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REPRESENTATION OF CERTAIN LINEAR OPERATORS 
IN HILBERT SPACE 

BERNARD NIEL HARVEY 

1. In this paper we represent certain linear operators in a space with in
definite metric. Such a space may be a pair (H, B), where H is a separable 
Hilbert space, B is a bilinear functional on H given by B(x, y) = [Jx, y], [ , ] 
is the Hilbert inner product in H, and J is a bounded linear operator such that 
J = J* and J2 = I. If T is a linear operator in H, then | | r | | is the usual 
operator norm. The operator J above has two eigenspaces corresponding to the 
eigenvalues + 1 and — 1 . 

In case the eigenspace in which J induces a positive operator has finite 
dimension k, a general spectral theory is known and has been developed 
principally by Pontrjagin [25], Iohvidov and Kreïn [13], Naïmark [20], and 
others. These spaces are called Pontrjagin, or n^-spaces. Operators A whose 
domain is H, with A* = JAJ, called J s elf-adjoint, have a ^-dimensional non-
negative invariant subspace. By a non-negative subspace we mean a subspace 
of Ilk in which B(x, x) ^ 0. Also such A s as above have at most k pairs of 
non-real eigenvalues symmetric about the real axis. 

Operators U whose domain is H, with U* = JU~lJ, called J-unitary, also 
have a ^-dimensional non-negative invariant subspace, and at most k pairs of 
eigenvalues symmetric about the unit circle but not on it. 

All this depends on the fact that for Il^-spaces, k is the highest dimension of 
any non-negative subspace and is finite. 

When both eigenspaces of J are finite-dimensional, one can find the complete 
theory of Jordan canonical forms for these operators in a book by Mal'cev [19]. 

When both eigenspaces are infinite-dimensional, the spectral theory is largely 
unknown. In this paper we investigate special A s and Us in this third case. All 
results are for "cyclic" operators, i.e., operators for which certain integral 
powers applied to some vector in H generate a dense subspace of H. 

The methods wTe employ include those of Livsic [18] and Kalisch [14], using 
the concept of "Characteristic Function" and the theory of complex variables 
in the unit disc and the upper half plane [6; 22; 26]. 

Basically, we characterize four concrete operators abstractly. These opera
tors are given by: 

(1) Mf(f) = tf(t), 
(2) Nf(f) = euf(t), 

(3) aV + r, where Vf(t) = I f(s) ds and a and r are real numbers, 
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LINEAR OPERATORS 133 

(4) Uf(t) = eaf(t) - 2iaeu ('e-iaU~s) ds, 

all occurring in suitable L2-spaces. This last is a Cayley transform of V. In the 
present work we exhibit operators J for which the above concrete operators are 
/-self-adjoint or /-unitary. Also we characterize abstractly operators similar to 
one of the above models in such a way that the similarity preserves the 
indefinite metric. 

2. In this section we make a few preliminary definitions. We usually denote 
B(x, y) by (x, y) and reserve the notation [x, y] for the Hilbert inner product. 
With this notation, we define a J-self-adjoint operator to be an everywhere 
defined linear transformation A such that (Ax, y) = (x, Ay) for all x and y in 
H, where (H, B) is a /-space. Also a J-unitary operator in a /-space (H, B) is an 
everywhere defined linear transformation U oî H on to H such that (Ux, Uy) = 
(x, y) for all x and y in H. We remark that /-unitary operators have a spectrum 
that is symmetric about the unit circle, i.e., if z is in the spectrum of a /-unitary 
operator U, then z~l is also in the spectrum of U. This is due to the equation 
((U - z)-1)* = (JU-U - z)-1 = J(U~l - z)-V. A similar equation shows 
that z is in the spectrum of a /-self-adjoint operator A if and only if z is also in 
the spectrum of A. A space with indefinite metric will hereafter be referred to as 
a /-space. A subspace of a /-space is called positive if (x, x) ^ 0 for all x in this 
subspace. Two elements x and y of a /-space are called J-orthogonal if (x, y) = 0 
and two subspaces are J-orthogonal if each element of one subspace is /-ortho
gonal to every element of the other subspace. A subspace of a /-space H is 
non-degenerate if none of its members other than 0 is /-orthogonal to it. Note 
that any /-space is non-degenerate in itself, since (x, y) = 0 for all y m H 
implies that [Jx, y] = 0 for all y, and so Jx = 0 and x = 0. If M and N are 
linearly independent subspaces of a /-space H that are /-orthogonal, then we 
write M ® N for the algebraic direct sum of M and N. By a negative subspace 
we mean a subspace such that (x, x) ^ 0 for all x in the subspace. Let 
Hj (j = 1, 2) be /-spaces and let the indefinite metric in Hj be given by ( , )j. 
Then a J-isomorphism between Hi and H2 is an everywhere defined linear 
transformation 5 of Hi onto i72 such that (Sx, Sy)2 = (x,y)i for all x and y 
in i ï i . We say that two families 7\ and T2 of operators in /-spaces Hi and iJ2, 
respectively, are J-isomorphic if there is a /-isomorphism S of i?i onto H2 such 
that SWi = W2S for all TF, in Tj (j= 1,2). 

