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The main result of this paper is the theorem in the title. Only special cases
of it seem to be known so far. As an application, we obtain a result on the unique
extension of Galois connexions. As a matter of fact, it is only by the use of Galois
connexions that we obtain the main result, in its present generality. We first in-
troduce the notions of join-extensions and completions, ideal-completions in par-
ticular, and corresponding types of mappings.

1. Join-extensions

A subset P of a partially ordered set E is called join-dense in E if each
element xeE is the join of a subset P' <=• P . One may take P' = P O (x]
= {p\peP,p £ x},so that

(1) x = s u p £ P n ( x ] ,

for each xeE. Then E is called a join-extension of P. By virtue of (I), E then
becomes order-isomorphic with its canonical image

(2) E = { P n ( x ] | x e £ } .

For # = E, we have

(3) P<=^

where / — the canonical image of the least join-extension P — denotes the family
of all principal lower ends (principal ideals) (p]P = {p' | p' e P, p' g p), &{P) —
the canonical image of the largest join-extension — the family of all lower ends
(unions of principal lower ends). Note that each family # with the property (3) is
an E, for a unique — up to natural isomorphism over P —-join-extension £ of P.

406

https://doi.org/10.1017/S1446788700018048 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018048


[2] Join-completion of a partially ordered set 407

We will call this the #-(join-) extension of P. E is complete if # = E is a closure
family over P. In this case, we call E a join-completion, more specifically, the *&-
(join-) completion of P.

Let now P and Q be partially ordered sets, ^ the canonical image of a join-
extension of P. A mapping cf> :P -*Q is called a ^-homomorphism if, for each
q e Q, the inverse image of the principal ideal (q] of Q belongs to <€,

(4) {V\<KP)^q} = 4>-\(q-\)eV.

E.g., <p is an J£?(P)-homomorphism if and only if <j> is order-preserving (isotone).
Consequently, each ^-homomorphism, for any <S, is order-preserving. Actually,
we have established a huge scale of order-preserving mappings: the smaller ^ ,
the better the ^-homomorphisms, the P-homomorphisms being the best. As a
matter of fact, <f>:P -*Q is a P-homomorphism if and only if it admits a right
adjoint, i.e. a mapping \j/ : g -» P such that

(5) <£(p) ^ q if and only if p ^ \j/(q),

for each pe P, qeQ. This right adjoint is uniquely determined by

(6) *K<i) = raax{p\<Kp) g q}

whereas its left adjoint, the original mapping <j>: P -> Q, is uniquely determined by

(7) |

We call (<£, \j/) an adjoint situation between P and Q. Both <f> and i/> are then order-
preserving (covariant), and i / ro<£:P->Pisa closure operator, <j> o xji: Q -> Q a
kernel operator. We also call such a pair a Galois connexion of mixed type. For
dualizing Q, we get what has been called a Galois connexion by Ore [7] (cf. also
Everett [6]), characterized by the equivalence

(8) q g <t>{p) if and only if p ^ ij/(q).

Here, <j> and \j/ are order-reversing (contravariant), and both if/ o (j> and </> o i/r are
closure operators. It is a curious fact that Galois connexions of mixed type, in
spite of their frequent occurrence, have not been paid much attention.

Let now Q = E be an extension of P, <j> the inclusion mapping. P is called
^-faithful in E and E a "^-faithful extension of P if <f>: P-+E is a ^-homomorphism,
i.e., if

(9)

for each x e E. If, in particular, £ is a join-extension, we may simply write

(10) EczV.

Hence the ^-extension {E = ^ ) is the largest ^-faithful joint-extension. As a spe-
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cial case, the normal or Dedekind-MacNeille completion i.e. the least join-com-
pletion, with the canonical image

JT{P)

consisting of all intersections of principal ideals, is characterized as the only
faithful join-completion of P ([11]). In particular, since P is^T(P)-faithful in each
meet-extension ([11]) and since the normal completion is, in fact, also a meet-
completion, one gets Banaschewski's characterization ([3]) of the normal comple-
tion as the only join- and meet-completion of P.

