A HYPERSTABILITY RESULT FOR THE CAUCHY EQUATION

JANUSZ BRZDEK

(Received 12 October 2012; accepted 20 May 2013; first published online 22 August 2013)

Abstract

We prove a hyperstability result for the Cauchy functional equation $f(x+y)=f(x)+f(y)$, which complements some earlier stability outcomes of J. M. Rassias. As a consequence, we obtain the slightly surprising corollary that for every function f, mapping a normed space E_{1} into a normed space E_{2}, and for all real numbers r, s with $r+s>0$ one of the following two conditions must be valid: $$
\begin{aligned} & \sup _{x, y \in E_{1}}\|f(x+y)-f(x)-f(y)\|\|x\|^{r}\|y\|^{s}=\infty, \\ & \sup _{x, y \in E_{1}}\|f(x+y)-f(x)-f(y)\|\|x\|^{r}\|y\|^{s}=0 . \end{aligned}
$$

In particular, we present a new method for proving stability for functional equations, based on a fixed point theorem.

2010 Mathematics subject classification: primary 39B62; secondary 47H10, 39B82, 47H14, 47J20.
Keywords and phrases: hyperstability, Cauchy equation, additive function, restricted domain.

1. Introduction

The main motivation for the investigation of the stability of functional equations was given by Ulam in 1940 in his talk at the University of Wisconsin (see [17, 36]), where he presented the following unsolved problem, among others.

Let G_{1} be a group and $\left(G_{2}, d\right)$ a metric group. Given $\varepsilon>0$, does there exist $\delta>0$ such that if $f: G_{1} \rightarrow G_{2}$ satisfies

$$
d(f(x y), f(x) f(y))<\delta
$$

for all $x, y \in G_{1}$, then a homomorphism $T: G_{1} \rightarrow G_{2}$ exists with

$$
d(f(x), T(x))<\varepsilon
$$

for all $x, y \in G_{1}$?

[^0]For more information on this area of research and further references, see [18, 21]. Let us only mention that the following theorem seems to be the most classical result concerning stability of the Cauchy equation

$$
\begin{equation*}
T(x+y)=T(x)+T(y) \tag{1.1}
\end{equation*}
$$

Theorem 1.1. Let E_{1} and E_{2} be two normed spaces, with E_{2} complete. Take $c \geq 0$ and let $p \neq 1$ be a fixed real number. Let $f: E_{1} \rightarrow E_{2}$ be a mapping such that

$$
\|f(x+y)-f(x)-f(y)\| \leq c\left(\|x\|^{p}+\|y\|^{p}\right), \quad x, y \in E_{1} \backslash\{0\} .
$$

Then there exists a unique solution $T: E_{1} \rightarrow E_{2}$ of (1.1) with

$$
\|f(x)-T(x)\| \leq \frac{c\|x\|^{p}}{\left|1-2^{p-1}\right|}, \quad x \in E_{1} \backslash\{0\}
$$

Theorem 1.1 is due to Aoki [1] for $0<p<1$ (see also [31]); Gajda [16] for $p>1$; Hyers [17] for $p=0$; and Th. M. Rassias [32] for $p<0$ (see [33, page 326] and [4]). Quite often the result contained in the theorem is described as the Hyers-UlamRassias stability of the Cauchy equation (1.1). It has motivated J. M. Rassias [29, 30] (see also [21, pages 50-51]) to prove the following theorem.

Theorem 1.2. Let E_{1} and E_{2} be two normed spaces, with E_{2} complete. Take $c \geq 0$ and let p, q be real numbers with $p+q \in[0,1)$. Let $f: E_{1} \rightarrow E_{2}$ be an operator such that

$$
\|f(x+y)-f(x)-f(y)\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in E_{1} \backslash\{0\} .
$$

Then there exists a unique solution $T: E_{1} \rightarrow E_{2}$ of (1.1) with

$$
\|f(x)-T(x)\| \leq \frac{c\|x\|^{p+q}}{2-2^{p+q}}, \quad x \in E_{1} \backslash\{0\}
$$

We provide a complement for this result in the case $p+q<0$; moreover, we do so on a restricted domain. Namely, we prove the following theorem (in which \mathbb{N} denotes the set of positive integers).