3. We now prove some preliminary facts about /-isomorphisms and 
/-isomorphic families of operators. 

PROPOSITION 1. Let S be a J-isomorphism of a J-space H onto a J-space K. 
Then S is invertible and both S and S~l are continuous. In particular, J-unitary 
operators are bounded. 
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Proof. By a well-known theorem of S. Banach, a closed operator which is 
defined on a complete metric space and whose range is in a complete metr ic 
space is continuous. Therefore it suffices to prove t h a t S is closed. 

Let xn be in H for n = 1 , 2 , . . . and xn —» x, Sxn —> y as n —> co. Now x 
is in H and 3/ is in K. Le t s belong to K. Then , as n —> GO , (Sx„, 2) •—» (3/, 2) ; 
(5xre,s) = (xn,S~lz)—* (x,S~lz) = (Sx,z).Thus (y,z) = (Sx,z), (y — Sx,z) = 0, 
i.e., the vector y — Sx is / -or thogonal to all K. Since i£ is non-degenerate, 
y = Sx. 

L E M M A 1. Let {Ty. j = 1, 2, . . . , n\ be a commuting family of bounded J-self-
adjoint operators (J-unitary operators) in a J-space H. Assume that 

(a) The set {Tfv: j = 1, 2, . . . , n, p = 0, 1, 2, . . .} generates the space H for 
some v in H> 

(b) There is a set of commuting bounded J-self-adjoint (J-unitary) operators 
{My j = 1 , 2 , . . . , w} in a J-space K such that the set {Mfe: j = 1, 2 , . . . , n, 
p = 0, 1, 2, . . .} generates the space K for some e in K, 

(c) (ITjwi (Tj — zf)~lv, v) = (11"=! (Mj — zf)~le, e) is a function analytic 
near infinity in all variables, 

(d) If qk(xi, x2, . . . , xn) is a polynomial in n variables for each positive integer 
k, then\\qk(Tx, T2,..., Tn)v\\-*Oifandonlyif\\qk(Mu M2,..., Mn)e\\ - » 0 
as k approaches infinity. 

Then we conclude that the families { T 3] and \ M 3) are J-isomorphic. 

Proof. Consider the Neumann expansion abou t infinity of both sides of the 
equation in condition (c) above. W e equate the coefficients of the like powers 
and use the /-self-adjoint ( / -un i ta ry) character of the Tj and Mj to obta in: 

(1) (Tj(1)
n™ . . . Tj^Wv, 7\(1)»<» . . . Ti(s)

n^v) 

= (M,(i)«<i> . . . Mju^e, M<(1)»<» . . . Mi(s)
n^e). 

This equation holds for all positive integers r and s between 1 and n, all sets 
(m(l), m(2 ) , . . . , m(r)) and (n(l), n(2), . . . , n(s)) of non-negative integers, 
and all subsets ( i ( l ) , i ( 2 ) , • • • , i(s)) and (j(l), j(2), . . . J(r)) of the set of 
integers from 1 t o w . 

