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Abstract The structure of solar magnetic fields is dominated by the effects of convection, which should be 
incorporated in any model of the solar cycle. Although mixing length theory is adequate for calculating the 
structure of main sequence stars, a better description of convection is needed for any detailed dynamo 
model. Recent work on nonlinear convection at low Prandtl numbers is reviewed. There has been some 
progress towards a theory of compressible convection, though there is still no firm theoretical evidence for 
cells with scales less than the depth of the converting layer. However, it remains likely that the pattern of 
solar convection is dominated by granules, supergranules and giant cells. The effects of rotation on these 
cells are briefly considered. 

1. Introduction 

Over the past decade our understanding of the Sun (and particularly of small scale 
photospheric features) has been transformed by a wealth of detailed observations. 
Theoreticians lag behind observers but it has become clear in the last few years that 
progress requires detailed calculations rather than qualitative, order-of-magnitude 
arguments. Although few of these calculations have yet been carried out it is at least 
possible to outline a sequence of increasingly complicated problems that must be 
solved if we are to explain what has been observed. We have attained the stage that 
geographers had reached by 1500. The age of fantasy is over: now we can map out 
areas of ignorance and have to determine programmes of systematic exploration. 

Solar magnetic fields are intimately related to the pattern of convection in the 
outer layers of the Sun. A full description of the structure of convection is necessary 
for any theory of the solar cycle. In particular, we need to supply a detailed velocity 
field that can be fed into more sophisticated kinematic dynamo models. Astrophysi
cal convection has recently been reviewed by Spiegel (1971b, 1972). Here I shall first 
outline our limited understanding of the problem and then indicate what progress is 
being made towards a proper theory. Laboratory convection is still poorly under
stood and in stars further difficulties are posed by compressibility - the density 
changes by a factor of 105 over the Sun's convective zone - and rotation; since Dr 
Gilman and Dr Durney have already discussed the latter in some detail I shall 
concentrate on compressibility and its effect on the characteristic scale of convective 
motion. Finally, I shall atempt to provide what seems to me the best available 
description of the pattern of solar convection and its interactions with magnetic 
fields. 

2. Mixing Length Theory 

Mixing length theory, as developed by Biermann 40 years ago and elaborated since, 
still provides the only quantitative method of relating the temperature gradient to the 
heat flux in a stellar convective zone. Consider a plane horizontal layer, referred to 
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cartesian coordinates with the z-axis pointing downwards in the direction of the 
gravitational acceleration g and a temperature gradient 

dT _ 
— / 3 0 > / 3 a d , (1) 

where /3 a d is the adiabatic gradient. Then the degree of superadiabaticity is measured 
by the dimensionless Rayleigh number 

R ^ L E - 9 (2) 
KV 

where / is a characteristic length scale for convection, /3 = /30—j3ad> <* is the coefficient 
of thermal expansion (1/T for a perfect gas) and K, V are the thermal and viscous 
diffusivities. When K » v it is convenient to introduce a modified Rayleigh number 

S = ̂  = pR, (3) 

where the Prandtl number 

P = V/K. (4) 

The efficiency of convection is given by the Nusselt number 

N = (Total heat flux) - CppKpad 

CpPK/3 

which is a dimensionless measure of the superadiabatic heat flux, where p is the 
density and cp the specific heat at constant pressure. The aim of a convection theory is 
to predict N as a function of R and p. 

To derive mixing length theory in its simplest form, let us consider vigorous 
convection, with eddies of a characteristic length scale /, so that N—F/CPPK/}, where 
F is the convective heat flux. If w is the upward vertical velocity and $ the 
temperature excess of a rising fluid element then 

F~Cppw0. (6) 
For rapid convection, heat losses through (radiative) diffusion can be ignored and so 
the potential temperature variation 

0~pi. (7) 

The velocity can be estimated by balancing the rate of working of the buoyancy force 
against the rate of dissipation of energy through the nonlinear inertial term in the 
equation of motion: 

pga6~pw2/L (8) 
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Then, from (7) and (8), the reduced free fall velocity 

w~(gap)1/2l (9) 

and the flux 

F~CpP(gap3l4)1/2. (10) 

Finally, from (6), 

N~(pR)1/2 = S1/2. (11) 

This result holds for any local Boussinesq theory of convection, whether it is 
expressed in terms of bubbles, cells or eddies. To calculate the heat flux it is only 
necessary to calibrate various constants, all of which can be absorbed into the mixing 
length /. 

