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Abstract

Strong competitive ability of introduced plant species has been frequently stated as a key factor
promoting successful invasion. The dynamics of invasive species may depend on their abilities
to compete for resources and exploit disturbances relative to native species. This study
compares the growth performance of the invasive blackberry (Rubus niveus Thunb.) with four
of the most common woody native species of the Scalesia forest in the Galapagos Islands. Using
a series of greenhouse and field studies, the growth rate and biomass production of native spe-
cies alone and in competition with R. niveus was compared under different water and light stress
conditions. Rubus niveus showed a faster growth rate and biomass production than the native
species as well as a broad tolerance to light and water stress conditions. Competitive ability was
also assessed by looking at the seedbank and regeneration processes after herbicide control in
the field. Although the number of R. niveus seedlings that germinated from the soil samples was
considerably larger than that of native species, recruitment of the invasive on the experimental
plots was limited. Overall, R. niveus showed superior competitive ability over native species with
comparable growth forms, suggesting a possible mechanism that enables R. niveus to success-
fully invade a wide range of habitats in the Galapagos Islands. Implementing an integrated
management strategy including biological control, seedbank reduction, and active revegetation,
should improve the efficiency of R. niveus management, enabling the restoration of degraded
vegetation in the Galapagos.

Establishment and impacts of invasive species depend on their biological attributes, their biotic
interactions with the native community, and the environmental characteristics of the invaded
ecosystem (Keane and Crawley 2002; Lloret et al. 2005; Pysek et al. 1995). Introduced plants may
become aggressive invaders outside their home ranges for a number of reasons, including release
from natural enemies, higher performance in a new site, direct chemical (allelopathic) interfer-
ence with native plant performance, and variability in the responses and resistance of native
systems to invasion (Blossey and Notzold 1995; Callaway and Aschehoug 2000). Introduced
plant species might be released from constraints present in native environments, allowing indi-
viduals of a species in an alien environment to be taller and more vigorous and to produce more
seeds (Blossey 1999; Schmidt et al. 2008).

Another major explanation for the success of invading species is that the invader possesses
individual traits or a combination of traits that are unique or underrepresented in the recipient
community, allowing the invader to exploit resources or opportunities not exploited by
the native community (Fargione et al. 2003; Vitousek et al. 1987). Studies have generally found
that invasive plant species have higher relative growth rates, greater leaf-area ratios, and
maximal photosynthetic rates compared with natives plant species (Grotkopp et al. 2002;
McDowell 2002).

One mechanism that may facilitate invasion by introduced plant species is increased resource
availability resulting from disturbance or low resource uptake by the native plant community.
Habitats with increased light and nutrients tend to be more productive for invasives (which are
often disturbance specialists), which leads to higher growth rates and higher rates of spread
(Meekins et al. 2001). Phenotypic plasticity may help invasive plants to exploit a wider range
of environmental conditions than native species (Hulme 2008; Lande 2009; Sultan 2000).
Invasive plant species often have more efficient water use, better nitrogen uptake, and higher
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Management Implications

Rubus niveus (blackberry) is commonly controlled in the
Galapagos using chemicals to kill adult plants. While effective in
the short term, this creates gaps that may stimulate the reinvasion
of R. niveus from the seedbank. Moreover, the long-term effects of
herbicide use on non-target species may slow down the regeneration
of native plant communities, giving a competitive advantage to R.
niveus. This study provides evidence of the need of two management
actions in addition to chemical control of adult plants to allow native
Scalesia forest to recuperate. First, a mechanism to reduce the size of
the R. niveus seedbank is critical to reduce reinvasion after chemical
control of adult plants, and second, active high-density planting
using young plants of fast-growing species such as Scalesia peduncu-
lata and Tournefortia rufo-sericea can help by shading bare soil,
reducing the germination rate of R. niveus from the seedbank.

biomass and can produce seeds that are more likely to germinate
compared with natives (DeFalco et al. 2003). There is evidence that
some invasive Rubus are able to rapidly and efficiently exploit a
wide range of soil moisture conditions (Caplan and Yeakley 2010).

