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A FACTOR THEOREM FOR LOCALLY CONVEX
DIFFERENTIABILITY SPACES

ROGER EYLAND AND BERNICE SHARP

The main result of this paper is that a continuous convex function with domain in
a locally convex space factors through a normed space. In a recent paper by Sharp,
topological linear spaces are categorised according to the differentiability properties
of their continuous convex functions; we show that under suitable conditions the
classification is preserved by linear maps. A technique for deducing results for
locally convex spaces from Banach space theory is an immediate consequence.
Examples are given and Asplund C(S) spaces are characterised.

INTRODUCTION

The classification of Banach spaces according to the differentiability properties of
their continuous convex functions began with Asplund [1] in 1968; similar classification
theory for topological linear spaces originates in Sharp [13, 14].

The mapping theorems of the first section extend those of Asplund; conditions
are given for a mapping to preserve a space's classification. Preserving G& sets is
unexpectedly difficult; a topological theorem of Coban and Kenderov [3] gives a result
for Frechet spaces. We prove the factor theorem: if / is a continuous convex function
with a convex open domain in a locally convex space X, then there exists a continuous
seminonn p such that / factors through Xp = X/kerp, which is a normed space with
the topology induced by p.

The mapping and factor theorems enable us to derive results for X from the spaces
Xp. Strongest conclusions can be drawn for "Q-complete" and "bound covering" spaces
(these concepts, and those used in the next paragraph, are defined shortly); for S
completely regular, we show that C(S) has both of these properties.

Major results are: the set of Frechet differentiability points of a continuous convex
function with domain in a bound covering space is a Gg set; for a Q-complete space
X, MDS and GDS coincide, and if in addition X is bound covering, FMDS, FDS and
ASP coincide; with some special conditions, C(S) is a differentiability space if and only
if for every compact subset A of 5 , C(A) is a differentiability space of the same type;
hence C(S) is ASP if and only if every compact subset of 5 is dispersed.
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102 R. Eyland and B. Sharp [2]

0. PRELIMINARIES

The term function is used for a real valued map. For a topological linear space X

and an open convex subset D of X, a function / on D is said to be convex whenever,
for all x,y e D and for all t G [0,1],

The continuous dual of a topological linear space X is denoted by X*; in this
paper all topological spaces are Hausdorff unless otherwise indicated.

Let U be an open subset of X and frA. be a bomology on X , that is, a class of
bounded subsets containing all singletons. A function f on U is Ai -differentiable at
x G U whenever there exists u G X* such that, for all M G M, for all e > 0, there
exists 6 > 0 , such that for all y e M, for all t : 0 < |i | < S,

< £.

The function u is uniquely determined by / and x and is denoted by f'(x).
If M is the class of all bounded subsets of X then / is Frechet differentiable at x.

This is the weakest of all possible choices for the derivative which coincide, when X is
a normed space, with the standard Frechet derivative. If M. is the class of all singleton
subsets of X then / is Gateaux differentiable at x.

REMARK 0.1. A continuous convex function / is Gateaux differentiable at x G D if
and only if for all y G X,

exists, that is, <f> is linear and continuous.

By gauge is meant a function g on X with the properties:

(1) for all * G X , 5 ( x ) > 0 ;
(2) for all x G X, for all t > 0, g(tx) = tg(x); and
(3) for all x,yeX, g(x + y) ^ g(x) + g(y).

A generic set in D contains a dense Gs subset of D.
A topological linear space, X, will be classified, using the following abbreviations,

according to the differentiability properties of a specified class of convex functions on
X.

(1) ASP (WASP): Asplund (Weak Asplund): every continuous convex func-
tion with domain a nonempty open convex subset is Frechet (Gateaux)
differentiable on a generic subset of its domain.
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[3] Locally convex spaces 103

(2) FDS (GDS): Frechet (Gateaux) Differentiability Space: every continuous
convex function with domain a nonempty open convex subset is Frechet
(Gateaux) differentiable on a dense subset of its domain.

(3) FMDS (MDS): FnSchet Minkowski Differentiability Space (Minkowski Dif-
ferentiability Space): every continuous gauge on the space is Frechet
(Gateaux) differentiable on a dense subset.

(4) We will add "[gen]" to FMDS or MDS to indicate that the differentiability
occurs on a generic set.

(5) We will add "[s]" to any of the above to indicate that the set of differen-
tiability points is a G( set.

The classes are not necessarily distinct. For Banach spaces, GDS and MDS are
equivalent ([11, 6.6]); ASP and FDS are also equivalent because the set of points of
Frechet differentiability of a continuous convex function with domain in a Banach space
is a Ge set ([11, 1.25]).