2. Ideal-completions

For another type of completions, the above maximal property has been ob-
served by Doctor [5]. Let J2" be an arbitrary family of subsets of P, ^cz 0>(P).
A subset J a P is .^"-join-closed in P provided that the following holds:

(11) for each Fe &, if F <= J and x = supPF, then x e J. An J^-ideal of P is
an ^"-join-closed lower end.

The family of all ^-ideals will be denoted

J? or

It is the canonical image of a join-completion E of P which will be called the !F-
ideal-completion. E.g., 3?(P) represents such an ideal-completion: one may take
& = 0 • Or choosing as J5" the family of all fc-small subsets i.e. all sets F <= P
such that | F \ < k, where k is an (infinite regular) cardinal number, we get the k-
ideal-completion studied in [13] with the canonical image

If we choose k > \P\, i.e. !F — &(P), we get the least ideal-completion, whose
canonical image we might denote

The elements of Sk(P) or -fm{P) are the fe-join-closed lower ends (fc-ideals) of the
completely join-closed lower ends respectively. If P is not complete, the least ideal-
completion may still be properly larger than the least join-completion. In this case
(./^(P) =(= c/F(P)), the latter will be no J^-ideal-completion at all. One can show,
however, that for each join-completion c€, there is a least ^"-ideal completion
larger than (€\ one may, for that matter, taker the largest family J5" such that

Now, as the notion of ^-homomorphisms corresponds to general join-exten-
sions, there is a natural property of mappings connected with ideal-completions,
or rather with the generating families IF themselves. We call the mapping
<f>: P -* Q ^"-join-preserving provided that the following holds:
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(12) for each Fe &, if x = supPF, then 0(x) = supQ<j)(F).

NOTE: if ^"contains all sets {p',p} such that p' :g p, then each J^-preserving
mapping is order-preserving and if 3? is just that family, the converse is also true.
If, in particular, J*" is the family of all fc-small subsets, we call (f> fc-join-preserving,
completely join-preserving if k is large enough, i.e. & = 3P{P). And P is .^'-join-
faithful, fc-join-faithful completely, join-faithful in £ or £ such a faithful extension
of P if the inclusion mapping has the corresponding preservation property. The
connection with the ^-homomorphisms defined above is established by

THEOREM 1. Let <j>:P -* Q be a mapping between partially ordered sets,
&<=. 0>(P). Then the following statements are equivalent:

(i) <t> is order-preserving and ^-join-preserving;

(ii) (j> is an J'^-homomorphisms, i.e. the inverse image of any principal
ideal is an &-ideal.

The proof is left to the reader. Note that in most practical applications, the
first condition of (i) can be disregarded.

Theorem 1 is an obvious analogue of the characterization of continuous
(limit-preserving) mappings by inverse images. One would certainly dislike missing
this tool in topology. It is a curious fact, however, that analogues like the very
general one above have not been paid much attention to in partially ordered sets
and lattices, maybe because one insisted on the algebraic rather than analytic
character of lattice theory.

As its analogue in topology, Theorem 1 has many applications. For example
the J^-ideal-completion is now the largest J^-join-faithful join-extension of P.
This is the aforementioned result due to Doctor [5, Chapter I, Theorem 5]. In
particular, one may replace & by k. In particular, the least ideal-completion is the
largest completely join-faithful join-extension.

As a second application, Theorem 1 makes quite clear that the usual descrip-
tion of the normal completion as a completely join-and meet-faithful completion
(complete extension) fails to characterize it. For as stated above, P isyT(P)-faith-
ful, hence — Theorem 1 — completely join-faithful in each meet-extension. Dual-
ly, P becomes completely meet-faithful in each join-extension, in particular both
completely join-and meet-faithful in the least ideal-completion — which may differ
from the normal completion.