Finally, the success of many plant species as invaders is
increased by their capacity to maintain persistent stores of seeds
in the soil (Passos et al. 2017; Richardson and Kluge 2008). The
ability to produce a large number of seeds together with high ger-
mination rates increases invasion success (Greenberg et al. 1997;
Rejmanek and Richardson 1996). The more propagules an organ-
ism produces, the greater its chances of becoming established
(Williamson 1996). However, while the importance of traits to
attributes of invasive success is recognized, it is now generally
accepted that many other factors, such as the biological and eco-
logical interactions with other species in the new environment,
play an equally important role (Dunbar and Facelli 1999).

Invasive blackberry (Rubus niveus Thunb.) is a thorny, peren-
nial shrub native to India, southeastern Asia, the Philippines, and
Indonesia (Morton 1987). This species has a wide climatic range,
from near sea level to montane environments at 3,000 m. However,
R. niveus is not resistant to drought or frost (Morton 1987; Wagner
et al. 1999). In places with harsh winters, the species behaves as an
annual plant growing back each spring from the seedbank or roots,
while in most tropical areas it can grow all year round (Morton
1987). The plant is cultivated throughout the world for its heavy
production of sweet fruit. Rubus niveus has been introduced into
Central America, South America, the United States, South Africa,
and Australia (Morton 1987; St. Quinton et al. 2011).

In the Galapagos, R. niveus has invaded grass- and farmlands,
shrublands, and forest alike. It forms dense thickets, replacing
native vegetation and threatening several native communities,
including the Scalesia [Scalesia pedunculata Hook f. (Asteraceae)]
forest (Itow 2003; Renteria and Buddenhagen 2006; Wilkinson
et al. 2005). On Santa Cruz Island, the Scalesia forest is situated
within the humid zone (600 m asl) and receives a mean annual pre-
cipitation of approximately 1,845 mm (Itow and Mueller Dombois
1992). Soils are up to 1-m deep, of basaltic origin, well weathered,
and sandy loam in texture (Laruelle 1966; Stoops 2014). The humid
zone comprises a number of subzones that vary between islands
and include the Scalesia Zone, Miconia Zone, and Fern-Sedge
Zone (Stoops 2014; Tye 2006). The Scalesia Zone is the most fertile
habitat in the archipelago, where agricultural settlements were
established (Moll 1990). In Santa Cruz Island, this zone was

https://doi.org/10.1017/inp.2021.5 Published online by Cambridge University Press

21

historically dominated by the endemic tree S. pedunculata; how-
ever, land-use change has severely reduced the original vegetation,
leaving small and sparse fragments (Mauchamp and Atkinson
2011; Moll 1990; Watson et al. 2010). The Scalesia forest at Los
Gemelos on Santa Cruz Island is one of the best remnants of this
humid vegetation type. This forest is still dominated by S. pedun-
culata and constitutes the habitat of many endemic and native spe-
cies (Hamann 2001; Itow 1995). The Scalesia forest has been
invaded by a number of introduced plant species, including
R. niveus (Renteria and Buddenhagen 2006).

Several life-history traits may contribute to R. niveus invasive-
ness in the Scalesia forest. As is the case for other invasive Rubus
spp., rapid growth of the shoot and root, ability to reproduce veg-
etatively, early flowering, self-compatibility, and high rate of seed
production may contribute to its success in the Galapagos Islands
(Baret et al. 2008; Gerrish et al. 1992). A possible mechanism that
may enable R. niveus and other invasive species to successfully
invade and persist in a wide range of habitats is superior competi-
tive ability over native species as measured by its rapid growth,
early maturity, large quantities of seeds and fruit, effective seed dis-
persal, vegetative reproduction, and generation of dense shade
(Atkinson et al. 2008; Bellingham et al. 2004; Landazuri 2002;
Rejmanek and Richardson 1996).