A map T: X —* Y is said to be bound covering whenever the following condition
holds: for every bounded subset B of Y there exists a bounded subset A of X such
that T[A] D B.

A linear bound covering map of a locally convex space onto a normed space is
open; a linear open map of a normed space onto a normed space is bound covering. If
T is continuous, linear and onto, and X and Y are Banach spaces, then T is bound
covering, however this is not necessarily true even for Frechet spaces X and Y. (See
[8, Ex. 221].)

1. MAPPING THEOREMS

Suppose that X and Y are locally convex spaces, that T: X —* Y is a linear,
continuous, onto map and that / is a continuous convex function with domain in Y.
It follows from the definitions and 0.1 that / is Gateaux differentiable at T(x) if and
only if / o T is Gateaux differentiable at x and that if / is Frechet differentiable at
T(x) then / o T is Frechet differentiable at x. If T is also bound covering, then / is
Frechet differentiable at T(x) if and only if / o T is Frechet differentiable at x.

THEOREM 1 . 1 . Let X and Y be locally convex spaces, and T a continuous,
linear, onto map.

(1) If X is GDS (MDS) then so is Y.
(2) Suppose also that T is bound covering. II X is FDS (FMDS) then so is

Y.

PROOF: Let / be continuous and convex on a nonempty open convex subset U of
Y. Then / o T is continuous and convex on D = T~1[t7]; D is nonempty, open and
convex.
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If X is GDS then the set G of Gateaux differentiability points of / o T is dense
in D. Since T is continuous, T[G], which is the set of Gateaux differentiability points
of / , is dense in U.

The FDS, MDS and FMDS proofs are similar. D

The WASP and ASP cases are in general more difficult and stronger hypotheses
are placed on X. In the proof of 1.3 the following theorem of Coban and Kenderov [3,
Theorem 2.2] is used.

THEOREM 1 . 2 . Let F: X —» Y be a continuous and open single valued mapping
from the regular topological space X onto the regular space Y. Let there exist a
completely metrisable dense subset Z of X. Then a Gg set Q C Z exists such that
the restriction of F on Q is a homeomorphism and F[Q] is a dense and Gg subset of
Y.

THEOREM 1 . 3 . Let X be a Frechet space, Y a regular linear space, and let
T: X —*Y be continuous, linear, open and onto.

(1) If X is WASP (MDS[gen]) then so is Y.
(2) Suppose T is also bound covering. If X is ASP (FMDS[gen]) then so is

Y.

PROOF: We prove the ASP case, the others are similar. Suppose that / , U and
D are as in 1.1. If X is ASP, then there exists a set of Frechet differentiability points
G of foT which is dense and Gg in D. It follows that G is metrisable with a complete
metric (Mazurkiewicz's Theorem [4, XIV, 8.3]). From 1.2, there exists a subset G' of G
such that T[G'\ is dense and Gg in U. Since T is bound covering, T[G'} is contained
in the set of Frechet differentiability points of / in U. U

If Y is a Frechet space then any continuous, linear, onto map T is open ([15,
Theorem 1 of 11.2]).

2. FACTOR THEOREM

If X is a locally convex space, its topology may be defined by a family P of
seminorms; this topology is the weakest that makes each seminorm continuous. The
p-balls, {Bp(e) : p G P, e > 0}, where

form a subbase of neighbourhoods at the origin. For a fixed p, these balls give a
seminorm topology on X: p-open and p-continuous mean open and continuous with
respect to this (not necessarily Hausdorff) topology.
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If p is a continuous seminorm on a locally convex space X, denote by Xp the
space X/kerp with the topology given by the norm induced by p . The canonical map
ffp: X —• Xp is continuous, linear and onto; Xp has the quotient topology if and only
if 7Tp is open. If X and Xv are complete, 7rp is open ([15, 11.2 Lemma 2]); if X is
fully complete Xp is a Banach space if and only if irp is open. Fully complete [12, VI,
2] is also known as "Ptak" or "B-complete"; Frechet spaces are fully complete.

If p and q are continuous seminorms on a locally convex space X, define p < q

and q >- p to mean, there exists Jfe > 0 such that, for all x G X,

p(x) < kq(x)

and define p X q to mean that

p -< 9 and g -< p.