In practice, / is set equal to a multiple of the local pressure (or density) scale height 
and the arbitrary constant is calibrated by ensuring that a solar model, with a given 
metal abundance, evolves from the zero age main sequence to the Sun's present 
radius and luminosity in its known lifetime of 4.7 x 109yr. This procedure can be 
followed for Biermann's simple theory (described above) or for the more elaborate 
local theories of Opik and Bohm-Vitense, which allow for lateral radiative losses. 
When this is done, all local theories give the same depth, around 150 000 km, for the 
solar convection zone and also provide consistent models of lower main-sequence 
stars (Gough and Weiss, 1976). (Mullan's (1971) application of Opik's theory 
employs arbitrary constants with values that reduce the efficiency of convection but 
are incompatible with evolution of the Sun.) 

It is not difficult to devise descriptions of convection that are adequate for 
calculating the structure of stars like the Sun. (Radiative losses are significant only in 
a very shallow photospheric zone; of course, these losses are important at levels 
where the granulation is observed (Travis and Matsushima, 1973; Spruit, 1974) but 
all available theories of convection are too crude to be valid in this region.) It is only 
necessary to calculate the jump in entropy across a narrow region, about 1000 km 
deep, immediately below the photosphere, where the temperature gradient is 
strongly superadiabatic. Below this region, the stratification is virtually adiabatic 
throughout the convective zone. Unfortunately, this simple description no longer 
holds for red giants (Schwarzchild, 1975; Gough and Weiss, 1976), nor can it be used 
to predict the detailed structure of convection in the Sun. 

Mixing length theory depends on the assumption that there is a characteristic local 
length scale /, related to some local scale height. Provided the viscosity is small, the 
theory then predicts that the Nusselt number NccS1/2 and is independent of v. Both 
this result and the underlying assumption need to be verified. However, it is difficult 
to compare the theory with laboratory experiments, which are dominated by the 
effects of thermal boundary layers. Moreover, few experiments have so far been 
carried out at low Prandtl numbers (p = io for mercury but, owing to radiative 
diffusion, p «10~ 9 in the Sun) and significant density variations across the layer 
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cannot be reproduced in an experiment. Hence any improvement must rely on 
theory and, for such a nonlinear problem, on numerical experiments. Various 
idealized problems have been studied over the last few years and the following 
sections describe the progress that has so far been made. 

3. Low Prandtl Number Convection 

It is generally accepted that in a fluid with a low Prandtl number kinetic energy is 
dissipated through some turbulent process and that the heat transport should not 
depend explicitly on the viscosity. Thus N should depend not on the Rayleigh 
number but on the product S = pR. If heat transport in the boundary layers is laminar 
and limited by the thermal diffusivity then Noc S 1 / 3 ; if the heat flux F is independent 
of K also then NocS 1 / 2 as in Equation (11) (Spiegel, 1971a, b). However, there is as 
yet no firm theoretical basis for this belief. 

Numerical experiments on Boussinesq convection between free boundaries in 
two-dimensional rolls showed that at high Reynolds numbers N is proportional to 
R° 3 6 and independent of Prandtl number asp 0 (Veronis, 1966; Moore and Weiss, 
1973). It might appear that three-dimensional geometry, which introduces an 
asymmetry between hot fluid rising at the centre of a cell and cold fluid sinking at its 
periphery, would cause a reduction in N as p decreases for a fixed Rayleigh number. 
Indeed, Gough etal. (1975) studied a simple model of nonlinear convection in which 
the horizontal ground plan of the cells was specified (the modal approximation) and 
found that N ~ (S In S)1/5 for p < 1, S » 1 . However, computations of steady laminar 
convection in an axisymmetric cylindrical cell showed no such effect: N depended on 
R only and was independent of p as p 0, as for two-dimensional rolls, so the heat 
transport did depend on the viscosity (Jones et al, 1976). 

What happens in these numerical experiments is that fluid in the cell turns over 
many times, gradually picking up speed as it does so. Although viscosity is slight, the 
frictional force increases with the speed until it is eventually able to balance the 
buoyancy force and an equilibrium is reached. This flywheel mode of convection has 
velocities much greater than the free-fall velocity in (9) and can therefore carry far 
more energy than a cell that only turns over once. Are such flywheels likely to be 
realized or will their growth be limited by some instability? 