For another application, observe that the partially ordered set P is complete
iff P = Jf (P); in this case, one even has P = ^X{P). So Theorem 1 immediately
yields the old result, due to Pickert [8] and others, that $ : P -> Q, where at least
P is complete, has a right adjoint iff <j> is completely join-preserving. Without the
completeness of P, the necessary and sufficient condition for <f> to have a right
adjoint (the "adjoint functor theorem") becomes less attractive.
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3. The universal property of join-completions

We are now ready to prove

THEOREM 2. Let %? be the canonical image of a join-completion of P. Let
E be an extension of P. Then the following statements are equivalent:

(i) E is the ^-completion of P.

(ii) E is a ^-faithful completion of P. Moreover, for each complete lattice
F and each ^ -homomorphism <j>0: P -* F there is exactly one completely join-
preserving extension <$>: E —> F.

According to the first condition of (ii), P is just a completion of P. That P
is join-dense in it, is not stated: it follows.

PROOF, (i) => (ii)': Since E = <#, P is ^-faithful in E and £ is complete. Con-
sider now a complete lattice F and a ^-homomorphism <j>0:P -> F. Using the
completeness of E and F, we define mappings <p :E -> F and \j/ : F -> E as follows:

(13) 4>{x) = suPf MP ^ (*]) = supf (0O(P) | p e P, p ^ x},

(14) \j/(y) = sup£0o~1(O']) = sup£{p| pep,0o(P) ^ y),

for each xeE, yeF. (j> extends <j>0. For <j>0, being order-preserving, preserves the
maximum, and x e P is the maximum of P n (x]. We are now going to show
that {(j>, \j/) is an adjoint situation between E and F:

(15) <£(x) ^ y if and only if x ^ IKJO

for each xeE, yeF. Suppose </>(x) ^ j ; and p e P , p ^ x, by (13), < 0̂(p) ^ 0(x)
^ y whence p g i^(y) by (14). This being true for each peP C\ (x], x ^ (/'(y) since
P is join-dence in E. For the proof of the other half of (15), note that <f>0~

 1(.(yJ) e #
since 0O is a ^-homomorphism. But ^ = E, so using the natural isomorphism
between E and E and (14), we get

(16) * . - % ) ] = ^ ( « y ) ] .

Suppose now that x ^ (/'(y) and p 6 P, p :g x. Thenp ^ i/r(y), soby(16), 0(p) ^ y.
This being true for each p SL P, p ^ x, 0(x) ^ y by (13). This proves the existence
of the completely join-preserving extension <j>. The uniqueness is trivial since P
is join-dense in E.

(ii) =*• (i): Consider the ^-completion F of P. As just shown, F has the uni-
versality property (ii) as has, by hypothesis, E. So there is a (unique) isomorphism
(/>:£-> F extending the inclusion <f>0 :P -> F, whence E is also a (model of the)
^-completion of P.

The special case # = =§?(P) is also contained in [12, Theorem 1.2]; (ii) here
simply says that E is complete (the inclusion of P into E being order-preserving
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anyway), and each order-preserving mapping into a complete lattice can be unique-
ly extended. For this simple special case, one does not need Galois connexions.
All one has to know is the join in 3f(P), which is set-theoretical union. Likewise,
we obtained our result for <£ = Sk{P) for those two special types of partially
ordered sets P which provided us with sufficient information about the joins in
Jk{P) ([13, Theorems 1.6, 2.4]); again we did not need Galois connexions. For
the /c-ideal-completion of a fc-join-semilattice P, there is a universality property
somewhat stronger than (ii): each order-preserving mapping <j)0:P-^F can be
extended to a cj> :E-*F preserving joins of fc-directed sets ([13, Theorem 1.4]),
the latter becoming completely join-preserving once <f>0 is fc-join-preserving. For
# = J'm(P), (ii) says that P is completely join-faithful in E, and each completely
join-preserving mapping <f)0:P -*F can be extended to a mapping (j> :E -* F with
the same quality, — the point is that P might not be complete, but E is.