Because invasive species represent a threat to native biota and
contribute to the decrease of native biological diversity (Levine
etal. 2003; Mooney and Cleland 2001), it is fundamental to identify
the mechanisms, traits, or external factors that contribute to suc-
cessful invasion (Lake and Leishman 2004; PySek et al. 2004).
Understanding interactions between invaders and residents and
the mechanisms by which invasive species outperform native spe-
cies is essential to efficient management and restoration of native-
dominated habitats (Richardson and Kluge 2008). Management of
invasive plants in natural areas should aim at a self-sustaining eco-
system with desired species composition and ecosystem functions
(D’Antonio et al. 2016).

This study examines the growth performance of R. niveus rel-
ative to the four most common native plant species from
the Scalesia forest in Santa Cruz Island in the Galapagos Islands:
the tree S. pedunculata, the woody vine-shrub Chiococca alba (L.)
Hitchc. (Rubiaceae), and the shrubs Psychotria rufipes Hook.f.
(Rubiaceae) and Tournefortia rufo-sericea Hook.f. (Boraginaceae).
We used greenhouse experiments to compare: (1) the relative
growth rate of R. niveus and these native species and (2) the toler-
ance and performance of both native species and R. niveus under
different stress conditions. Additionally, experimental plots were
established in the Scalesia forest to assess interspecific competition
in infested areas, as well as seedbanks and seedling recruitment from
R. niveus.

To assess the relative growth rate of R. niveus and the four native
species, seedlings of each species were collected from the Scalesia
forest (approximately 2- to 3-wk old, 5 cm average height) and
grown in individual plastic pots (1,500 cm®) containing soil from
the highland farms (agricultural areas adjacent to the Scalesia
forest) under a shade house (70% of natural sunlight, with a
12-h daylight regime, average annual temperature of 22.2 C).
Fifteen seedlings of each species were randomly positioned in
the shade house and watered as required. Seedlings dying within
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2 wk after potting were replaced. Initial and final stem length and
cover area index (represented by the product of minimum and
maximum length) of each plant were measured. After 8 mo, all
plants were harvested and samples were dried at 45 C and weighed
to determine foliar and root biomass. We use linear models (multi-
variate analysis of variance [MANOVA]) with species as fixed
effects to determine significant differences in relative growth
and biomass production between species; values of each response
variable were log transformed. The statistical analysis for the whole
study was performed using the computing environment R (R Core
Team 2018), an open-access software environment.

To determine the response of R. niveus and the four native species
to different light and water conditions, seedlings of the different
species were planted in individual plastic pots (1,500 cm?) con-
taining soil from the highland farms and grown under two dif-
ferent light levels (90% and ~10% of ambient sunlight). These
represent an approximation for “open ground” and “closed can-
opy” sunlight conditions at the Scalesia forest; the low-sunlight
treatment was provided using wooden frames covered with
shade cloth. Two different watering regimens were used (500 ml
and 250 ml as proxies of 100% and 50% volume saturation,
respectively), water was applied manually twice a week. A two-
way factorial design was used with 12 replicates per treatment
(each plant as a replicate). Initial and final stem diameter and
length per plant were measured. After 5 mo, the experiment
was stopped; plants were harvested, dried at 45 C, and weighed
to determine foliar and root biomass. We used a linear model
(MANOVA) to assess the influence of light and water treat-
ments as fixed effects on the variation in relative growth and
biomass production of the different species; values of each
response variable were log transformed.