One possibility is that cells become unstable to non-axisymmetric perturbations 
and split up into segments (Jones, 1975). Indeed, inspection of any photograph of the 
photospheric granulation shows a number of exploding granules (Musman, 1972) 
that resemble the unstable vortex rings described by Widnall and Sullivan (1973) and 
Widnall (1975). However, it is also likely that the flywheels suffer from some 
collective instability that limits the growth of the velocity. Such an instability would 
allow adjacent vortex rings to merge and disappear, like opposing magnetic fields at a 
current sheet. Energy would then be dissipated neither by laminar viscous friction 
nor through an inertial range of eddies (as in homogeneous turbulence) but locally in 
spasmodic bursts. 

To describe such a process requires a fully three-dimensional calculation. For the 
moment, we must assume that more sophisticated - and considerably more 
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expensive - time-dependent computations would then demonstrate that the lifetime 
of a cell is of the order of the turnover-time T~1/W (as seen in the solar granulation), 
that the velocity would be of the same order as that in (9) and that the heat flux might 
follow a law of the form predicted by mixing length theory in Equation (11). 

4. Effects of Compressibility 

The density gradient in the solar convective zone introduces an asymmetry between 
upward and downward motion. Rising elements of fluid expand and dominate 
convection; sinking elements contract and can disappear into the interstices between 
the rising columns (Schwarzchild, 1961). In a Boussinesq fluid, cells with fluid rising 
or sinking at their centres are equally probable but this degeneracy is removed by 
non-Boussinesq effects. In air (where the predominant effect is the increase of 
viscosity with temperature) motion is downward at the centres of convection cells. In 
the Sun the density gradient is important, favouring upward motion in the core. This 
asymmetry is of course observed, and is essential for the a-effect in solar dynamos 
(Steenbeck etal., 1966). 

Mathematically, the dominance of rising and expanding gas is expressed through 
the continuity equation 

^ = - V - ( p u ) (12) 

where u is the velocity. Provided that convective motion is slow compared with the 
sound speed cs (so that the Mach number M= |u|/c s« 1) we may filter out acoustic 
waves by adopting the anelastic approximation (Gough, 1969), which is a generaliza
tion of the familiar Boussinesq approximation. Equation (12) then simplifies to 

V-(pu) = 0, (13) 

where p(z) is a horizontally averaged density: the flow is constrained by the mean 
density variation. 

Suppose now that convection occurs in cells with a horizontal dimension L. We 
expect that L is comparable with the density scale height 

H = - ( d l n p / d z ) " 1 (14) 

at some level z = z0 near the base of the cell. But if the cell penetrates to a level 
z « z0, the local scale height H may be small compared with L. From (13) we see that 
pu/L~d(pw)/dz, where u is the horizontal component of u. If, for the moment, we 
neglect the variation of w with z then 

w. (15) 

Thus u » w if H«L and the buoyancy force is spent in driving rapid horizontal 
motions, which do not contribute to the heat transport. This inefficiency favours 
convection on a smaller scale. More precisely, we might expect local instabilities to 
develop, deriving their energy either from the sheared velocity or from the 
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superadiabatic stratification itself. At some level these instabilities will grow fast 
enough to form smaller convection cells that are able to transport energy more 
effectively than the original, larger cells. 

Somewhat more generally, we can consider a polytropic atmosphere, such that the 
horizontally averaged temperature and density are given by 

f = f t z , P = p0zm, (16) 
where the polytropic index m = g/(£%/30) - 1 and 01 is the gas constant. If we suppose 
that vvoczn then, from (13), uoc w/zcczn~l and the horizontal component of the 
velocity increases upwards for n < l . Moreover, if all the energy is carried by 
convection then, from (6), 

0 ~ — c c z - ( m + n ) (17) 
Cppw 

and so the superadiabatic gradient j8 oc z ~ ( m + n + 1 ) . For the conventional mixing length 
theory of Section 2, with / everywhere proportional to the local scale height H, 
n = - 5 m , from (8). If the cell extends over many scale heights, so that dissipation of 
energy is dominated by horizontal motions, Equation (8) must be replaced by 

and it follows that n = \{2 — m) and hence that u oc z ~ ( m + 1 ) / 3 . (In particular, for m = §, 
as in the deep solar convection zone, wocz 1 / 6 and wocz~5 / 6, so that the vertical 
velocity varies only slightly while the horizontal velocity increases upwards.) The 
ratio of the superadiabatic gradient for a cell extending over many scale heights to 
that for a local cell is proportional to z~ 2 / 3 . Eventually, therefore, small scale 
convection should take over (Simon and Weiss, 1968). 