In view of the distinction between SX(P) and Jf{P), we may look at the
latter. Note that an JV (P)-homomorphism is in general still better than a com-
pletely join-preserving mapping (on the other hand worse than a P-homomorph-
ism). For <€ =Jf (P), (ii) may now be replaced by

(ii^) E is complete. Moreover for each complete lattice F,J/~ each order-
embedding <j>0 P -» F can be extended to an order-embedding <j>: E -* F.

An orded-embedding is, of course, an order-isomorphism onto the exact image,
as is, e.g., the inclusion of P into E. Note that no uniqueness of $ is claimed
anymore, (i) => ( n » has been proven by Aumann [1, Theorem 2.2.3]. The proof
of the converse, similar to (ii) => (i) above inasmuch as it uses Aumann's result,
is left to the reader.

4. Extensions of Galois connexions

The main application of Theorem 2 is

THEOREM 3. Let E be a join-completion of P. Let F be an arbitrary comple-
tion of Q, and let (<p0, \j/0) be an adjoint situation between P and Q. Suppose
(f>0: P -*• F is an E-homomorphism. Then there is exactlyi one adjoint situation
between E and F,{<p,\j/), extending (0o,'/'o)-

PROOF. Again the uniqueness follows from the fact that P is join-dense in E:
there is at most one completely join-preserving mapping <]>: E -* F extending cj>0.
The existence of this $ has been shown above, also the right adjoint i/< of 4> has
been determined. All that is left to show is that \j/ extends i//0. So let q e Q. Then
<K^o(9)) = ^(#o(g)) ^ Q> whence \po(q) g tyiq) by (15). L e t n o w p e P , p ^ ip(q).
Then <j>0(p) = <f)(p) ^ q by (15) so p ^ ^0(q). This being true for each peP,
p ^ \j/(q), ij/(q) ^ 4io{q) since P is join-dense in E. So ip(q) = \lio{q), completing
the proof.
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As a sample for the application of this rather general theorem, let us consider
the special case E = -fk{P).

COROLLARY 1. Let E be the k-idea l-completion ofP, let F be a k-join-faithful
completion of Q. Then each adjoint situatin (̂ >o>lAo) between P and Q can be
uniquely extended to an adjoint situation (<j),\j/) between E and F.

For (j)0 :P -y Q is completely join-preserving anyway, and since the inclusion
of Q into F is fc-join-preserving, <j>0 : P — F is fc-join-preserving, i.e. an ^k{P)-
homomorphism.

For a more symmetric special case, one may assume that F is also the k-
ideal-completion of Q.

As another interesting special case of Theorem 3, we mention

COROLLARY 2. Let Ebe a join-completion of P, F a meet-completion of Q.
Then each adjoint situation (^OJ'AO) between P and Q can be uniquely extended
to an adjoint situation (<j),il/) between E and F.

For since Q is meet-dense in F, Q is^T(Q)-faithful in F. But <j>0 :P-*Q is
a .P-homomorphism, hence an^f"(P)-homomorphism. It follows that (j)0:P->F
is an J/~ (P)-homomorphism, hence an 2?-homomorphism since ^~(P) c E.

Dualizing F and Q, one obtains a nice symmetric form of Corollary 2, for
Galois connexions in the sense of Ore. For an independent proof of the latter,
one may adjust the definition of \j/ to that of <f>:

(17) <Kx) = infF{<£0(p) | p e P, p g x},

(18) ij/(y) = infE{il/0(q) \ q e Q, q £ y} .

There are results extending Galois connexions of Ore type between partially
ordered sets P, Q to their power sets 0>(P), 0>(Q)(cL Everett [6], Aumann [2],
for related results also Raney [7]).
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