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GRAPHS AND k-SOCIETIES(Y)

BY
PAVOL HELL AND JAROSLAV NESETRIL(?)

A graph G is a couple (X, R) where X is a set, R< X x X. If G is an undirected
graph without loops (R a symmetric irreflexive relation), we can interpret G as a
couple (X, R), where R is a set of two-element subsets of X, i.e. R #(X). This
interpretation is generalized in the notion of society.

A society 9 is a couple (X, R), where R=P(X); a k-society is a society (X, R)
with |4| =k for each 4 € R.

Let # be the category of all graphs and all compatible mappings. Compatible
mappings between two societies are defined similarly to those between two graphs
(mapping f: X — Y is a compatible mapping of the society ¥=(X, R) into the
society £ =(Y, S) if A € R=f(A) € S). Let the category of all k-societies and all
their compatible mappings be ;. Obviously &, is the category of all undirected
graphs without loops, hence &, # Z. Let & be the category of all societies and all
compatible mappings.

In [2] a full embedding of Z into &, is given, which is of course also a full em-
bedding of Z into <. In this paper we give a full embedding #Z — &, for every
k >2, thus we prove that each category &, (k>2) is binding (cf. [3]). The problem
was suggested by Z. Hedrlin.

For the notions and definitions concerning graphs, see [1].

Our method is based on the idea that, relative to compatible mappings, certain
graphs behave like k-societies.

Let k>2 be fixed from now on.

Let ¥=(X, R) be a k-society. A graph ¥*=(X, R*) is naturally associated with
9, where

R*={(a, b) | a # b and there exists an 4 € R such that ae 4, b € 4}.

Obviously the graph &* satisfies the following conditions:
(i) @* is undirected and has no loops,
(*) (i) each edge of ¥* belongs to some complete k-subgraph of ¥* (complete
k-subgraph is a complete subgraph of cardinality k).
Let C(¥, o) be the set of all compatible mappings ¥ — 5#; let us write C(¥)
instead of C(¥, %).

Received by the editors May 8, 1969.

(*) Sometimes, instead of society (k-society), the words set-system (uniform set-system)
or hypergraph are used.

(?) Part of this paper was written while the authors were supported by the National Re-
search Council of Canada.
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LemMMA 1. Let 9=(X, R), # =(Y, S) be k-societies. Then C(9, # )<= C(F*, H*).

Proof. Take fe C(9, ). If (a, b) € R* then there exists an 4 € R such that
a,be A. We have f(4)=B € S, hence f(a) #f(b), (f(a), f(b)) € S*.

In general, having a graph G with the property (*) we can find several societies
% such that ¥*=G. Among those there is always a society ¢ with C(%)=C(G).

A set A< X in a graph G=(X, R) is called a carrier of a complete subgraph of
G if (4, RN A x A) is a complete graph.

Let G=(X, R) be a graph with (*). We define the society G°=(X, R°) as follows:

A € R° if and only if A4 is the carrier of a complete k-subgraph of G. Indeed we
have (G°)* =G, but not necessarily (9*)°= 4.

LemMmA 2. Let G=(X, R), H=(Y, S) be graphs satisfying (*). Then C(G, H)
=C(G°, H°).

Proof. C(G, H)>C(G°, H°) by Lemma 1. Let fe C(G, H), A€ R°. Since A is
the carrier of a complete k-subgraph of G and fis compatible, f(4) is the carrier of
a complete k-subgraph of H, f(A4) € S°.

In other words: if we denote the category of all graphs satisfying (*) and all
their compatible mappings by &%, then we can define a functor @,: &% — &, by
D,(G)=G", O,(f)=f and by Lemma 2, ®, is a full embedding of &% into &,. Thus
for the construction of a full embedding of £ into &, it suffices to find a full em-
bedding @, of Z into &% Then @, o @, will be the desired embedding.