This crude discussion needs to be supported by a proper calculation. Unfortu
nately, computations have so far provided no evidence for the existence of any 
vertical scale other than the layer depth, even in a compressible atmosphere. The 
solution of the linearized marginal stability problem for a polytropic atmosphere 
(Spiegel, 1965; Gough et a/., 1976) shows that, for any cell width, instability occurs 
first for the fundamental vertical mode, with no internal zeros in the eigenfunctions 0 
and w. (Vickers' (1971) solutions showing a reversal in 0 at the upper boundary are 
wrong, apparently owing to a numerical error in treating the boundary conditions.) 
Growth rates have been calculated for small perturbations to models of the convec
tive zone computed using mixing length theory (Bohm, 1963,1967; Vickers, 1971; 
Vandakurov, 1975): the highest growth rates are shown by small scale modes with 
greatest amplitudes near the surface, where the superadiabatic gradient is largest, 
but all modes extend throughout the region and there is no direct evidence for 
smaller cells. Of course, linear modes are solutions to a simplified problem. The 
nonlinear constraint of constant heat flux is not included (for example, both w and 6 
are relatively small near z = 0 in the eigenf unctions for an infinite polytropic 
atmosphere, so that (17) could not be satisfied). Do non-linear models allow multiple 
cells to develop in a compressible layer? 
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The only non-linear solutions are those of Graham (1975) for two-dimensional 
convection in a fully compressible atmosphere. His numerical experiments, with 
densities varying by a factor up to 10 (4 pressure scale heights) across the layer and 
Rayleigh numbers up to 100 times the critical value, all gave cells that filled the entire 
convecting region. To demonstrate the development of smaller cells it may be 
necessary to have a much greater density variation, or to proceed to time-dependent 
three-dimensional models. An alternative possibility is that Graham's results (like 
the linear solutions of Gough et al.) are affected by the assumption of a constant 
molecular viscosity LL = pv. At the top of the layer, where the density is small, the 
viscous term dominates the equation of motion and (for stress-free boundary 
conditions) forces a horizontal velocity u that is independent of z. If u is constant, 
w oc 1/z and this rather unrealistic constraint may inhibit the growth of instabilities 
and so stabilize cells extending over many scale heights. Turbulent viscosity in the 
Sun is better represented by a constant diffusivity v: calculations with p, oc 1/p might 
allow greater variation in u and so permit the development of other scales of motion 
(cf. Parker, 1973). 

The pattern of cellular motion is not the only feature of compressible convection 
that is poorly understood. It is not obvious that the functional dependence of N on R 
and p will be the same as for a Boussinesq fluid: once the temperature scale height HT 

becomes comparable with the layer depth the rate of working against pressure and 
viscous forces makes a significant contribution to the energy equation and the 
dissipation rate over a cell (pw3/2) becomes comparable with the energy flux (F/2). 
From (9) and (10), 

and for a polytrope HT = mH. Graham's (1975) numerical experiments already show 
many details and further computations are badly needed. 

Fully compressible computations, especially in three dimensions, require vast 
amounts of computer time if it becomes necessary to follow sound waves in regions 
where the Mach number is small. Hence it seems advisable to use the anelastic 
approximation, with the simplified form (13) of the continuity equation and corres
ponding modifications to the momentum and energy equations (Gough, 1969). The 
modal approximation (with a fixed horizontal ground plan) has been adapted to the 
anelastic approximation by Latour et al. (1975) and used to compute the extent of 
overshooting from convective zones in A-type stars. Unfortunately this model does 
not allow the development of smaller cells. However, a two-dimensional anelastic 
code is being developed at Cambridge. This, combined with Graham's recent 
three-dimensional compressible calculations may allow us to carry out a systematic 
study of compressible convection. 

