
A NOTE ON NON-DISTRIBUTIVE SUBLATTICES OF 
DEGREES AND HYPERDEGREES 

S. K. THOMASON 

In (1, §§ 2.3 and 2.4) we proved that certain distributive lattices are 
simultaneously lattice-embeddable in the degrees of recursive unsolvability 
and in the hyperdegrees. Let^f be the non-distributive lattice {0,1, a0l aly...}, 
where at\J a^ = 1 and atr^aj = 0 whenever i ^ j . We shall prove the 
following theorem. 

THEOREM. The lattice ££ is simultaneously lattice-embeddable in the degrees 
and hyperdegrees. 

For A Ç N, let deg (A ) and hyp (A ) be the degree and hyperdegree of A, 
respectively. To prove the theorem we must construct hyperarithmetically 
incomparable sets A0, A\, . . . such that for A = deg, hyp and for all distinct 
i, j : 

(1) A(At) U A(Aj) = A(A0) W A ( 4 0 , 

(2) A(At) r\ A(Aj) exists and equals A(N). 

Now, if each (A u Aj) were a generic pair in the sense of (1), then (2) would 
hold. (For A = hyp, (2) is the same as (1, Theorem 13); for A = deg, the 
proof is similar (cf. 1, Corollary 2 to Theorem 14).) In order that (1) hold, it 
would be sufficient that each A t be the (lower) Dedekind cut of a real num
ber xt and that there be rational numbers ait bt (i G N) with 

^ 0 whenever i 9^ j , 
i bA 

i bj I 

and real numbers s, t such that (i) (xt = ats + bit). 
Thus, we are led to modification of the forcing method of (1). Le t^#* be 

like the language Jzf * of (1, § 1.3) except that only two pairs A0, A0
r and 

Ai, A / of ''generic set constants" are adjoined. Let p be an effective 1-1 
correspondence between N and the rationals, and let D(x) = {p_1(r)| r is 
rational and less than x}. Change the definition of consistent set of conditions 
(1, § 1.3) to require that if p(m) ^ p(n), then not both A*(n, 0) and A ^ m , 1) 
are in the set. Then a set of conditions P determines a closed rational rectangle 
\P\ in the plane (rather than a basic closed set in 2N X 2^). All the remainder 
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of (1, §§ 1.3-1.6) goes through with only the most trivial modifications. Thus, 
it remains only to prove the following lemma. 

LEMMA. Let aubt (i Ç N) be rational numbers such that 

1 | ^ 0 whenever i ^ j . 
Ia3 bj I 

Then there exist reals s, t, x0, Xi, . . . such that (i) (Xi = ats + btt) and such that 
(D(x^, D(XJ)) is a generic pair whenever i < j . 

Proof. Let S0 = T0 = [0, 1]. Given closed rational intervals Sn and Tn, let 
F be the (^)0th sentence of^f *, let i = (n)i, and let j = i + 1 + (n)2. Let P 
be a set of conditions such that \P\ Ç ( a A + biTn) X (djSn + bjTn). Let 
Qo= (/iQ)(Ext(Ç,P, F)) (cf. (1, proof of Theorem 6); in particular, Ço 
extends P , and Ç0 [|- F or Q0 \\- ~F). Let Sn+i and Pw+i be closed rational 
intervals of length less than 1/n with Sn+i C 5n , Pw+i £ Pn, and 

(atSn+i + biTn+i) X (a^5n+i + bjTn+i) C |Q0|. 

Let (5, )̂ be the unique element of PuCS^ X Tn) and xz- = a^ + bit. That 
(D(Xi), D(Xj)) is a generic pair is now evident. 

Note. The sets Ai constructed are all hyperarithmetic in Kleene's 0. If one 
desires only a lattice-embedding of ££ in the degrees, a much more effective 
construction is possible: one approximates (s, t) by rational rectangles, but 
the step from Sn X Tn to Sn+\ X Tn+i is suggested by the ordinary construction 
of two incomparable degrees with greatest lower bound zero. I t may be possible 
to improve this method so as to embed «if as an initial segment of degrees. 
I t is certainly possible to use generalizations of the present methods to embed 
more complicated modular lattices in the degrees and hyperdegrees. 
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