To assess the seedbank contribution to the regeneration process of
the Scalesia forest, a set of 20 paired plots (4 by 4 m) were set up
along the Scalesia forest. Each pair consisted of heavily invaded
(“invaded areas,” with at least 90% R. niveus cover) and a nearby
uninvaded plot (“uninvaded vegetation”). The uninvaded plots
were selected to represent as closely as possible the same habitat
conditions as the corresponding invaded plots. The vegetation
of heavily invaded plots was cleared completely (using a machete
and spraying R. niveus stems with glyphosate (Roundup 2%,
Roundup Custom, Bayer CropScience LLC, Research Triangle
Park, NC, USA), as suggested by Renteria et al. [2006]) to assess
competition recruits. In each plot, five soil samples were taken
within centrally located 1-m? subplots using a metal core
(4.5-cm diameter by 5-cm deep). Soil cores from each plot were
mixed together and spread out into plastic trays containing a layer
of sterile vermiculite; trays were watered regularly and kept in a
shade house to monitor germination over 5 mo. Seedling emer-
gence was recorded as counts per species and then removed after
identification to avoid double counting. Regeneration of vegetation
in the invaded plots 9 mo after clearing was assessed by estimating
the species cover percentage within the 1-m? subplots. Generalized
linear models (GLM) with Poisson distribution were used to com-
pare variation of seedbank composition among “invaded” and
“uninvaded” treatments, with these treatments as fixed factors;
germination values were log transformed.
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The percentage of survivorship of most of the species was 100%,
except for S. pedunculata (87%). Growth parameters differed
significantly among species, expressed both as increased length
and cover (Figure 1A) and final foliar and root dry biomass
(Figure 1B). Rubus niveus showed greater increase in length than
other species (F(4, 68) = 69.3, P < 0.001). Scalesia pedunculata had
the greatest incremental growth for stem length among the native
species. Scalesia pedunculata, T. rufo-sericea, and R. niveus showed
a significantly higher foliar cover increase than the woody vine
C. alba and the endemic shrub P. rufipes (F(4, 68)=18.8,
P < 0.001). Rubus niveus showed greater production of foliar bio-
mass compared with all native species tested, (F(4, 68)=7.7,
P < 0.001). Rubus niveus and T. rufo-sericea produced greater root
biomass (F(4, 68) =28.6, P <0.001).

Overall, R. niveus grew faster relative to the native species. After
8 mo, R. niveus showed greater increase in size and biomass pro-
duction than native species for each of the four growth parameters.
Among the native species, S. pedunculata and T. rufo-sericea
showed greater growth, whereas C. alba and P. rufipes showed
the lowest values of growth rate and biomass production. On aver-
age, R. niveus increase was: 8.5- and 3.5-fold greater than P. rufipes
and T. rufo-sericea in stem length; 4- and 2.5-fold greater than
C. alba and P. rufipes in foliar cover; 1.7- and 1.6-fold greater than
T. rufo-sericea and S. pedunculata in foliar biomass; and 2.3- and
1.7-fold greater in root biomass.

Rubus niveus showed higher growth rates than the native spe-
cies, supporting the hypothesis that invasive plant species generally
have a performance advantage over native species (Daehler 2003;
Milberg et al. 1999; Rejmanek and Richardson 1996). Under the
same environmental conditions, R. niveus showed faster growth
rates for stem length and cover area and higher production of foliar
and root biomass compared with the four native species. Rapid
growth may enable R. niveus to quickly occupy free space and
therefore outgrow associated native shrub and tree species
(McDowell and Turner 2002; Pysek et al. 1995; Williamson and
Fitter 1996); however, it is not known whether this differential
growth rate continues through to maturity. In general, native
woody species allocate resources to develop stems and branches
(Grime 2001); the high production of foliar and root biomass
may give R. niveus an advantage over native ecologically similar
species when accessing resources such as water, nutrients, and light
(Grotkopp et al. 2002; Kolar and Lodge 2001).