5. Cellular Convection in the Sun 

It is clear that there is no firm theoretical basis for assuming that energy is everywhere 
carried by cells with a scale comparable with the local density scale height, as in 
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normal mixing length theory. The crude argument outlined above suggests that cells 
might extend over about three density scale heights (Simon and Weiss, 1968) but 
there are still no reliable calculations to support this estimate. On the other hand, 
observations show the presence of at least two distinct scales of motion at the surface 
of the Sun. Photospheric granules have a radius (1000 km) about twice the local 
density scale height. Supergranules are intimately associated with strong sub-
photospheric magnetic fields and must therefore correspond to motion below the 
surface of the Sun; their radius (15 000 km) corresponds to the density scale height at 
about 15 000 km depth. Bumba (1967) inferred that there should be a third scale, 
around 150 000 km, corresponding to giant cells extending throughout the whole 
convective zone. There is some observational evidence for such giant cells from 
Doppler measurements of azimuthal velocities (Howard, 1971; Howard and 
Yoshimura, 1976) and the distribution of magnetic features. Indeed, it seems likely 
that their presence will be demonstrated from observations before we can succeed in 
providing a proper theoretical description. 

No one has suggested that eddies far from a boundary should be limited by a 
length-scale smaller than the local scale height and there is general agreement that 
energy must be carried by large scale cellular motions over the bulk of the convective 
zone. There is less unanimity over the relation between these giant cells and the 
observed smaller scales of supergranules and granules. Spiegel (1968) has suggested 
that they are formed as a result of shear instabilities in thermal boundary layers. In a 
normal convecting layer, large-scale motions can easily carry energy except near the 
upper and lower boundaries, where an enhanced temperature gradient develops. In 
the Sun (or any star with a convection zone produced by ionization of hydrogen) the 
superadiabatic gradient is high over a narrow region near the surface, whose depth is 
comparable with the local scale height. At the base of the zone, convection becomes 
less efficient; Bohm and Stiickl (1967), using a non-local mixing length theory, found 
an enhanced superadiabatic gradient over the bottom 30 000 km of the convective 
zone. One possibility is that the granules result from small scale turbulence in the 
upper superadiabatic boundary layer, while the supergranules are similarly gener
ated in the lower boundary layer and somehow penetrate to the upper surface. 

The alternative hypothesis, which I myself prefer, is that the giant cells develop 
smaller scale instabilities (supergranules) which take over the energy transport until 
they themselves become unstable, allowing granules to carry energy towards the 
solar surface. This description is an obvious oversimplification. The velocity pattern 
of supergranules, and apparently that of giant cells too, penetrates into the photo
sphere, though no corresponding temperature variation has been observed. (Hori
zontal temperature variations, unless they are associated with energy transport, seem 
to be eliminated over a height comparable with the local scale height H, presumably 
by rapid horizontal motions). Moreover, other scales of motion must also be present: 
at any level we might expect smaller parasitical eddies, carrying little energy but 
affecting, for example, the diffusion of magnetic fields. Indeed, small scale motions in 
a region where energy transport is dominated by supergranules appear to be 
necessary in order to explain the slow decay of sunspots (Meyer et a/., 1974). It is not 
yet possible to determine observationally whether there is a short wavelength cut-off 
in the photospheric velocity spectrum (Harvey and Schwarzschild, 1975) and the 
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spectrum at the surface may be a distorted form of that at greater depths. Experi
ments by Busse and Whitehead (1974) on convection at high Rayleigh number in a 
viscous fluid showed the development of a semi-permanent large scale cellular 
structure within Which irregular motions on a smaller scale (comparable with the 
layer depth) could be seen. If such a pattern were present on the Sun, and could be 
observed only indirectly through its effect on the magnetic field, only the large scale 
structure would be seen. 

The interaction between convection and rotation has been discussed in several 
reviews (Spiegel, 1972; Gilman, 1974, 1976) and some recent calculations have 
already been described by Durney (1976) and by Gilman (1976). The generally 
acepted recipe for a solar dynamo (Parker, 1955) has two essential ingredients, 
differential rotation and helicity. Helicity is generated by the Coriolis force, acting on 
cellular convection, and individual dynamo models prove sensitive to the assumed 
variation of the angular velocity il with position in the convective zone. I shall 
therefore attempt to summarize the possible effects of rotation on the cellular pattern 
that I have described above. 

The importance of rotation in a convection cell can be estimated from the 
parameter 

where T is the turnover time and rTOt the period of rotation. This parameter (the 
reciprocal of the Rossby number) measures the ratio of the Coriolis force to the 
inertial term in the equation of motion, and so the extent to which a fluid element, 
conserving its angular momentum, is deflected as it traverses a cell. For granules, 
with a lifetime of minutes, a « 5 x 10~3; for supergranules, lasting for a day, a « 0.4 
and for giant cells, with a turnover time of a month, cr« 20. Hence any effect of 
rotation on granules must be imperceptible. Supergranules will be significantly 
affected and Coriolis forces will dominate the motion in any giant cell. 