Theorem 1.3. Let E_{1} and E_{2} be normed spaces, and $X \subset E_{1} \backslash\{0\}$ be nonempty. Take $c \geq 0$ and let p, q be real numbers with $p+q<0$. Assume that there exists a positive integer m_{0} with

$$
\begin{equation*}
n x \in X, \quad x \in X, n \in \mathbb{N}, n \geq m_{0} . \tag{1.2}
\end{equation*}
$$

Then every operator $g: E_{1} \rightarrow E_{2}$, satisfying the inequality

$$
\begin{equation*}
\|g(x+y)-g(x)-g(y)\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in X, x+y \in X, \tag{1.3}
\end{equation*}
$$

is additive on X, that is, fulfils the condition

$$
g(x+y)=g(x)+g(y), \quad x, y \in X, \quad x+y \in X
$$

Clearly the statement of Theorem 1.3 is much stronger than that of Theorem 1.1. Using the terminology proposed in [26], we name the property of equation (1.1) described in Theorem 1.3ϕ-hyperstability on X, with $\phi(x, y)=c\|x\|^{p}\|y\|^{q}$ for $x, y \in X$.

Note that, as a consequence of Theorem 1.3, we obtain at once the slightly surprising corollary that every function f mapping a normed space E_{1} into a normed space E_{2} is either additive (that is, $f(x+y)=f(x)+f(y)$ for $x, y \in E_{1}$) or satisfies the condition

$$
\sup _{x, y \in E_{1}}\|f(x+y)-f(x)-f(y)\|\|x\|^{r}\|y\|^{s}=\infty
$$

for all real numbers r, s with $r+s>0$.

2. Auxiliary results

The method of proof of Theorem 1.3 is based on a fixed point theorem in [5, Theorem 1] (see also [6, Theorem 2]). Our method can be considered to be an extension of the investigations in [2, 7, 22-24, 27, 28]. (For a survey on this subject, see [8].)

We need the following hypotheses. (Here, \mathbb{R}_{+}stands for the set of nonnegative reals and A^{B} denotes the family of all functions mapping a set $B \neq \emptyset$ into a set $A \neq \emptyset$.)
$(\mathrm{H} 1) X \neq \emptyset$ is a set, E_{2} is a Banach space, $f_{1}, \ldots, f_{k}: X \rightarrow X$ and $L_{1}, \ldots, L_{k}: X \rightarrow \mathbb{R}_{+}$. (H2) $\mathcal{T}: E_{2}{ }^{X} \rightarrow E_{2}{ }^{X}$ satisfies

$$
\|\mathcal{T} \xi(x)-\mathcal{T} \mu(x)\| \leq \sum_{i=1}^{k} L_{i}(x)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right)\right\|, \quad \xi, \mu \in E_{2}{ }^{X}, \quad x \in X
$$

(H3) $\Lambda: \mathbb{R}_{+}{ }^{X} \rightarrow \mathbb{R}_{+}{ }^{X}$ is given by

$$
\Lambda \delta(x):=\sum_{i=1}^{k} L_{i}(x) \delta\left(f_{i}(x)\right), \quad \delta \in \mathbb{R}_{+}^{X}, x \in X
$$

We are now in a position to present the fixed point theorem mentioned above.
Theorem 2.1. Let (H1)-(H3) hold and let $\varepsilon: X \rightarrow \mathbb{R}_{+}, \quad \varphi: X \rightarrow E_{2}$ satisfy the conditions

$$
\begin{array}{cc}
\|\mathcal{T} \varphi(x)-\varphi(x)\| \leq \varepsilon(x), \quad x \in X \\
\varepsilon^{*}(x):=\sum_{n=0}^{\infty} \Lambda^{n} \varepsilon(x)<\infty, \quad x \in X .
\end{array}
$$

Then there exists a unique fixed point ψ of \mathcal{T} with

$$
\|\varphi(x)-\psi(x)\| \leq \varepsilon^{*}(x), \quad x \in X
$$

Moreover, ψ is given by

$$
\psi(x):=\lim _{n \rightarrow \infty} \mathcal{T}^{n} \varphi(x), \quad x \in X
$$

3. Proof of Theorem 1.3

Without loss of generality, we can assume that E_{2} is complete, because otherwise we can simply replace E_{2} by its completion. Note that, in view of the assumption that $p+q<0$, we must have $p<0$ or $q<0$. Therefore, it is sufficient to consider only the case where $q<0$.