Survivorship was greater than 90% for most species within all
treatment types. However, the endemic tree S. pedunculata exhibited
100% mortality within the shaded treatment; therefore, this species
was removed from the analysis. Light availability significantly
affected the growth parameters (stem diameter, stem length, and
foliar and root biomass) of both R. niveus and the three native spe-
cies, whereas watering regimens only affected the foliar and root
biomass of all species. The interaction of light and water treatment
did not significantly affect growth parameters (Figure 2; Table 1).

All species in the stress experiment, except for S. pedunculata,
showed high survival (>90%) under the different light and water
treatments. Almost all S. pedunculata plants died in shaded treat-
ments, showing a limited tolerance to low light conditions. Scalesia
pedunculata is an heliophytic successional tree whose regeneration
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Figure 1. Final (A) stem length and foliar cover increase and (B) foliar and root dry biomass values of Rubus niveus and four native species of the Scalesia forest. Median value of

the growth parameters; letters denote significant differences among species (P < 0.05).

depends on canopy openings (Hamann 1979). Light was the major
cause of variation in growth and biomass production of both R.
niveus and native species. Because the humid highland vegetation
of the Galapagos Island has evolved with highly variable rainfall
conditions—high precipitation during extreme El Niflo events
often followed by marked droughts (La Nifa) (Hamann 1985;
Wilkinson et al. 2005)—native species are adapted to survive pro-
longed hot-season droughts. Conversely, R. niveus was the only
species clearly affected by water stress. Studies have shown that
abundant light (Baret et al. 2008) and water access are fundamental
factors for the successful invasion of other Rubus spp. (Caplan and
Yeakley 2010). Rubus niveus experienced higher sensitivity than
native species to light and water conditions expressed by higher
variation in growth and biomass production. This trait may help
R. niveus to more readily access resources than slower growing
native species (Vasquez et al. 2010), especially once resources
become available after disturbance (Funk and Vitousek 2007;
King and Grace 2000). Natural disturbance is a critical element
for the regeneration of Scalesia forest in Galapagos (Itow and
Mueller Dombois 1992; Wilkinson et al. 2005); disturbance caused
by tree fall leads to openings in the forest canopy, allowing S.
pedunculata recruitment (Vasquez et al. 2010; Wilkinson et al.
2005). However, R. niveus is now filling these gaps and is more
competitive than S. pedunculata (Renteria et al. 2021).

In communities with seasonally fluctuating resource regimes
such as the Scalesia forest, an invasive plant could potentially have
an advantage by exploiting surplus resources during periods of
high availability (Caplan and Yeakley 2010; Funk and Vitousek
2007). This may be the case for R. niveus, which showed more sen-
sitivity to light and water availability; this particular trait may allow
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R. niveus to more effectively exploit resources or opportunities
not utilized by the native species (Davis and Thompson 2000;
Meiners 2007). Although all habitats are vulnerable to invasion
(Williamson 1996), the results from this experiment indicate water
availability is a limiting factor for the distribution of R. niveus. The
species has only been reported from the humid zone of the
Galapagos highlands, unlike the four native species, which
are more widespread (Atkinson et al. 2008; Renteria and
Buddenhagen 2006). Rubus niveus distribution seems to be limited
to the humid and very humid zones, where edaphic conditions
(especially depth, moisture-holding capacity, and fertility) may
be more suitable (Atkinson et al. 2008; Hamann 2001; Itow 1995).

A total of 1,171 seedlings of R. niveus, 960 seedlings of native spe-
cies, and 41 seedlings of other introduced species emerged from
soil samples within invaded areas, whereas 1,648 seedlings of
native species, 57 seedlings of R. niveus, and 12 seedlings of other
introduced species emerged from soil samples from the uninvaded
areas. A total of 22 vascular plant species were recorded, compris-
ing 17 native and 5 introduced species. Species consisted of 15
herbs (3 introduced), 1 vine, 3 shrubs (1 introduced), and 3 trees
(1 introduced); 82% of the total species occurred within uninvaded
areas, while 64 % of the species occurred in invaded areas, but this
difference was not significant.