Define 5 ( 2 ) = S ( 2 c ( m i , . . . , mr)TK1)
m^ . . . TKr)

m^r)v) to be equal to the 
element 2c (wi, . . . , m r)7kf i (i)

w(1) . . . Mj(r)
m^e. T h e m a p S is well-defined, 

since 2 = 0 implies t h a t ( 2 , 2 ' ) = 0 for any linear combinat ion 
2 ' = 2d(wi, . . . , ns)Ti(D

n(1) . . . Ti(s)
n(s)v. By expanding the inner product and 

using (1) above we see t h a t 

( 5 ( 2 ) , 2d (* i , . . . , n8)MiW*™ . . . Mi(s)
n^e) = 0 

and so ( 5 ( 2 ) , 2 " ) = 0 for all linear combinat ions of the type 
2 " = 2d(wi, . . . , w,)M Î (D

W ( 1 ) . . . Mi(s)
n^e. As these linear combinat ions are 

dense in the / - space K, then 5 ( 2 ) = 0. A similar calculation shows t h a t 5 is 
one-to-one. Condition (d) of the hypothesis ensures t h a t 5 and 5 _ 1 are con
t inuous as linear t ransformations of a dense subspace of H onto a dense 
subspace of K. Therefore we extend 5 to a / - i somorphism of H onto K. 
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The equations STj = MjS for j = 1, 2, . . . , n result from the equations 

ST^c(mu . . . , mr)Tm
m{l) • • • Tj{r)

m^v 

and from the fact that the linear combinations above are dense in H. 

4. In this section we prove some representation theorems about /-self-adjoint 
operators. 

First, we give the following definition. A bounded J-self-adjoint operator A 
in a /-space H will be called regular if H = P © N, where P is a positive 
closed subspace of H and N is a negative closed subspace of H and P is 
invariant under A. 

PROPOSITION 2. 4̂ regular J-self-adjoint operator A in a J-space H has real 
spectrum. Also, {{A — z)~lv, v) = J(t — z)~x dm(v:t) for each v in H, where m 
is a finite real-valued signed measure on the real line. 

We call m(v:t) the measure associated with A and v. 

Proof. This proposition is a trivial consequence of the spectral resolution of 
self-adjoint operators. 

THEOREM 1. Let A be a regular J-self-adjoint operator in a J-space II such that 
{Anv: n = 0, 1, 2, . . .} generates the space H for some v in H. Assume that 
\\pk(A)v\\ —* 0 if and only iff \pjc(t)\2 d\m\ converges to 0 as k approaches infinity, 
where \pk{t)} is a sequence of polynomials in t and m is the measure associated 
with A and v. Then A is J-isomorphic with the J-self-adjoint operator M in the 
space L2(|w|), where Mf(t) = tf(t) and Jf(t) = X(t)f(t) with X = dm/d\m\. 

Proof. By Proposition 2 we have {{A — z)~lv, v) = f (t — z)~l dm(t), where m 
is a real-valued finite signed measure. Consider the space L2{\m\) with indefinite 
metric (/, g) = J fg dm and Hilbert inner product [f,g] = j fg d\m\. Let 
Jf(t) = X(t)f(t), where X = dm/d\m\. Since m is real, X(i) = ± 1 , and so 
J2 = I and J = J*. Also [//, g] = (/, g). Thus L2(\m\) is a /-space. A calcula
tion shows that the operator M given by Mf (i) = tf(t) is /-self-adjoint and 
that {{M — z)~le, e) is equal to ((^4 — z)~lv, v)f where e is the identity function 
in L2(\m\). 

At this point all the conditions of Lemma 1 are satisfied except condition (d). 
For the operators A and M of this theorem, that condition is that 
f \pic(t)\2 d\m\ (t) —> 0 if and only if ||^(^4)t;|| —> 0. The integral here is equal to 
| |^ (M)^ | | 2 . We assumed this last condition. Thus by Lemma 1, A and M are 
/-isomorphic. 

PROPOSITION 3. Let A be a bounded J-self-adjoint operator in a J-space H with 
spectrum on the unit circle such that ||^(^4)|| g c||£C4)||sp, where \\P(A)\\BD *S ^e 

spectral norm of p(A), p is any trigonometric polynomial, and c is a real constant 
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independent of p. Then 

J»2TT 

{eu - z)~1dm(t\x,y) 
o 

for all x and y in H where m(t:x, y) is a finite function of bounded variation on 
[0, 2ir]. Also m is unique if properly normalized. 