Let f denote the restriction of g to the set X. Fix $m \in \mathbb{N}$ with $m \geq m_{0}$ and

$$
m^{p+q}+(1+m)^{p+q}<1
$$

Taking $y=m x$ in (1.3),

$$
\begin{equation*}
\|f((m+1) x)-f(x)-f(m x)\| \leq c m^{q}\|x\|^{p+q}, \quad x \in X . \tag{3.1}
\end{equation*}
$$

Define operators $\mathcal{T}: E_{2}{ }^{X} \rightarrow E_{2}{ }^{X}$ and $\Lambda: \mathbb{R}_{+}{ }^{X} \rightarrow \mathbb{R}_{+}{ }^{X}$ by

$$
\begin{aligned}
\mathcal{T} \xi(x):=\xi((m+1) x)-\xi(m x), & x \in X, \quad \xi \in E_{2}^{X}, \\
\Lambda \delta(x):=\delta((m+1) x)+\delta(m x), & x \in X, \delta \in \mathbb{R}_{+}^{X} .
\end{aligned}
$$

Then Λ has the form described in (H3) with $k=2, f_{1}(x)=(m+1) x, f_{2}(x)=m x$, $L_{1}(x)=L_{2}(x)=1$ for $x \in X$ and (3.1) can be written as

$$
\|\mathcal{T} f(x)-f(x)\| \leq c m^{q}\|x\|^{p+q}=: \varepsilon(x), \quad x \in X
$$

Furthermore, (H2) is also valid.
Since

$$
\varepsilon^{*}(x):=\sum_{n=0}^{\infty} \Lambda^{n} \varepsilon(x) \leq c m^{q}\|x\|^{p+q} \sum_{n=0}^{\infty}\left(m^{p+q}+(m+1)^{p+q}\right)^{n}, \quad x \in X,
$$

we have

$$
\varepsilon^{*}(x) \leq \frac{c m^{q}\|x\|^{p+q}}{1-m^{p+q}-(m+1)^{p+q}}, \quad x \in X .
$$

Hence, according to Theorem 2.1, there is a solution $T_{m}: X \rightarrow E_{2}$ of the equation

$$
\begin{equation*}
T(x)=T((1+m) x)-T(m x) \tag{3.2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\|f(x)-T_{m}(x)\right\| \leq \frac{c m^{q}\|x\|^{p+q}}{1-m^{p+q}-(m+1)^{p+q}}, \quad x \in X \tag{3.3}
\end{equation*}
$$

Moreover,

$$
T_{m}(x):=\lim _{n \rightarrow \infty} \mathcal{T}^{n} f(x) \quad x \in X
$$

Next, it can be easily shown by induction that, for every $x, y \in X$ with $x+y \in X$ and $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$,

$$
\begin{equation*}
\left\|\mathcal{T}^{n} f(x+y)-\mathcal{T}^{n} f(x)-\mathcal{T}^{n} f(y)\right\| \leq c\left(m^{p+q}+(m+1)^{p+q}\right)^{n}\left(\|x\|^{p}\|y\|^{q}\right) \tag{3.4}
\end{equation*}
$$

To this end, it is enough to observe that the case $n=0$ is just (1.3) and, for every $k \in \mathbb{N}_{0}$ and $x, y \in X$ with $x+y \in X$,

$$
\begin{aligned}
& \left\|\mathcal{T}^{k+1} f(x+y)-\mathcal{T}^{k+1} f(x)-\mathcal{T}^{k+1} f(y)\right\| \\
& \quad \leq\left\|\mathcal{T}^{k} f((m+1) x+(m+1) y)-\mathcal{T}^{k} f((m+1) x)-\mathcal{T}^{k} f((m+1) y)\right\| \\
& \quad+\left\|\mathcal{T}^{k} f(m x+m y)-\mathcal{T}^{k} f(m x)-\mathcal{T}^{k} f(m y)\right\|
\end{aligned}
$$

