(¢) — 1)(CX, ® CX,) = (¥ri(p:(a,))
— INCX, @ CX;), by a classification in [4, (3.5)], we see that ord (y,(0))
(=ord(0)) = 4, ord(s) = ord(s,) =2 and ¢* = p,0,0,). In any primitive
2-dimensional reflection group, the set of all pseudo-reflections of order 4
is empty or a conjugate class. Thus +~(p(%)) does not have a pseudo-
reflection of order 4, and using [4, (3.5)] again, we can identify ,(o{Z%))
with p,,-T. By the definition of f* (cf. [20, (4.3.3)]), o(fM)/f® = (o(Ly(CX,
@ CX,, 0/(2))| Ly (CX, @ CX,, 0,(R)) 7 X 0Fweitdn = 1 if ¥(p0) = 1;
=0(fiet-1(CX, ® CX,, B))[f1ee-1(CX, ® CX,, #) otherwise, where U’ is the
reflecting hyperplane in CX, ® CX, associated to +r(p,(a,) i.e. F,.(0(R))
= {pdo))y. Similaxrly o(f*)/f;? = 1if X(oi0)) = 1; = 0(faur-(CX; @ CX,, R))/
fior-1(CX; ® CX,, #) otherwise, and therefore, observing 1 = X(¢?) =
(oo ))X(0i(0,) and o(faer-1( Vi, pA(@)) = det ()~ faer-1( Vi, 0 @) = foer-o( Vi, 0 G))
(cf. [21]), we always have o(f(V,, p{Q)) = V., pLG)).

Subcase 2 (¢ — I(CX, D CX,) = (6, — 1)V, for some oc,e6# and
(6 — D(CX,® CX) #(r — 1)V, for every ceZ”. Since o(f®) = f* ([20,
(4.3.3)]), we need only to show o(f®) = f®. Suppose (¥, (0AR)), v()>
(j = 1,2) are primitive in GL,(C). Then, as in Subcase 1, we similarly
have o(fV)/f7 =1 if Xofo) = 1; = 0(foer-(CX, B CX,, D))/ faer-1(CX, D
CX,, #) otherwise. Thus the assertion follows from the equality fi..-.(V,
Pi(G)) = 0(faer-(Vi, 04 3))) = 0(fuer-1(CX; @ CX,, R)) faer-(CX;® CX,, #). Next,
suppose that {V(0(X)), ¥:(0)) (resp. (Yo X)), ¥0))) is monomial on {X],
X,} (vesp. {X;, X,} and especially ,(0(Z%)) (resp. V(0(Z))) is represented
as G(p,q,2) on {X,, X,} (resp. {X,, X|}), where p,ge N with ¢g|p. Since
(@) € V(D) and (4i(o) — D(CX, ® CX) = (41(pie)) — 1)(CX, ® CX)),
J(0) is diagonal on {X,, X,}, and using our assumption in this case, we
easily see that () is not diagonal on {X;, X}, which requires ord (¢) = 2.
Obviously it may be assumed that diag[—1, 1, a, a~']-(3,4)[4] for some
a € C*, and hence p/q is odd (= 3). Because p,([Z, Z]) S p(G?), ¥(p(G))x,)
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is irreducible and not conjugate to {(diag[l,, ;'l, (1, 2)[2]> (ue N — {0})
in GL(C). Applying [29, Theorem 1] to p(G?)y, (cf. (iil) of (8)), we see
diag[—1,1, —1, 1] € p(G?)4,, which implies p/q is even (cf. (iv) of (3)). This
is a contradiction. _

Subcase 3 “(¢ — IYCX, P CX,) = (r — 1)V, and (¢ — I(CX, P CX,) +
(z — 1)V, for every € Z”. Clearly f and f® are invariants of . Thus
the assertion follows.

Case C “p(Z) is reducible and non-trivial abelian”. Let X = (X, - - -,
X,)} be a C-basis of V, on which p/(%) is diagonal and every matrix is
defined. p,(G?) is a transitively imprimitive group with the complete
system {CX], - - -, CX, } of imprimitivities and p(%) = (diag|¢{,, 1, ---, 1], - - -,
diag[1, ---, 1,¢]) for some ceN with ¢ > 2. Hence {f,(V,, 0(G))|Xe
Hom (p,(G), C*), 2p(G)) =1} S {(X, --- X,,)’|0 = v<c}. The last asser-
tion of (b) follows immediately from the condition (3) and so we assume
S¢is a CI and G is a minimal counter-example for the assertion that
X, --- X,, €8¢ with respect to |G|. Then it may be seen that i=1, m = 2
and dimV,=1 (in fact, for an element o€ Spe(G) with ord (p,(0)) > 1,
Gl @,2v ¢ 18 also a counter-example).