Proof. By [30], since A is power bounded (take p(t) = tn above to obtain 
\\An\\ S c for n = 0, 1, 2, . . .)> there is a self-adjoint bounded invertible linear 
operator Q such that A = Q~1TQ, where T is a unitary operator in H. From the 
spectral resolution of T we know that 

J
»2ir 

(elt — z)~x dth(t:x, y) 
o 

for all x and y in H, where m(t:x, y) is a finite function of bounded variation on 
[0, 2TT]. Also, if m is normalized so that m(0) = 0, and m(t) = m(t + 0) for 
0 ^ £ ^ 2TT, then in is unique. Now, for any x and ;y in H we have 

((4 - z)~lx, y) = (Q(T - zy'Q-'x, y) 

= «T - z)-lQT\ Q'y) 

{eil -zTldnt(t'.QT1x,Q'y) 

J *2ir 

{elt — z)~x drn(t:x,y), 
o 

where m(t:x, y) = in(t:Q~lx, Q'y). Here Q' = JQ*J. 

In the following, a /-self-adjoint operator A will be called J-complex-self-
adjoint if its spectrum lies, on the unit circle and if | \p (A ) 11 ^ c\ \p {A ) \ | sp for all 
trigonometric polynomials p, where c is a real constant independent of p. The 
measure m of the above proposition will be called the measure associated with 
A, x, and y. 

PROPOSITION 4. Let 

x o 
2;r 

J
J2TT 

(ett +z)(eu -zT'dmit), 
0 

where m is a real-valued function of bounded variation in [0, 2w]. Assume that the 
equation f (z) = f (z) holds. Then, for all integers n, we have 

emd\m\(t) = e-int d\m\(t), 
o «/o 

where \m\ is the total variation measure of m. 

Proof. From [22], we know that 

i(t) — lim I u(rels) ds, 
r-»l «Jo 
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where u is the real part of / . From [6] we also know that 

M ( 0 = lim f \u(reis)\ds. 

Both of these formulas are valid almost everywhere. Now f(z) = f(z) implies 
that u{z) = u(z). 

Choose a sequence of numbers rq f 1. Let 

KKO = I |«(v")|&. 
Then \mq\ (0) = 0 and there is an M such that 

J
»2?r 

d\mq\ ^ ikf 
o 

for all g, since 

J»2T 

|tt(re**)|£fc^ AT 
o 

for some constant m > 0 and for 0 < r < 1. Each |mff| is of bounded variation 
on [0, 2TT]. Since for each q, the function |#(rtfe**)l is continuous, then 
d\mq\{i) = |w(r,ett)|<ft. 

Now 

J
»2TT / » 2 7 T 

e f a ,<*K|(/) = ein'\u(r,eu)\dt. 
0 *J 0 

The change of variables from t to 2T — / implies that 

J V< dK|(0 = J"«-*"f|«(r^"w)| dt 

and this equals 

since z/(z) = w(s). Therefore we have 

J o emd\mq\(t) = J o e - ^ r f K | ( 0 

for each q. Now we apply the Helly theorem [26] to each side. There is a subse
quence (qj) of the sequence (q) such that \mqj\ (t) —» \m\ (t) as7 —» 00 for each / 
in the closed interval [0, 2T] and 

J
»2r >r»2jr 

g(f) d\mti\(f)-+ g(t)d\m\(t) 
0 *^0 

for all continuous functions g. The result now follows. 
THEOREM 2. Let A be a bounded J-complex-self-adjoint operator in a J-space H 
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such that the set {Anv: n = 0, ± 1 , ± 2 , . . .} generates H for some v in H. Assume 
that \\PK(A)V\\ —> 0 if and only if 

x 
2TT 

it\ |2 \pk(e
u)\Ad\m\(f)-+0, 

where m is the measure associated with A, v, and v, and each pn{t) is a polynomial 
in t and tr1. Then A is J-isomorphic with J-self-adjoint operator M acting in the 
space L2( |w|), where Mf(t) = euf(t) and Jf(t) = X(t)f(2w - t) with 
X = dm/d\m\. 