E. Mendelsohn in [3] gives a general construction, which in slight modification
will provide us with the full embedding ®,. He defines the $ip- soucin (Sip-product)
(X,R,4,B)=(Y,S) of a ‘§ip’ (X, R, 4, B) (i.e. graph (X, R) with distinguished
two isolated subsets 4, B and an isomorphism 7 of (4, R N A x A) onto (B, RN B
x B)) and an arbitrary graph (Y, S). Intuitively the Sip-product is obtained by
replacing every arrow of the graph (7Y, S) with the starting point @ and endpoint b
by a copy of the graph (X, R), where the set 4 ‘replaces’ the point @ and B ‘re-
places’ b. Isolated points of (Y, S) are replaced by copies of (4, R N A x A) by
this definition, and loops by graphs (X, R, 4, A), where (X, R, 4, A) is the
quotient graph of (X, R, 4, B) under the equivalence generated by x~y<-x€ 4,
y € B and i(x)=y. Let 5 denote the natural compatible mapping (X, R, 4, B) onto
(X, R, 4, A).

If fe C(Y,S), (Y, S") then one can define a mapping f*: (X, R, 4, B) * (Y, S)
—(X,R,A,B)* (Y, S") by

f*(@ ) = (@, f(»)] foraed,yeY
(G, 9D = [(x, *(s)] forxe X, seS,
where 2/((c, d))=(f(c), f(d)) Obviously
f*eC((X, R, 4, B)* (Y, S), (X, R, A, B)* (Y", S")),

furthermore Izky,s)= l(X,R,A,B),(Y,S) and (f° g)* =f* o g*.
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A §ip (X, R, A, B) is strongly rigid (cf. [3]) if and only if for every graph (Y, S)

(1) feC((4, RN Ax A), (X, R, 4, B) (Y, S))=f(@)=][(a, y)] for some fixed
yey;

2) fe C((X, R), (X, R, A, B) * (Y, S))=-either f(x)=[(x, 5)] for a fixed se S,
or f(x)=[n(x), s] for a fixed s € S, (here S, is the irreflexive part of S, Sy;=S—S,);

(3) fe C((X, R, 4, A), (X, R, 4, B) x (Y, S))=f([x],)=[(x, 5)] for a fixed s € S,.

E. Mendelsohn shows that if (X, R, 4, B) is strongly rigid, then the correspond-
ence O@(f)=f* is an isomorphism between C((Y, S)) and C((X, R, 4, B) * (Y, S))
(Theorem 1 in [3]). By the same argument one can prove the following lemma.

LemMA 3. If (X, R, A, B)is strongly rigid, then for any g € C((X, R, 4, B) % (Y, S),
(X, R, A, B) (Y, S")) there exists an fe C(Y, S), (Y’, S")) such that f*=g.

If we define the functor @, by @,(G)=(X, R, 4, B) * G and D,(f)=f* then we
clearly have a full embedding Z — &%, provided the §ip (X, R, A, B) is strongly
rigid and satisfies property (*) (if the Sip satisfies (*), then so do all its §ip-products).

Let us first introduce some remarks about undirected graphs without loops.

If G is such a graph we denote its chromatic number by x(G). For every com-
patible mapping f, x(f(G)) = x(G). Thus every compatible mapping maps a complete
n-graph onto a complete n-graph.

We define |G| to be | X| for G=(X, R), and write 1 for 1x. W={K}, K, . .., K;}
is an n-complete path of length r if n>3 and Kj, . . ., K, are complete n-graphs such
that |K; N K;,,|=n—1fori=1,2,...,r—1.

Two points x, y are joined by an n-complete path in the graph G if there exists
an n-complete path W={Kj, ..., K;} such that each K; is a subgraph of G and
xeK;,yeKk,.

Let x, ye G, x#y. Let d,(x, y) denote the length of a shortest #n-complete path
in G joining x and y if such a path exists, d,(x, y)=0 otherwise.

Remember that now we are considering undirected graphs without loops.

LemMA 4. Let fe C(G, H). If d\(x, y)>0 and f(x)#f(), then d,(f(x), f(¥))>0
and d,(f(x), f(¥)) S dn(x, y).

The proof can be done by induction.

In particular: if d,(x, y)>0 for any two points in G, then there is no compatible
mapping of G onto a graph with cut point.

