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The surge in interest in nanomaterials in the past decade is ascribable, in large part, to the specialized 
properties due to size, shape, and structure at the nanoscale. Catalysts are a good example of this almost 
atom-by-atom dependence, with the number and coordination of each atom within a particle impacting 
the performance. A recent study even has shown that the simple rearrangement of 25 gold atoms from a 
spherical to cylindrical shape can significantly impact the efficacy of that catalyst [1]. The length scale 
of such materials makes characterization of these materials more difficult. Most studies must rely on 
ensemble measurements such as powder x-ray diffraction (XRD) or small angle x-ray scattering (SAXS) 
and assume a homogenous population such that the ensemble measurement is representative of each 
particle. This means that information on structural heterogeneity in samples is completely lost. The only 
technique which can give local structural information on a nanoparticle by nanoparticle basis is high-
resolution transmission electron microscopy (HRTEM) or high resolution scanning transmission 
electron microscopy (HR-STEM). HRTEM is generally extremely low throughput due to constraints on 
data analysis. How to make HRTEM a more high-throughput process has become a goal for the TEM 
community and has large implications for the understanding of structure-property relationships in 
nanomaterials.  

 
Currently, no method exists to analyze HRTEM data in a high throughput manner across a large range of 
samples. The recognition of defects and shape require semantic segmentation (partitioning of the image 
on a pixel by pixel basis) which can be extremely difficult due to the low signal to noise ratio in most 
HRTEM images. Recent advances in convolutional neural networks (CNNs) for computer vision have 
made advanced segmentation problems solvable [2-5]. However, only in the last year have CNNs started 
to be applied to electron microscopy. Both Ziatdinov et al and Madsen et al have reported using a 
convolutional neural network to identify atoms in electron micrographs [6,7]. But neither of these 
methods looks at classifying structural defects or segmenting out entire nanoparticles, instead only being 
able to identify individual atomic columns. Therefore, a method is needed which focuses on local 
structural features, such as stacking faults and other two dimensional defects in a manner which is high 
throughput and generalizable so that it can be applied across many samples. To date this has not been 
done in atomic resolution electron micrographs. In this talk we introduce machine learning techniques 
for high throughput analysis of local structural features in nanomaterials and apply these techniques to 
real micrographs. 
 
As a proof of concept, our technique focuses on two tasks: semantic segmentation of the nanoparticle 
region from the micrograph and then a basic classification as to whether the projection contains a 
stacking fault. For the segmentation task we implement a CNN with a U-Net architecture [2]. This CNN 
we trained both with synthetic and real micrographs of CdSe quantum dots. Synthetic images are 
generated using the multislice method outlined by Kirkland [8]. Using F1-score to measure accuracy on 
the segmentation, we achieve an accuracy of 0.9 out of 1 on segmentation of synthetic images. However, 
we have found that neural networks trained only on this synthetic data fails when applied to real data. To 
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address this we have found that image preprocessing of real micrographs can dramatically improve 
results. Figure 1a and 1b show samples of successful segmentation on both  synthetic and real data. 
 
Once images are segmented they are then fed into a random forest classifier which is trained to 
determine whether a stacking fault is visible in the nanoparticle. The random forest was trained only on 
features generated from real images. Features included portions of the Fourier transform and Sobel 
edges. Using these features we achieved a cross validation score of 0.8 for determination of four classes: 
no particle (empty), no atomic column resolution (null), no stacking fault seen (no), and stacking fault 
present (yes). Figure 1c presents the confusion matrix for the random forest classifier showing the rates 
of success for each class. The combination of CNN segmentation and random forest classification 
demonstrate well the possibility of high throughput HRTEM micrograph analysis. The final goal of this 
work will be to use neural networks trained on simulated data on real images in order to gain statistical 
information on nanoparticle structure. In this talk we will discuss the two machine learning techniques 
previously discussed and their dependencies, as well as provide a demonstration of a high throughput 
analysis pipeline for HRTEM micrographs.  
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Figure 1. Results for segmentation and structure classification. a) Segmentation of a simulated HRTEM 
image. b) Segmentation of real image after preprocessing. c) Confusion matrix for random forest 
classification of stacking fault content, with the diagonal from top left to bottom right indicating percent 
correctly classified. 
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