When a is large, two different effects can be distinguished. The first is a conse
quence of the Proudman-Taylor theorem. In a uniformly rotating system, the rate of 
generation of vorticity by the Coriolis force is, in the anelastic approximation, 

which vanishes if pu does not vary in the direction parallel to the axis of rotation. For 
a Boussinesq fluid, with p constant, the constraint imposed by rotation disappears 
provided u itself does not vary in this direction. Consider for the moment the 
simplified problem of convection in an infinite self-gravitating cylinder, rotating 
about its axis. If convection is everywhere in rolls parallel to the axis of rotation then 
the Coriolis force can be balanced by a pressure gradient and the motion is unaffected 
by rotation (except insofar as the density perturbation is coupled to the pressure 
through the equation of state) even in a compressible fluid. 

Convection in a sphere is more complicated. Let (r, 6, cp) be spherical polar 
co-ordinates, with il along the axis d = 0. In a Boussinesq fluid, instability first 

6. Effects of Rotation 

a = 2 /2 / /w = 47rT/T R O T , (20) 

V A (2pil A u) = 2il • V(pu), 
(21) 
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appears as a ring of rolls parallel to the rotation axis (Roberts, 1968; Busse, 1970a) 
and Busse (1975) has demonstrated experimentally that this pattern persists into the 
non-linear regime. In a spherical shell the eigenfunctions of the marginal stability 
problem are specified by the spherical harmonics P™(cos 6) etm<p. In the absence of 
rotation, the problem is degenerate with respect to m; Busse (1970b, 1973) used a 
double perturbation expansion to show that rotation favoured the sectorial har
monics with m = n. These sectorial modes (banana cells) show the effect of the 
Proudman-Taylor constraint even with spherical geometry. Similar results for the 
non-linear regime were obtained by Durney (1970, 1971), using the mean field 
approximation, though Gilman's (1976) recent computations show a more compli
cated pattern of behaviour. 

The second effect is the redistribution of angular momentum. The Coriolis force 
expresses the conservation of angular momentum; with differential rotation such 
that r 2 sin2 ftfl is everywhere constant, this constraint is relaxed. If the viscosity is 
sufficiently small, convection itself can alter the. angular velocity distribution so that 
the angular momentum is nearly uniform except in narrow boundary layers. This 
redistribution, which allows the development of subcritical instabilities (Veronis, 
1959), was found in two-dimensional computations by Veronis (1968). Weir's (1975, 
1976) numerical experiments on axisymmetric Boussinesq convection in a sphere 
show large regions of constant angular momentum, with a sharp gradient near the 
axis, where il is finite but the angular momentum drops to zero. 

The Sun's convective zone, with a thickness Ar « 0.2 Ro can be divided schemati
cally into two regions, separated by the cylindrical surface parallel to the axis of 
rotation that encloses the radiative zone. The equatorial region, spanning latitudes 
less than 35°, resembles the cylindrical model discussed above: g and il are almost 
perpendicular, though p is no longer constant on cylinders. Convection should be 
dominated by the Proudman-Taylor constraint, favouring cells elongated parallel to 
the rotation axis. Motion in the plane perpendicular to this axis is effective at 
transporting heat and need not violate the constraint. In the polar region il and g are 
nearly parallel and il • V(pu) cannot be small if convection is effective in radially 
transporting heat. (For the linear eigensolution with m = n there is no convective 
heat flux at the poles.) In this region we might expect to find normal cellular 
convection, redistributing angular momentum in the radial direction, so that r2il is 
approximately constant. 

This simplified description suggests that giant cells in the equatorial region will be 
elongated, like a ring of truncated bananas. It is then tempting to identify this region 
with the sunspot zone (Hide, 1960, private communication) and to relate the 
elongated cells to the velocity variations described by Howard and Yoshimura 
(1976). The angular velocity in this region would be approximately uniform and the 
rotation period of the convection pattern (not necessarily equal to that of the gas 
itself) would then be the familiar sidereal period of 25 days. This model is consistent 
with the existence of active longitudes and the sector structure of magnetic fields. In 
the polar regions, giant cells would form a tesselated pattern and redistribution of 
angular momentum could reduce angular velocity at the surface by up to one third; 
this is consistent with the measured rotation period of 37 days at the poles. Of course, 
the two regions must merge smoothly together. It is clear from this brief discussion 
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that a full description of solar convection requires nonlinear, nonaxisymmetric 
solutions for anelastic convection in a thick spherical shell, with a uniform heat flux 
maintained at the inner boundary and, say, a fixed temperature at the outer surface. 
Such an ambitious calculation must be approached by gradual stages. Gilman's 
(1976) computations already show the range of complicated behaviour that can 
result as more sophisticated models are investigated. It is only from systematic 
numerical experiments that convection, and its interaction with rotation, will ulti
mately be understood. 