Proof. We have 

J
»2TT 

(eu -zT1dm{f) 
o 

since A is /-complex-self-adjoint by Proposition 3. Also m is a. real-valued 
function of bounded variation that gives rise to a real finite signed Borel 
measure in [0, 2T] again denoted by m. From the Neumann expansions of each 
side of this equation about 0 and oo and the identity principle of complex 
variables, we have that for all integers n, the equation 

2JT 

eint dm(t) 
o 

holds. Since A is /-self-adjoint, we have (Anv, v) = (v, Anv) = (Anv, v) and this 
is equal to 

x 
2TT 

— int dm(t). 
*s 0 

Therefore 
-»2TT /»2TT 

J» Z7T r* 2ir 

einl dm(t) = e~int dm(f) 
0 «^0 for all integers n. Now consider L2(\m\) and Mf(t) — euf(t). Let Jf(t) = 

X(t)f(2ir — /) where X = dm/d\m\. Let the Hilbert inner product be given by 

Then 
-»2TT 

and 

J»2TT 

f(t)g(t)d\m\(t). 
0 

Uf,g]= \* i(2v-t)W)dm(t) 

J»2TT 

f(t)g(2r-t)dtn(f). 
0 

f0 

0ikt Let f(t) = em and g(t) = eiQt where k and q are integers. Then [Jf,g] = 
U,Jg]> Since the set {eint:n = 0, ± 1 , ± 2 , . . . } generates L2(\m\) [28], 
t̂ f» Ù = Iff Jg\ ^or a ^ pa i r s / and g in L2(\m\). Therefore J = J*. 
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To show that J2 = I, it suffices to show that [Jf, Jg] = [f, g] for a l l / and g 
in L2(|m|). Again we need only show it when/(/) = eikt and g(t) = eiQt where k 
and q are integers. We have 

J
»2ir r*2ir 

e-ii*-*)'d\m\(t)= e^-"ud\m\{t)= [f,g] 
o *J o 

by Proposition 4. This now implies that X(2ir — t) = X(/) and that L2(\m\) 
with the indefinite inner product (/, g) = [Jf, g] is a /-space. 

A calculation shows that M is /-self-adjoint and that 
{{M J»2TT 

(eu - zYxdm{t) = ((A - zT\v), 
o 

where e is the identity function in L2(\m\). Also, {AfV: w = 0, ± 1 , ± 2 , . . .} 
generates the space L2(\m\). By hypothesis, ||/?fc(^4)^|| —» 0 if and only if 

{ ' Meu)\* d\m\(t) = | | ^ ( M ) e | | 2 ^ 0 . 

Therefore by Lemma 1, the sets {M, M~1} and {A, A~1} are /-isomorphic and 
the theorem follows. 

In what follows we shall call a bounded /-self-adjoint operator in a /-space H 
a J-Volterra-self-adjoint operator if it has a one-point spectrum r and if 
A + A * — 2r/ has one-dimensional range spanned by a vector y with Jv = v 
and ||fl|| = 1. ( / i s the identity operator in H.) We will refer to the operator A 
as a / - Volterra-self-adjoint operator with spectrum r and vector v. 

THEOREM 3. Let A be a J-Volterra-self-adjoint operator with spectrum r and 
vector v in a J-space H such that the set [Anv: n = 0, 1, 2, . . .} generates the space 
H. Then A is J-isomorphic with the operator a V + rl, operating in the Lebesgue 
measure space L2(0, 1), where 

Vf(t) = f'ftfds, 

and Jf(t) = / ( l — i). The real number a is given by (A + A*)v = (a + 2r)v. 

Proof. Let B = A — rl. Then B has a one-point spectrum 0, is a bounded 
/-self-adjoint operator, and B + B* has one-dimensional range spanned by v. 
Also (B + B*)v = av. Let F{z) = 1 - a((B - z~^v} v). Since (u, v) = [u, Jv] 
for all u and v in H and Jv = v, then F(z) = 1 — a[(B — z~l)~lvy v]. We now 
refer the reader to [14]. From [14, the proof of Theorem 8], F(z) = eaz. 
Furthermore, 

(*i + *2) Z ziW[B\BS>] = (l/a)(F(sx)F(s2) - 1), 

where £i and £2 are complex variables in the finite plane. Here F is analytic in 
the finite complex plane. 
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Consider a V and / as above in L2(0, 1). The Hilbert inner product is given by 

[/,«]= f f(t)W)dt. 
Thus 

[Jf,g}= f f(l-t)W)dt. 

By a change of variables t to 1 — t, the last integral becomes 

f f(t)g(i-t)dt 

which is [/, /g ] . Therefore J = J*. Also J2 = / . Thus L2(0, 1) is a /-space with 
indefinite metric (/, g) = [Jf,g]. Let g be the identity function in L2(0, 1). 
Then since aV satisfies all the conditions that B does, we have 

((aV - z-^-^e) = F(z). 