Then " x " is an equivalence relation on the continuous seminorms (p and q are
said to be equivalent seminorms if p x g ) ; " -<" is a partial order on the equivalence
classes. Since p x q if and only if there exist ifc, k' > 0 such that, for all x € X ,

fcp(z) < q(x) ^ k'p(x),

in this case, ker p = ker q; Xp = Xq and TTP = TT, . Also

fc'Sp(e) C Bq(e) C **,(e),

so p and 9 can be used interchangeably in a family of seminorms giving the topology
on X. The meanings of p-open and g-open then coincide as do p-continuous and
q -continuous.

The topology of a locally convex space may be defined by a family of x equivalence
classes: take one or more representatives of each class and take the weakest topology
that makes each of these seminorms continuous; the topology is independent of the
choice of representatives and the quotients Xp, and maps irp, depend only on the
equivalence class. Also, kp is a continuous seminorm whenever p is, and max{p, <?}
defined by

max{p,g}(a;) = max{p(«),g(z)}

is a continuous seminorm whenever p and q are, so we can always assume that a family
of x equivalence classes of seminorms which generate the topology on X is directed by
-<.

In this paper, defining family will mean a family of X equivalence classes of semi-
norms which form a directed set under the -< partial order: if P is a defining family,
we shall abuse notation and write p £ P to mean that p is a seminorm representing an
equivalence class of P.
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LEMMA 2 . 1 .

(1) Suppose that X is a locally convex space, D a convex open subset of X
and f a continuous convex function on D. If, for a convex open balanced
neighbourhood U of 0, and M > 0,

(•) f[x + U]-f(x)Q(-M,M)

then, for all a £ [0,1],

f[x+aU]-f{x)Ca{-M,M).

(2) Suppose that X is a linear space, W a linear subspace of X, f is convex
on a nonempty convex subset U of X, x G X, and x + W C U. If f is
bounded above on x + W then f is constant on x + W.

PROOF: For (1), by convexity of / , for all a G [0,1],

( ** ) - a (/(* - u) - /(*)) < f(x + an) - /(*) < a (/(* + u) - f(x))

and the result follows from (*).
For (2), there exists m G R such that for all w G W,

f(x +w) ^ m.

Let r > 1, replace a by i in (**) and let u = rw: for all w G W,

- (m - /(«)) < r (f(x +w)- f(x)) *k (m - / («)) .

If / (x + w) — f{x) j£ 0, taking r sufficiently large provides a contradiction. U

FACTOR THEOREM 2 . 2 . Let X be a locally convex space with a defining family

P. Let D be a nonempty open convex subset of X, and let f be a convex function on

D continuous at xo G D. Then there exists q G P such that for all p >~ q,

(1) D is p-open and

(2) / is p-continuous on D.

Further, for each p, Dp = TTP[£)] is an open convex subset of Xp and there exists a
continuous convex function fp on Dp such that

PROOF: Since D is open and Xo £ D, there is a p\ G P and an e\ > 0 such that
BPl(x0,ei) C D, (where BPl(x0,ei) denotes x0 + BPl(ei)).
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Since / is continuous at XQ , there is a P2 G P and an £2 > 0 such that
f[Bn(x0,e2)}cf(x0) + (-l,l).

Let q y pi and q >- P2- Then for p X q there is an e > 0 such that

Bp(x0,e)cD

and

(*) /[2?p(x0,e)]c/(x0) + (- l , l ) .

Let x £ D. Since D is open, there is a t > 0 such that

z = (1 + t)x - tx0 e D

that is x = rrt
z+rrtxo

Let u e Bp (x,f/(l + t)e). Then u = x + */(l + t)u> for some w e Bp(0,e), so
that xo+we Bp(x0,e) C I>. So

is a convex linear combination of points of D and so, since D is convex, u £ D.
Thus for each x e D there is a t > 0 such that Bp (x,*/(l + t)e) C D, so D is

p-open.
Since / is convex on D, if u e Bp (x, t/(l + <)e)

+ ^ + )

(from (*)). It follows that / is bounded above on Bp(x,t/(1 + t)e) and since / is
convex, there exists M > 0 such that

Bp (0 ,3-^) ] C f{x) + (-M,M).

Prom Lemma 2.1 (1) for each a € (0,1]

)] /(«) + a(-M,M).
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To prove that / is p-continuous on D it suffices to show that for any r > 0, there
exists 8 > 0, such that

f[x + Bp(0,6)]cf(x) + (-r,r).

This is easily obtained from (**): let r' = min{r, M}, a = j% and 6 = j^^i£-

Since ker p C Bp(0,e), f[x + ker p] is bounded which implies, from Lemma 2.1
(2), that / is constant on x + kerp, so fp : Dp —y R is well defined by

jp(x + ker p) = f(x)

and / = fp o 7Tp.