Claim “|{j|1<j< n, V@2 X} <n, — 2 for any special element o
in G”’. We suppose that this Claim is false. Then one may suppose p,(o)
= diag[—1, 1, ---,1]-(1, 2)[n] € p,(G") for some ¢eG', and by the mini-
mality of G, dimV, = n, = 2. Because C[X,, X;]¢ is a C.I., fu:-(V,, G) =
(X, X,)*-! is an anti-invariant of G, which requires ¢ is odd. This conflicts
with [29].

Applying [14, (4.2)] to G, we have n, = 3 or 4. By [8, Table II] and
our assumption, []x(0(G")) is conjugate to neither A,, nor {(CX,, CX,)(CX,,
CX), (CX,, CX)(CX,, CX,)>. Suppose []x (0(GY)) = {(CX,, CX)), (CX,, CX)),
(CX,, CX)(CX, CX)> (n, = 4). Then p(G")>diag[l 1, —1,1]-(1, 2)[4] and
since, on CX,PCX,,G Y, is not conjugate to {diag[{,, {71, (1, 2)[2]) in GL,(C)
and C[X,, X,, X,]%. is a complete intersection, by [29], 0(GY) o diag [—1,
1, —1,1]. Hence p,(G") > diag[1, —1, 1, 1]-(1, 2)[4], which is a contradiction
(cf. Claim). By Claim, [8, 29] and the minimality of G, n, = 38 and p,(G")
may be identified with (diag[{,, &7, 1], diagll, 1, —1]-(1, 2)[3], diag[—1, 1,
1]-(2, 3)[38]> where @ is an odd natural number and c|a in N. Moreover
G = (G, 1) for an element 7 € Z. Clearly Sym (V)% = C[X* 4+ X3* + X3*,
XeXy + XeXy — XgXp, (XXX), XXX(XP — X3 + X9), (XP + X)(XP +
XN Xg — XP)] (cf. [29]) and because 7((X,X.X,)") = QX X, X)), 1(X. X, X(XT
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— X 4+ X)) = L XX X(Xr — X+ X and 1(Z) = ('Z, it follows easily
from (c,2) = 1 that S¢is not a C.I.,, where Z is a nonzero element of V,,
which is a contradiction.

We always conclude X, --- X,, € 8¢ if (3) holds or if S¢ is a C.I,
and so assume X, --- X,, €S%. Then, if G'is generated by special ele-
ments, []x (0.(G?)) is generated by double transpositions and 3-cycles and
does not contain a transposition, i.e. especially if n, <4, [[x (0(G?)) =
A, (n;=4), ZI2Z 1 S, (n;,=4) or A, (n; = 3) ([8]). On the other hand,
if p,(G?) is conjugate to the groups “5” or “6” in [8, Table II], we can
easily show emb (Sym (V,)¢) = 8, a contradiction. Furthermore, if p,(G?)
is conjugate to <{G(p,p, 4)NSL(V)), diag[w, L{w, &', ') (227D, b= 1),
Sym (V)¢ is a Gorenstein ring with emb (Sym (V,)¢) = 6, and is a C.IL.
By our assumption on G¢, Sym(V,)¢ is a C.I. if and only if Sym (V)¢ is
a C.I., since the closed fibre of the flat morphism (Sym (V)% symearae
— (Sym (V)Y gymroyrpet 18 a hypersurface. Therefore the rest of the as-
sertion follows from the above observations, [14, (4.2)] and [29, Theorem 2].

Case D “p(2#) =1”. Claerly m =1. When G is imprimitive, see [14,
(4.2)]. When G is primitive, as in the proof of [14, (4.6)], this follows
from (4.1).

Thus the proof of (5.1) is completed.

Notes added in proof. There are errors in the author’s classifi-
cation of irreducible groups of dimension < 10 and its proof published
in LNM 1092 (Springer) and manuscripta math. 48, 163-187 (1984). A
revised classification shall be given in a part of a forthcoming paper.
Case A of the classification of reducible groups in those notes must be
replaced by Case A in (5.1) of this paper. [32] must be added to their
references. In [33] the author generalized the result in [26].
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