The chromospheric network does not vary between the poles and the equator, nor 
should the pattern of convection in supergranules be affected by rotation. Neverthe
less, some redistribution of angular momentum will occur. This would suffice to 
account for the difference of 5% between the rotation rates of deep-seated magnetic 
features and those directly measured in the photosphere (Foukal, 1972; Foukal and 
Jokipii, 1975). Both in supergranules and in giant cells motion is dominated by rising 
columns at the centres of the cells, which spread outwards over most of their height. 
The rising and expanding gas will be acted upon by Coriolis forces, so as to produce 
cyclonic motions and the helicity needed to maintain a dynamo. In supergranules, 
where this effect is relatively small, we might expect the helicity u • V a u to vary as 
cos # but the distribution of helicity in giant cells must be obtained from a numerical 
solution. In the equatorial region the a-effect would be reduced by the formation of 
elongated cells. 

7. Cellular Convection and Magnetic Fields 

The kinematic effects of convection on a weak magnetic field can be summarized 
briefly. 

(i) Toroidal fields are drawn out from poloidal fields by differential rotation. In an 
axisymmetric configuration the local rate of production of the toroidal field is given 
by B • VQ and there are contributions from both radial and latitudinal components of 
the gradient of the angular velocity. The relative importance of these components 
varies with position for any choice of Q(r). The discussion above suggest that 
|d!2/dd| should be large near the boundary of the sunspot zone and that - dfl/dr 
should be largest in the polar region. 

(ii) Rising fluid expands and rotates, dragging up toroidal flux and generating from 
it a reversed poloidal field, at a rate depending on the local helicity. 

(iii) Horizontal velocities rapidly concentrate the magnetic field between cells. 
This process is seen in high resolution observations of intergranular magnetic 
structures (Dunn and Zirker, 1973; Mehltretter, 1974; Stenflo, 1976). Magnetic flux 
is expelled from most of a convection cell, though the lifetime of an eddy is too short 
for flux to be eliminated from its centre. 

(iv) Magnetic flux ropes, concentrated at the boundaries of convection cells, are 
brought sufficiently close together for reconnection to occur, with the annihilation of 
oppposing fields. The reconnection process itself must be dynamically driven, at a 
velocity comparable with the Alfven speed (Priest and Soward, 1976). 

(v) In three-dimensional convection cells, sinking fluid forms a continuous net
work while rising fluid is confined to an array of isolated columns. This topological 
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difference allows the motion to pump horizontal field downwards, as demonstrated 
by Drobyshevski and Yuferev (1974). Topological pumping would not occur for 
elongated two-dimensional cells but should be effective in the polar region. Differ
ences in horizontal velocities caused by compressibility could also concentrate fields 
at the base of the convective zone. This geometrical pumping has been investigated 
by Moore and Proctor (1976). Both these mechanisms act in the opposite direction to 
the well known buoyancy of magnetic flux ropes (Parker, 1955, 1975). 

Strong magnetic fields are no longer passively distorted. The concentration of 
magnetic flux is limited by forces exerted by the field, though the details of this 
process are not yet properly understood. The concentrated fields are strong enough 
locally to hinder convection, and the a-effect is quenched either by excluding flux 
from regions of strong helicity or by suppressing the cyclonic motion. In addition, 
magnetic fields may affect the mean flow and, in particular, the extent of differential 
rotation. 

All these processes must be included in a proper treatment of the solar cycle. As 
simplified models the kinematic dynamos of mean field electrodynamics seem 
convincing. Now we need to see more elaborate treatments, including large scale 
cellular motions and discontinuous flux ropes. As our understanding of convection 
gradually improves, the results should be incorporated into more sophisticated 
dynamo models, which may ultimately provide an accurate and detailed picture of 
magnetic fields in the Sun. 
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D I S C U S S I O N 

Giovanelli: Since there are differences in the convective behaviour in polar and equatorial regions, could 
you predict any observable differences to be expected between supergranules in these regions? 