A graph G is called rigid if C(G)={1¢}.

Now we start to construct a strongly rigid $ip satisfying (*). Let m, n, ! be natural
numbers. Denote by I3, the following graph (X, R): X={l, 2,..., m+1},
(i, /) € R <> either O< |i—j|<n—1ori=1,j2m+1—lorj=1,i>m+1—-1 Call the
triple m, n, [ admissible if n>/+2 and m is a nontrivial multiple of ».

LeMMA S. If m, n, l is admissible then 17, is rigid.

Proof. Note that every edge of I, belongs to a complete (/+2)-graph, further-

more d,(x, y)>0 for any x, y € I*; and even each edge except {(1, m+1), (1, m), . . .,
6—C.M.B.
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(1, m+1—1)} belongs to a complete n-graph. It is easy to check that y(I;*)=n+1,
while chromatic number of each proper subgraph of I™; is <n+1. Thus every
compatible mapping I, — I, is an automorphism (since it is onto I*). Let h
be an automorphism of I;*,. The set of mentioned exceptional edges is mapped onto
itself, thus A(1)=1, and an easy argument concerning degrees (deg h(x)= deg x
for any automorphism 4) yields A(m+1)=m+1, h(m)=m,..., (m+1-1)
=m+1—1 Each point i,n<i<m+2—n is then fixed (i.e. A(i)=i) by Lemma 4
since f(i)<i=>d,(m+1, f())>d,(m+1,i) and f(@i)>i=d,(1, f(@)>d,(1,i). The
remaining points are fixed again—it suffices to consider their degrees. Thus 4 is
the identity.

Define the Sip S(m, m', I, I', n)=(X, R, A, B) as follows:

Y = {dl, Agy ey a,,,+1} 0 {bl, b2, ooy bm+1} \.J {hh h2, veoy hm/+1}
R ={(ai, a)) | (i,j) is an edge in I} O
{(b, b)) | (3, ) is an edge in I} U
{(s, b)) | (i, ) is an edge in I3}

and (X, R) = (X, R)/~
where the equivalence ~ is defined by a;~A, 41, A s1-20~b1.

We put A={[ai],..., [@n+1]}, B={[b1],..., [bn+1]} and the isomorphism
i: a;— by Thus our §ip is formed from two copies of I*; and one copy of I so
that the point m'+1 from the copy of I, is identified with the point 1 from the

first copy of I, and the point m'+1—2n from I, is identified with the point 1
from the second copy of I%,.

(X,R,A,B)
Note that (4, RN Ax A)~I"~(B, RN Bx B).
Obviously (X, R, 4, 4) has only one copy of I;*; and in the copy of I, the points
m'+1 and m'+1—2n are identified. Let us denote by J.=I",./~ where m’'+1
~m' +1-2n.

m+l=m'+1-2n

(X,R,4,4)
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LEMMA 6. Let m', n, I’ be admissible, let m’/n>4. Then

(1) Jm. is rigid

(2) The natural mapping &: I, — I,/ ~ is the only f € C(I7., J1™) with f(m’ +1)
=f(m'+1-2n)

(3) CUm, I =4

4) If m<m’—2n and m, n, l is admissible, then C(IT,, J".)=¢.

Proof. (1) The graph J™. has vertices [1], [2],..., [m'+1—2n]=[m'+1],
[m'+2-2n],... ,[m'—1], [m']. Let J be the full subgraph of J™*;. on the vertices
[11,..., [ +1-2n].

One can easily note that J is n+ 1 chromatic, that all its subgraphs have chromatic
numbers < n+ 1, and moreover that each n+ 1 chromatic subgraph of J;. contains
J.