Letting $n \rightarrow \infty$ in (3.4), we obtain that

$$
\begin{equation*}
T_{m}(x+y)=T_{m}(x)+T_{m}(y), \quad x, y \in X, \quad x+y \in X \tag{3.5}
\end{equation*}
$$

Next, we prove that T_{m} is the unique function mapping X into E_{2} that is additive on X and such that

$$
\sup _{x \in X}\left\|f(x)-T_{m}(x)\right\|\|x\|^{-p-q}<\infty
$$

So, suppose that $T_{0}: X \rightarrow Y$ is additive on X and satisfies

$$
\sup _{x \in X}\left\|f(x)-T_{0}(x)\right\|\|x\|^{-p-q}<\infty .
$$

Then there is a positive real constant M with

$$
\begin{equation*}
\left\|T_{m}(x)-T_{0}(x)\right\| \leq M\|x\|^{p+q}, \quad x \in X \tag{3.6}
\end{equation*}
$$

We can easily show by induction that, for each $j \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\left\|T_{m}(x)-T_{0}(x)\right\| \leq M\|x\|^{p+q} \sum_{n=j}^{\infty}\left(m^{p+q}+(m+1)^{p+q}\right)^{n}, \quad x \in X . \tag{3.7}
\end{equation*}
$$

It is enough to note that the case $j=0$ follows from (3.6) and, for each $l \in \mathbb{N}_{0}$,

$$
\left\|T_{m}(x)-T_{0}(x)\right\| \leq\left\|T_{m}((m+1) x)-T_{0}((m+1) x)\right\|+\left\|T_{m}(m x)-T_{0}(m x)\right\|, \quad x \in X,
$$

because T_{m} and T_{0} are solutions to (3.2). Hence, letting $j \rightarrow \infty$ in (3.7), we get $T_{m}=T_{0}$.

Thus we have proved that, for each $m \in \mathbb{N}, m \geq m_{0}$, there exists a unique solution $T_{m}: X \rightarrow Y$ to (3.5) satisfying (3.3). The uniqueness of T_{m} means that

$$
\begin{equation*}
\left\|f(x)-T_{k}(x)\right\| \leq \frac{c n^{q}\|x\|^{p+q}}{1-n^{p+q}-(n+1)^{p+q}} \tag{3.8}
\end{equation*}
$$

for every $x \in X$ and $k, n \in \mathbb{N}, n \geq m_{0}$ and $k \geq m_{0}$. In fact, if $k, n \in \mathbb{N}, n \geq k \geq m_{0}$, then

$$
\left\|f(x)-T_{n}(x)\right\| \leq \frac{c n^{q}\|x\|^{p+q}}{1-n^{p+q}-(n+1)^{p+q}} \leq \frac{c k^{q}\|x\|^{p+q}}{1-k^{p+q}-(k+1)^{p+q}}, \quad x \in X
$$

whence $T_{n}=T_{k}$, which yields (3.8).
Fixing k and letting $n \rightarrow \infty$ in (3.8), we get $f=T_{k}$. This implies that f is additive on the set X.

4. Final remarks

We end the paper with some comments and corollaries.
Remark 4.1. There arises a natural question: when, for $T_{0}: E_{1} \rightarrow E_{2}$ additive on $X \subset E_{1}$, is there an additive $T: E_{1} \rightarrow E_{2}$ with $T(x)=T_{0}(x)$ for $x \in X$? This is the case when X is a subsemigroup of the group ($E_{1},+$) (see [25, Theorem 1.1, Ch. XVIII]). Some further information on this issue can be found in [34, Ch. 4]; an example of the extension procedure yielding such a result is provided in [35, pages 143-144].