Weiss: Supergranules are only slightly affected by rotation, so I do not expect that their shapes or 
velocities would show any observable variation with latitude. Have any differences been observed? 

Schroter: Since observers are asked to comment on Dr Giovanelli's question, I shall try to summarize 
our experiences during our observations last year and this year (Dr Wohl and myself). As I reported 
yesterday, we had every day to preselect 10-15 fine Ca+-mottles in different solar latitudes for our 
differential rotation program. My experience (and Dr Wohl reported to me a very similar impression) is 
that there was no problem in finding well defined tiny Ca+-mottles showing an arrangement similar to 
supergranules in latitudes near the equator. When searching for well defined bright Ca+-mottles in 
medium latitudes, we had some problems. In rather high latitudes I easily found tiny bright Ca+-mottles 
again, but this time they looked like single, not specifically aligned features. In interpreting this, please do 
not forget two facts: 
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(a) These observations refer to a time close to the solar activity minimum (e.g. the Ca^-mottles close to 
the equator may well reflect the solar activity belt, the polar Ca+-mottles the polar faculae, as investigated 
by Waldmeier). 

(b) Our observations refer to Ca+-structures and not to a velocity pattern which defines supergranules. 
However, we know the close correlation between both phenomena. 

Stenflo: Supergranulation is defined by its velocity pattern, which is associated with magnetic fields and 
brightness enhancements. The network seen in magnetograms and Ca spectroheliograms varies strongly 
with latitude and with the solar cycle, but there seems to be no observational evidence that the velocity 
pattern associated with supergranulation varies with heliographic latitude. 

Giovanelli: Some years ago Dr Beckers mentioned to me that he was unable to identify supergranule 
cells in the chromosphere well away from equatprial regions; this is certainly associated with magnetic 
differences between the two regions. As far as I am aware, there have been no differences observed in the 
line-of-sight velocities. Therefore, Dr Weiss' expectation seems to be confirmed 

Roxburgh: Were you suggesting that there are steady convective cells extending over several scale 
heights and if so why does motion not become turbulently unstable since the Reynolds number is very 
high, of the order of 10 1 3 . 

Weiss: I certainly do not imagine that there are steady convection cells in the Sun. However, cells 
lasting for about one turnover time may extend over several scale heights without being prevented by 
shear instabilities, regardless of the Reynolds number. 

Durney: I think that you said that Vickers' results were difficult to understand. Heard has obtained 
results that are somewhat similar; the large-scale convective motions are large in the lower part of the 
convection zone and very small in the upper part. 

Weiss: I said that Vickers' result, that the temperature perturbation could change sign without a 
corresponding change in the velocity perturbation was incorrect. Indeed, one can show that such an 
eigenfunction cannot satisfy the temperature equation. However, it seems a fairly general result that large 
scale convective motions have lower velocities in regions where the scale-height is small compared with 
the scale of the motion. This is found in our linear solutions as well as in Vickers' and Heard's results. 

Gilman: You have pointed out two mechanisms for convection giving net inward transport of magnetic 
flux. Dr Parker has pointed out that magnetic buoyancy should cause a net outward movement of flux. 
Would you care to speculate on the relative importance of these two effects? 

Weiss: It would be rash to make a prediction without any proper calculation. However, my guess is that 
topological pumping may be able to keep flux ropes deep in the convective zone. 

Parker: The network of downflow represented by the supergranule boundaries blocks the escape of 
magnetic lines of force from the interior of the Sun provided that the downflow velocity v exceeds the rate 
of rise of the field. Magnetic buoyancy causes a horizontal magnetic flux tube in a region of convective 
instability to rise at a rate of the general order of magnitude of the Alfven speed. Thus, very roughly, the 
lines of force can be blocked from rising to the surface if VA < v. Strong fields come up through regardless 
of the downflow, as we know from observation. 

We must not overlook the fact, however, that any field - weak or strong - can come up in the rising 
currents at the center of a supergranule, forming a local bipolar region there. 

Deinzer: Are there theoretical arguments for the occurrence of three distinct linear scales in the 
convection zone, represented by granulation, supergranulation and giant cells? 

Weiss: There is still nothing more substantial than the crude arguments that I have repeated in my 
paper. The exact computations so far carried out all show a single cell across the entire unstable layer. 
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