Neutron Stars and Pulsars: Challenges and	Opportunities after 80 years
Proceedings IAU Symposium No. 291, 2012	© International Astronomical Union 2013
J. van Leeuwen, ed.	doi:10.1017/S1743921312023551

Stochastic and continuous gravitational wave analysis pipelines for pulsar timing array data

Justin Ellis¹, Fredrick Jenet², Xavier Siemens³ and Maura McLaughlin⁴

¹University of Wisconsin Milwaukee, United States email: justin.ellis18@gmail.com ²University of Texas, Brownsville email: fredrickajenet@gmail.com ³University of Wisconsin, Milwaukee email: siemens@gravity.phys.uwm.edu ⁴West Virginia University email: maura.mclaughlin@mail.wvu.edu

Abstract. The Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration aims to detect gravitational waves (GWs) through the precise timing of millisecond pulsars. GWs will come in the form of a stochastic background, continuous sources and burst sources. Here we will review recent progress on the development of data analysis pipelines aimed at the detection of a stochastic background as well as continuous sources. We will introduce the Optimal Statistic and F-Statistic methods that are used in the stochastic and continuous pipelines, respectively. Both pipelines are fully functional on real pulsar timing data and take into account the timing models for each pulsar. Finally, we will present the efficacy of each pipeline on locally simulated data as well as data from the 2012 IPTA data challenge.