Theorem 1.3 yields the following two simple corollaries, which correspond to the results in [3, 9-13, 15, 19] on the inhomogeneous Cauchy equation (4.2) and the cocycle equation (4.3).
Corollary 4.2. Let E_{1} and E_{2} be normed spaces, $X \subset E_{1} \backslash\{0\}$ be nonempty, $G: X^{2} \rightarrow$ E_{2}, and $G\left(x_{0}, y_{0}\right) \neq 0$ for some $x_{0}, y_{0} \in X$ with $x_{0}+y_{0} \in X$. Assume that (1.2) holds with some $m_{0} \in \mathbb{N}$ and there are real p, q and $c>0$ such that $p+q<0$ and

$$
\begin{equation*}
\|G(x, y)\| \leq c\|x\|^{p}\|y\|^{q}, \quad x, y \in X, x+y \in X \tag{4.1}
\end{equation*}
$$

Then the functional equation

$$
\begin{equation*}
g_{0}(x+y)=g_{0}(x)+g_{0}(y)+G(x, y), \quad x, y \in X, x+y \in X \tag{4.2}
\end{equation*}
$$

has no solutions in the class of functions $g_{0}: X \rightarrow E_{2}$.
Proof. Let $g_{0}: X \rightarrow E_{2}$ be a solution to (4.2). Define $f: E_{1} \rightarrow E_{2}$ by $f(x)=g_{0}(x)$ for $x \in X$ and $f(x)=0$ for $x \in E_{1} \backslash X$. Then (1.3) holds and consequently, by Theorem 1.3, f is additive on X, which means that $G\left(x_{0}, y_{0}\right) \neq 0$. This is a contradiction.

Corollary 4.3. Let E_{1} and E_{2} be normed spaces, $X \subset E_{1} \backslash\{0\}$ be nonempty, $G: E_{1}{ }^{2} \rightarrow$ E_{2} satisfy the cocycle functional equation

$$
\begin{equation*}
G(x, y)+G(x+y, z)=G(x, y+z)+G(y, z), \quad x, y, z \in E_{1}, \tag{4.3}
\end{equation*}
$$

and $G(x, y)=G(y, x)$ for $x, y \in E_{2}$. Assume that (1.2) holds with some $m_{0} \in \mathbb{N}$ and there are real p, q and $c>0$ such that $p+q<0$ and (4.1) holds. Then $G(x, y)=0$ for every $x, y \in X$ with $x+y \in X$.

Proof. It is well known (see [14] or [20]) that G is coboundary, which means that there exists $g: E_{1} \rightarrow E_{2}$ such that $G(x, y)=g(x+y)-g(x)-g(y)$ for $x, y \in E_{1}$. This means that $g_{0}: X \rightarrow E_{2}$, given by $g_{0}(x):=g(x)$ for $x \in X$, is a solution to (4.2). So Corollary 4.2 yields the result.