The function fp is continuous, because / is p-continuous, and convex. Dp is open,
because D is p-open, and is clearly convex. D

REMARK. It is easy to see that Theorem 2.2 holds for gauges, that is, if / is a gauge

on X then so is each fp on Xp.

DEFINITIONS. A locally convex space is said to be bound covering if there exists a
defining family P such that for all p G P, irp is bound covering, and Q-complete (for
"quotient complete") if there exists a defining family P such that for all p G P, Xp is
complete.

If X is bound covering or Q-complete, we will assume that the defining family we
use has the appropriate property. A large class of spaces with these properties is given
in 3.6.

A complete bound covering space is Q-complete: if X is bound covering each
Kp: X —* Xp is bound covering and open, since Xp is normed; this means that Xp has
the quotient topology and so, since X is complete, is a Banach space.

Theorems 1.1 and 1.3 can be used to transfer differentiability space properties from

X to each Xp.

THEOREM 2 . 3 . Let X be a locally convex space and P a defining family for
X. Again, for p G P, irp denotes the canonical map from X to Xp.

(1) It X is GDS (MDS) then for all p G P, so is Xp.
(2) Suppose for some p G P, np is bound covering. If X is FDS (FMDS),

then so is Xp.
(3) If X is a Q-complete Frechet space which is WASP (MDS[gen]) then so

is every Xp.
(4) If X is a bound covering Frechet space which is ASP (FMDS(genJ) then

so is every Xp.

In 2.3 (3) the Q-completeness ensures that each irp is open.
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3. T H E INHERITANCE OF NORMED SPACE PROPERTIES

The following lemma highlights some facts which are used in the proof Theorems 3.2

and 3.3.

LEMMA 3 . 1 . Let X be a locally convex space with a defining family P; let f
be a continuous convex function on D, a nonempty open convex subset of X; let G
(F) be the set of Gateaux (Frechet) differentiability points of f. For each seminorm
p £ P, let Dp = irp[D]. Let q S P be such that for all p >- q, f = fp o irp where fp

is a continuous convex function on Dp; let Gp (Fp) be the set of Gateaux (Frechet)
differentiability points of fp.

(a) For all p >- q, G = TT"1 [Gp].
(b) Forallpyq, F D TT"1^] .
(c) If X is bound covering, then for all p>- q, F = T^f-Fp].
(d) If A is a Gs subset of Dp, then w"1 [A] is a Gg subset of D.
(e) Let TTj, be open. (If X is bound covering, or complete and Q-complete

this condition is satisfied.) If Ap is a dense set in Dp then ^p1[Ap\ is
dense in D.

(f) Let A C D and suppose that for all p >- q, there is a dense subset Ap of
Dp such that A D ir~x[i4p]. Then A is dense in D.

PROOF: Parts (a), (b), and (c) are simple consequences of the remarks at the
beginning of Section 1; (d) and (e) are immediate from the definitions. It only remains
to establish (f).

Let x G D and let N be a neighbourhood of x. Then there is a p G P such
that x + Bp(e) C N; we may suppose, without loss of generality, that p X q and
x + Bp(e) C D. Since Ap is dense in Dp, (irp(x) + B(e)) f"l Ap is nonempty (where
B(e) denotes the norm ball of radius e of p in Xp). But

JV n A D {x + Bp(e)) n A

so N D A is nonempty and A is dense in D. D

Since Banach spaces are clearly bound covering, Theorem 3.2 is a generalisation
of the well known result that the set of Frechet differentiability points of a continuous
convex function with domain in a Banach space is a Gg set.

THEOREM 3 . 2 . If f is a continuous convex function on an open convex subset
D of a bound covering space, the set of points of Frechet differentiability F of f is a
Gg set in D.
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PROOF: From Theorem 2.2, there exists q € P such that / = / , o irq where / , is
a continuous convex function on Dg — Vq[D]. Since Xq is a normed space, the set Fq

of points of Frechet differentiability of / , is a Gg subset of Dq ([5, p.155]), and from
3.1(c) and (d), F = ir'1^} is a Gs subset of D. D

In the statements of (2) and (3) of Theorem 3.3 below, "differentiability space"
may be replaced by any of the previously defined classes.

THEOREM 3 . 3 .

(1) If X is a locally convex space which has a defining family P such that
for ai/ p e P, Xp is GDS, MDS, FDS, FMDS, WASP[s] or MDS[s], then
so is X.