And also we have 

(S1 + S2) E *iV[(aF)*e f (aF)fe] = fr + s2) E s i V I B ^ B H 
ptq=0 <pfq=0 

By the identity principle of complex variables, [(aV)pe, (aV)Qe] = [Bpv, BQv] for 
all non-negative integers p and q. Therefore | |^*(^)^| | —> 0 if and only if 
H ^ O ^ ^ I i —> 0 where {pk} is a sequence of polynomials. Also the set 
{(aV)ne: n — 0, 1, 2, . . .} generates the space L2(0, 1) and the set 
{Bnv: n = 0, 1, 2, . . .} generates the space i7. A calculation shows that a F is 
/-self-ad joint. 

Therefore by Lemma 1, B and aV are /-isomorphic, and so are A and 
aV+rl. 

Note that the above isomorphism is also a Hilbert isomorphism, i.e. the two 
operators are unitarily equivalent. 

5. In this section we prove some theorems about /-unitary operators. 
First, we give the following definition. A J-unitary operator U in a /-space H 

will be called regular if H = P © N, where P is a positive closed subspace of H, 
N is a negative closed subspace of H, and P is invariant under U and U~l. 

PROPOSITION 5. A regular J-unitary operator U in a J-space H has spectrum on 
the unit circle. Also 

J»27T 

(eu -z)-1dm{v:t) 
0 

for each v in H, where m(v:t) is a real-valued finite signed measure on the interval 
[0, 2x]. 

We call m(v:t) the measure associated with U and v. 
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Proof. This proposition is a trivial consequence of the spectral resolution of 
unitary operators. 

We remark that regular /-unitary operators are the stable operators in the 
terminology of Kreïn [16], and were first considered by Phillips [24] in 1961. 

THEOREM 4. Let U be a regular J-unitary operator in a J-space H such that 
{ Unv: n = 0, ± 1 , ±2 , . . . } generates H for some v in H. Assume that \\pk(U)v\\ —» 0 
if and only if 

J»27T 

\pk(e
il)\* d\m{v:t)\ ^ 0 as k -> oo, 

o 

where \pk(t)} is a sequence of polynomials in t and t~l and m(v:t) is the measure 
associated with U and v. Then U is J-isomorphic with the J-unitary operator M in 
the space L2(\m\),whereMf(t) = euf it) and Jf (t) = X(t)f(t) with X = dm/d\m\. 

Proof. By Proposition 5, we have 

J» 2 T T 

(ett -zTldm{v:t), 
o 

where m is a real signed Borel measure in [0, 27r]. 
Consider the space L2(\m\) with indefinite metric 

/»2TT 

(/, g) = J fg dm 
and Hilbert inner product 

JI 2 T 

fgd\m\. 
o 

Let 7 / (0 = X(t) f (t), where X = dm/d\m\. Since m is real, X(t) = ± 1 and so 
J2 = I and 7 = 7*. Also [Jf, g] = (/, g). Thus L2(\m\) is a 7-space. A calcula
tion shows that the operator M given by Mf it) = eilf(t) is 7-unitary and 
{{M — z)~le, e) = ( ( [ / — z)~xv, v), where e is the identity function in L2(\m\). 
Also the set {Mne: n = 0, ± 1 , ± 2 , . . .} generates this L2-space. Since 

J» 2 T T 

\pk(e
u)f d\m\(t), 

0 

then our last assumption implies that | \pk ( U)v\ | —> 0 if and only if | \pk (M)e\ | —-> 0. 
Thus by Lemma 1, the families { U, U~l) and {ikf, M~l) are 7-isomorphic. 

PROPOSITION 6. Let U be a J-unitary operator in a J-space H with positive real 
spectrum and such that for some real c we have \\p(U)\\ ^ ^HM^OIIsp for all 
polynomials p, where \\p(U)\\sv is the spectral norm of p{U). Then 

( ( [ / — z)~xx, y) = J(t — z)~l dm(t:x, y) 

for each pair (x, 3/) of members of H where m (fix, y) is a real finite function of 
bounded variation in some interval [1/a, a] (a > 1) containing the spectrum of U. 
Also m is unique if properly normalized. 
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Proof. Let a > 1 be chosen so that [1/a, a] contains the spectrum of U. We 
may do this since the spectrum of U is symmetric about the unit circle. Let P be 
the set of all polynomials on [1/a, a] and C the continuous functions on the 
same interval. Then P is dense in C in the sup norm topology where the norm is 
given by the formula | | / ||œ = Sup {|/(/)|: 1/a S t S a] for/ in C. Now we con
sider for each pair (x, y) of members of H the linear functional on P given by 
L(P) = (P(U)Xj y). We have the inequality 