There was a significant difference between the number of
R. niveus seedlings and the number of native species seedlings that
emerged from soil samples collected within invaded areas (GLM,
quasi-Poisson error distribution: df=38, t = —3.622, P <0.001).
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Table 1. Multivariate analysis of variance (MANOVA) results for the growth parameters (stem diameter, stem length, and foliar
and root biomass) of Rubus niveus and three native species of the Scalesia forest under different light and water availability.

MANOVA results

Species Source of variation df F P (>F)
Chiococca alba Light 38 48.03 <0.001
Water 38 2.451 0.06253
Light:Water 38 2.17 0.09091
Psychotria rufipes Light 39 32.168 <0.001
Water 39 3.196 0.02308
Light:Water 39 1.273 0.29709
Tournefortia rufo-sericea Light 36 32.168 <0.001
Water 36 3.196 0.1452
Light:Water 36 1.273 0.467
Rubus niveus Light 40 92.315 <0.001
Water 40 4,511 0.004212
Light:Water 40 0.371 0.827913
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Figure 2. Effects of light and water availability on (A) the relative diameter and length growth and (B) final foliar and root biomass of Rubus niveus and three native species of the

Scalesia forest. Median value of the growth parameters.

Seedlings of R. niveus also emerged from soil samples collected from
uninvaded areas; however, the number was significantly lower com-
pared with the number of seedlings of native species (GLM, quasi-
Poisson error distribution: df = 38, t=4.178, P < 0.001) (Figure 3).

Herbaceous species strongly dominated the soil seedbank in
both invaded and uninvaded areas, making up about 76% and
85% of the total number of seedlings, whereas shrubs and trees
made up only 15% and 24%, respectively. Seed germination from
soil samples from invaded areas (Figure 3) is expressed as number
of seedlings per square meter and is summarized as follows:
R. niveus =1,200 + 378.7, herbs =266.2 + 63.2, shrubs =42.5 *
15.5, and tree species=43.7 + 11.3. The number of R. niveus
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seedlings per square meter that germinated from soil seedbank
in invaded areas was 4.5-, 28.2-, and 27.5-fold greater than the
number of native herbs, shrubs, and trees, respectively. Rubus
niveus seedlings emerged more rapidly than native species seed-
lings. Within the 5 wk, more than 70% of the total seedlings of
R. niveus had emerged compared with only 40% of the native spe-
cies seedlings.

In invaded areas, the total number of emerged seedlings of R.
niveus was greater than for native species, particularly when com-
pared with the number of seedlings from woody shrubs and trees
species. This may result in a competitive advantage for R. niveus
during the regeneration process; therefore, managed sites can be
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of number of seedlings geminated from soil samples and averages of vegetation cover within 1-m? subplots. Bar heights represent mean values, and error bars represent +SE.

reinvaded easily after control is carried out (Bekker et al. 1997;
D’Antonio and Meyerson 2002; Oke et al. 2009; Renteria et al.
2012b; Vila and Gimeno 2007). Invasive plant species often
produce an abundance of seeds and have very large persistent seed-
banks (Lonsdale 1988; Oke et al. 2009). In the Galapagos Islands,
R. niveus fruits all year round, producing copious quantities of seed
and forming a large seedbank with up to 7,000 seeds m2
(Landazuri 2002). In addition to its large seedbank, more rapid ger-
mination compared with native species delivers a competitive
advantage for R. niveus in terms of resources and space occupancy
(Perez et al. 2000).