This allows us to see that every f e C(J*;) maps J onto J and (considering degrees
in J) that f]J is either the identity, or the mapping which interchanges the vertices
[i] and [’ +2—2n—i]. In both cases the set {[m’'+1-1'], [n'+2-1I),..., [m']} is
mapped into itself (as the set of common neighbours of [1] and [m’+1—2#n]) and
thus the complete n-graph K on the vertices [m'+2—n)], [n'+3—n],..., [m' +1]
is mapped onto a complete #-graph containing the vertices [m'+1~1'], [m'+2-1],
..., [m'] and [m' +1]=[m"'+1-2n] or [1] (remember n>1I'+2). Since there is no
complete n-graph containing both [m'] and [1] in J;™. the interchanging [il«[m’
+2—1i] is impossible (thus f/J=1;) and f(K)=K. The vertex [m'+2—n]=f([m’

+2—n]) because it is the vertex with d,-distance from [1] smaller than any other
point of K. The rest of the argument is similar to Lemma 5.

(2) Obviously £=»/I;". for n from the definition of the §ip. Let fe C(I"., J™)
such that f(m' +1)=f(m'+1—2n). Then we can define a mapping j: J™. — J™. by
i([x)=f(x); j is compatible and f=¢ o j. Thus by (1) f=¢.

(3) Since x(J")=n+1 and chromatic numbers of all proper subgraphs of
I™, are < n+1, any compatible f maps J;";, onto ", which contradicts the fact
that |J7| < |-

@ If m<m’'—2n then |I|=m+1<m’'+1—2n, while all the subgraphs of
Jm. with the cardinality less than m’ + 1 —2n have their chromatic numbers < n+1.

LEMMA 7. If m,n, I and m’, n, I’ are admissible and 1<1' then C(I., I™)=¢.

Proof. Again the chromatic numbers reasoning implies that each fe C(I;., I™)
is a mapping onto; on the other hand the edge (1, m+1) does not belong to any
complete I’ +2 graph, while all edges of I";. do so.

LEMMA 8. Let the triples m, n, land m’, n, I be admissible. If m'|n>4, m<m’ —2n,
and l< ', then the Sip S(m, m', I, ', n) is strongly rigid.

Instead of a very formal proof we rather give one somewhat more intuitive. The
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$ip-product S(m, m’, I, I', n) * (Y, S) consists of copies of I, I, and J. con-
nected only by ‘cut points’ as in the following example:

‘,Q

(1.5)

(=]

S(m,m’ LI ;n)*(Y,S)

Let us verify the conditions in definition of the strongly rigid $ip.

(1) Any compatible mapping of (4, RN AxA)=I", into S(m, m', 1,1, n)
* (Y, S) maps I into a graph without cutpoints, thus a subgraph of I, or
J, or I, The second case is impossible [by Lemma 6 (4)], and therefore, also the
first case is impossible (if f: I;% — I is compatible, then £ o f is compatible [by
Lemma 6 (2)]) and by Lemma 5 we are done. ‘

(2) The two copies of I in (X, R, 4, B) can either be mapped onto two different
copies of I;}; in the Sip-product and then I is mapped onto the copy of I
spanning them and we are again done by Lemma 5, or they can be mapped onto
one copy of I, and, by Lemma 5, the points m’+1 and m’+1—2n from I, are
mapped onto one point, thus /%, cannot be mapped into I, by Lemma 7 and by
Lemma 6 (2), we are finished.

(3) Is again obvious from Lemmas 6 (1) and (3), and 7 with 6 (2).

THEOREM. Let k> 2. There exists a full embedding of the category of all graphs into
the category of all k-societies (i.e. # — %},).
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Proof. The Sip SQ2(k+2), 5(k+2), k—1, k, k+2) is strongly rigid by Lemma 8,
and obviously satisfies (*).

ReMARKS and CoOROLLARIES. (1) For every graph G we have constructed a
k-society ¢ with C(¢)~ C(G) (and |9 |=|G|).

Using results from references [2] and [5]:

(2) Each ¥, is binding, in particular for every monoid S? there is a k-society ¥
such that C(%) is isomorphic to S*.

(3) For every cardinal o there is a rigid k-society ¢ such that |¢|>«. Rigid
k-society is defined similarly as rigid graph, i.e. C(9)={lg}.

Finally let us note that

(4) The full embedding @, is a realization (for definition see [4]) of &% in L.
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