References

[1] T. Aoki, 'On the stability of the linear transformation in Banach spaces', J. Math. Soc. Japan 2 (1950), 64-66.
[2] J. A. Baker, 'The stability of certain functional equations', Proc. Amer. Math. Soc. 112 (1991), 729-732.
[3] C. Borelli Forti, 'Solutions of a nonhomogeneous Cauchy equation', Radovi Mat. 5 (1989), 213-222.
[4] D. G. Bourgin, 'Classes of transformations and bordering transformations', Bull. Amer. Math. Soc. 57 (1951), 223-237.
[5] J. Brzdęk, J. Chudziak and Zs. Páles, 'A fixed point approach to stability of functional equations', Nonlinear Anal. 74 (2011), 6728-6732.
[6] J. Brzdęk and K. Ciepliński, 'A fixed point approach to the stability of functional equations in non-Archimedean metric spaces', Nonlinear Anal. 74 (2011), 6861-6867.
[7] L. Cădariu and V. Radu, 'Fixed point methods for the generalized stability of functional equations in a single variable', Fixed Point Theory Appl. 2008 (2008), 15 pages; Article ID 749392.
[8] K. Ciepliński, 'Applications of fixed point theorems to the Hyers-Ulam stability of functional equations-a survey', Ann. Funct. Anal. 3 (2012), 151-164.
[9] T. M. K. Davison and B. Ebanks, 'Cocycles on cancellative semigroups', Publ. Math. Debrecen 46 (1995), 137-147.
[10] B. Ebanks, 'Generalized Cauchy difference functional equations', Aequationes Math. 70 (2005), 154-176.
[11] B. Ebanks, 'Generalized Cauchy difference equations. II', Proc. Amer. Math. Soc. 136 (2008), 3911-3919.
[12] B. Ebanks, P. L. Kannappan and P. K. Sahoo, 'Cauchy differences that depend on the product of arguments', Glas. Mat. 27(47) (1992), 251-261.
[13] B. Ebanks, P. Sahoo and W. Sander, Characterizations of Information Measures (World Scientific, Singapore, 1998).
[14] J. Erdös, 'A remark on the paper "On some functional equations" by S. Kurepa', Glasnik Mat.-Fiz. Astronom. (2) 14 (1959), 3-5.
[15] I. Fenyö and G.-L. Forti, 'On the inhomogeneous Cauchy functional equation', Stochastica 5 (1981), 71-77.
[16] Z. Gajda, 'On stability of additive mappings', Int. J. Math. Math. Sci. 14 (1991), 431-434.
[17] D. H. Hyers, 'On the stability of the linear functional equation', Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
[18] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables (Birkhäuser, Boston, 1998).
[19] A. Járai, Gy. Maksa and Zs. Páles, 'On Cauchy-differences that are also quasisums', Publ. Math. Debrecen 65 (2004), 381-398.
[20] B. Jessen, J. Karpf and A. Thorup, 'Some functional equations in groups and rings', Math. Scand. 22 (1968), 257-265.
[21] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and its Applications, 48 (Springer, New York, 2011).
[22] S.-M. Jung and T.-S. Kim, 'A fixed point approach to the stability of the cubic functional equation', Bol. Soc. Mat. Mexicana (3) 12 (2006), 51-57.
[23] S.-M. Jung, T.-S. Kim and K.-S. Lee, 'A fixed point approach to the stability of quadratic functional equation', Bull. Korean Math. Soc. 43 (2006), 531-541.
[24] Y.-S. Jung and I.-S. Chang, 'The stability of a cubic functional equation and fixed point alternative', J. Math. Anal. Appl. 306 (2005), 752-760.
[25] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Cauchy's Equation and Jensen's Inequality, 2nd edn. (Birkhäuser, Basel, 2009).
[26] Gy. Maksa and Zs. Páles, 'Hyperstability of a class of linear functional equations', Acta Math. Acad. Paedagog. Nyházi. (N.S.) 17 (2001), 107-112.
[27] M. Mirzavaziri and M. S. Moslehian, 'A fixed point approach to stability of a quadratic equation', Bull. Braz. Math. Soc. (N.S.) 37 (2006), 361-376.
[28] V. Radu, 'The fixed point alternative and the stability of functional equations', Fixed Point Theory 4 (2003), 91-96.
[29] J. M. Rassias, 'On approximation of approximately linear mappings by linear mappings', J. Funct. Anal. 46 (1982), 126-130.
[30] J. M. Rassias, 'On a new approximation of approximately linear mappings by linear mappings', Discuss. Math. 7 (1985), 193-196.
[31] Th. M. Rassias, 'On the stability of the linear mapping in Banach spaces', Proc. Amer. Math. Soc. 72 (1978), 297-300.
[32] Th. M. Rassias, 'On a modified Hyers-Ulam sequence', J. Math. Anal. Appl. 158 (1991), 106-113.
[33] Th. M. Rassias and P. Semrl, 'On the behavior of mappings which do not satisfy Hyers-Ulam stability', Proc. Amer. Math. Soc. 114 (1992), 989-993.
[34] P. K. Sahoo and P. Kannappan, Introduction to Functional Equations (CRC Press, Boca Raton, FL, 2011).
[35] F. Skof, 'On the stability of functional equations on a restricted domain and related topics', in: Stability of Mappings of Hyers-Ulam Type, (eds. Th. M. Rassias and J. Tabor) (Hadronic Press, Palm Harbor, FL, 1994), 141-151.
[36] S. M. Ulam, Problems in Modern Mathematics (Science Editions, John Wiley \& Sons, New York, 1964).

JANUSZ BRZDEK, Department of Mathematics, Pedagogical University, Podchorążych 2, PL-30-084 Kraków, Poland
e-mail: jbrzdek@up.krakow.pl

[^0]: (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