As expected, shrubs and trees of native species were poorly rep-
resented, whereas herbaceous species were the most predominant
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group; similar results were found by Wilkinson (2002) when com-
paring the soil seedbank of the Scalesia forest with an abandoned
pasture. Although the stand vegetation is dominated by the endemic
tree S. pedunculata and shrubs species such as T. rufo-sericea and
C. alba (Shimizu 1997), presence of these species was not evident
in the seedbank. Invaded areas and uninvaded areas showed similar
native species seedbank; this indicates that native species are not yet
limited in invaded areas, offering potential for regeneration if the
invader can be controlled or even eliminated (Dunbar and Facelli
1999; Panetta 1982; Richardson et al. 1989; Turner et al. 2008).
The seedbank and standing vegetation after control of R. niveus
had 16 species in common. These represented 73% of all species in
the seedbank and 52% of the species in the standing vegetation.
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This variation was the result of a difference in the number of spe-
cies: 22 species in the seedbank compared with 31 species in the
standing vegetation. There was no consistent relationship between
the number seedlings per square meter available in the soil seed-
bank and the aboveground cover regenerated after control of R.
niveus (Figure 4). Although the number of R. niveus seeds available
in the soil was considerably greater than the seed counts for all
other growth forms, at 9 mo after control, herb and tree layer
showed greater values in ground cover than R. niveus.

There was a low correspondence between the available seed-
bank and the regenerated vegetation after control of R. niveus.
Although there was a large quantity of R. niveus seedlings germi-
nating from the soil samples, at 9 mo after control, the regeneration
of R. niveus on the experimental plots was very low. The lack of soil
moisture due to a severe drought that affected the archipelago dur-
ing 2009 may have affected the regeneration of R. niveus. This
might be the reason why the seedbank did not reflect the standing
vegetation cover. As demonstrated with the soil sample germina-
tion experiment, R. niveus seeds have the ability to germinate faster
than native species under ideal soil moisture conditions. This has
been evident in areas under intensive management where reinva-
sion from the seedbank has occurred right after adult plants have
been controlled (Landdzuri 2002; Renteria et al. 2012b). On the
other hand, regeneration of native species, particularly herbs
and trees, demonstrated the greater tolerance of native species
to water stress conditions (Hamann 1981; Shimizu 1997).

Rubus niveus and natives showed tolerance to changes in light
and water conditions; however, R. niveus performed better than
native species when both moisture and light were in ample supply.
The soil seedbank data demonstrated that native species may not
be seed limited in the invaded areas; however, the enormous seed-
bank of R. niveus suggests this could constrain the restoration of
the native diversity from the native soil seedbank alone. This study
is based upon work carried out on seedlings under controlled con-
ditions for a limited period of time. As such, it cannot address the
total complexity of the R. niveus invasion within the Scalesia forest,
although the findings tend to conform to established invasive plant
theories.

Management actions for the restoration of native communities
should encourage resistance to reinvasion of R. niveus in order to
favor the persistence or recovery of desirable species (D’Antonio
et al. 2016). Chemical control can be an effective short-term man-
agement intervention to reduce R. niveus invasion; however, there
is always a risk of reinvasion from the seedbank resulting in the
need for ongoing treatment. Complementary activities should be
considered for integrated management and restoration of the
Scalesia forest, such as the reduction of the prolific seedbank
and active establishment of native canopy species. Certain native
species could act as a natural barrier to stop colonization and
expansion of undesirable plant species (Kettenring and Adams
2011; Shafroth et al. 2005). The use of fast-growing native species
with a high reproductive rates and adapted to the site condi-
tions should be considered; young plants of S. pedunculata and
T. rufo-sericea planted at high densities could provide a rapid
source of shade early in the season and limit resources to reduce
the reestablishment of R. niveus from the seedbank.

The use of biological control could be a cost-effective long-term
control strategy to reduce the density of R. niveus to below a thresh-
old of impact (Renteria et al. 2012a). While there are some risks
involved with the introduction and release of any new exotic
organism to the archipelago, these risks are almost negligible if
the protocols to develop a biological agent are strictly followed.
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Furthermore, there are no Rubus or Rosaceae native to the
Galapagos. In addition, R. niveus is part of a tribe of Rubus species
from the Old World, so it is very unlikely that a biological control
agent would affect the New World Rubus species native to main-
land Ecuador.
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