(2) If X is bound covering, with defining family P such that for all p £ P,
Xp is a differentiability space, then X is a differentiability space of the
same type.

(3) If X is complete and Q-complete, with defining family P such that for
all p G P, Xp is a differentiability space other than ASP[s] or FMDS[s],
then X is a differentiability space of the same type.

PROOF: Let / be a continuous convex function on £>, a nonempty open convex
subset of X. By Theorem 2.2 there is a q € P such that for all p >- g, f = fp o irp

where fp is a continuous convex function on Dp — np[D]. The theorem then follows
from the parts of Lemma 3.1 indicated.

In (1), (2) and (3), GDS and MDS follow from (a) and (f); FDS and FMDS from
(b) and (f); WASP[s] and MDS[s] from (a), (d) and (f).

For (2) and (3), ASP and FMDS[gen] follow from (b), (d) and (e); WASP and
MDS[gen] from (a), (d) and (e).

For (2), ASP[s] and FMDS[s] follow from (c), (d) and (e). D

It is interesting to note that in Theorem 3.3, WASP[s] needs weaker hypotheses
than WASP.

Theorem 3.3 permits us to use theorems which are well known for Banach or
normed spaces to deduce results for locally convex spaces. In Theorem 3.4, we show
that it suffices to test all continuous gauges; "Q-complete" is in fact a superfluous
hypothesis but a proof is outside the scope of this paper, since results here are derived
from Banach space theory.

THEOREM 3 . 4 . For a Q-complete space X, MDS and GDS are equivalent; if X
is also bound covering, FMDS, FDS and ASP are equivalent.

PROOF: If X is FMDS, then for all p, so is Xv (2.3 (2)). Since each Xp is a
Banach space, each Xp is FDS [5, p.158]. From 3.3 (1) and 3.2, X is ASP.
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The MDS proof is similar, using the equivalence of MDS and GDS for Banach
spaces [11, 6.6]. D

THEOREM 3 . 5 . If X is a. bound covering, Q-complete space, with a defining
family P such that for all p £ P, p is Frechet differentiable everywhere except on
kerp, then X is ASP.

PROOF: This follows from 3.3 (2) and the fact that if the norm on a Banach space
is Frechet differentiable o n X \ {0} then the space is ASP [5, p.170]. D

The following example shows that a large class of spaces is both Q-complete and
bound covering.

EXAMPLE 3.6. For a completely regular space 5 , denote by C(S) the space of contin-
uous functions on S with the topology of compact convergence, that is, the topology
generated by the family p^ of seminorms, where

pA(z) = sup|a;(i)|
teA

and A ranges over all compact subsets of 5 . There is no loss of generality in assuming
5 to be completely regular: for any topological space X there is a completely regular
5 such that C(X) is linearly isomorphic to C(S) [6, 3.9].

Using [7, p.142 Theorem 11] and the method of proof of the Tietze extension
theorem (see for example [4, p.149]), one can show that: if 5 is a completely regular
topological space, A a compact subset of 5 and f:A—> [—c,c\ a continuous function,
then there is a continuous f:S—* [—c,c] such that /\A = f.

This means that the map 7: C(5)/kerp^ —» C{A) defined by

( = x\A

is a linear isomorphism, so that we can identify C(S)p with C(A). Since A is compact,
C(A) with the topology generated by p& (that is, the sup norm topology) is a Banach
space: it follows that C(S) is Q-complete.

Let M = {x£ C(S) : {Vt G 5)(|z(t)| < 1)}; M is bounded in X. If B is the unit
ball in C(A), the version of the Tietze extension theorem given above implies that
7Tp̂ [M] D B. It follows that irPA is bound covering and C(S) is a bound covering
space.

THEOREM 3 . 7 . For S completely regular, C(S) is a differentiability space if for
all compact subsets A of S, C(A) is a differentiability space of the same type. The
reverse implication holds except for WASP[s], MDS[s], WASP and MDSfgen]; the last
two are true with the additional hypothesis that C(S) be a Frechet space.
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PROOF: Since C(S) is bound covering, the first part is immediate from 3.3 (2).
The converse follows from 2.3, noting that by 3.2, FDS, ASP and ASP[s] coincide, as
do FMDS, FMDS[gen] and FMDS[s]. D

Namioka and Phelps [10] have shown that for S compact, C(S) is ASP if and only
if 5 is dispersed. The following corollary generalises their result.

COROLLARY 3 . 8 . For S completely regular, C(S) is ASP if and only if every
compact subset of S is dispersed.
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