\L(p)\ = \(p(U)x,y)\ g HMt/)ll 11*11 IMI 
and thus we have \L(p)\ S c\\p(U)\\al> \\x\\ \\y\\. Since the spectrum of U is 

contained in [1/a, a], we have ||£(£/)||8p = ll/HL [31]. 
Therefore \L{p)\ ^ c\\x\\ \\y\\ \\p\\œ and L is bounded. Thus there is a 

complex-valued function of bounded variation F(/:x, y) such that 

(p(U)x,y) = f £(0^:x,:y) 
' 1 / a 

for all £ in P. Since Riesz's theorem is valid for C, we have 

(f(U)x,y) = f f(t)dV(t:x,y) 
•J 1/a 

for all / in C. In particular, 

(U*x,y) = P f dF(/3C,y) 

for all integers ^. If \z\ < 1/a, then 

(! - z) 1 = Z t v"~'*' 
and if |z| > a, then 

(/-g)-^ _£ /v*-1. 
Therefore we have 

( ( t / - * ) " 1 * , ? ) = ( - E irz^x.y) = - E «—'(CTx.y). 

: expression above is equal to 

œ pa na / œ \ 
- E z-"-1 tndV(t:x,y) = - (2 /V""' ^(laj) 

w=0 v i / a *^l/a \w=0 / 

= P (t-syUVifJcy), 
•J 1/a 

whenever \z\ > a. As the singular points of ((£/ — s)_1x, 3/) occur in the interval 
[1/a, a], by analytic continuation we have 

F(z) = ( ( t f - s ) - 1 * ,? ) = P (t-zyUVitvcy) 
«J 1/a 
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for z not in [1/a, a]. Let V(t:x, y) = V (t) + iV"(t), where V and V" are real-
valued functions of bounded variation. Then ((£/ — 2)-1x,:y) = ^'(2) + iF" (z), 
where 

F ( s ) = f ( / - s ) ~ V F ' ( 0 and F'(*) = f (* - « r ^ ' f t ) . 

By [26], 

f °° \F(r + is)\ dr and P° |F"(r + w)| dr 
* / -co «/-co 

are both uniformly bounded for s > 0. Therefore 

/*oo 

I \F(r + is)\dr 

is uniformly bounded for 5 > 0 where F(z) = ((£/ — s) -1x, 3>). Hence there is a 
real-valued function of bounded variation m(t:xfy) with support in [1/a, a] 
such that 

J«a 

(* - z)~1dm(t:x1y). 
l/a 

Moreover, 

m{t\x, y) = lim I j(^ + is) ds 

except on an at most countable point set where j (z) is the imaginary part of 
F(z). 

PROPOSITION 7. Let 

F(z) = P (f-zT1dm{t), 

where a > 1 and m is a real-valued function of bounded variation with support on 
the interval [ l /a , a] and such that m(t) + m(l/t) is constant there. Then 

tk d\m\(t) = I f~kd\m\(t) 
l/a J l/a 

for all integers k where \m\ is the total variation measure of m. 

Proof. We can consider the above function F(z) to be equal to 

I (t-z)~1dm(t) 

if m is defined to be constant off [l /a, a]. From the general theory, the inversion 
formulas for m and \m\ are 

m(t) = lim I j(r + is) dr and \m\(t) = lim I \j(r + is)\ dr, 
s->0 J l/a 5->0 « / l /a 
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respectively, where j(z) is the imaginary part of F(z). Also we have 

J»a 

\j(r + is) — mf(r)\ dr = 0 
„-^- 1/a 

[27; 26]. (Here m' means the derivative of m.) Thus 

lim I | \j(r + is) \ - \m! (r) \ \ dr = 0. 
s->0 J 1/a 

By a change of variables r to \/r we obtain 

lim I ||r~2jO'~1 + i#5)l "" |f~2w'(r_1)|| dr = 0. 

Let {sw} be a strictly monotonically decreasing sequence of real numbers that 
converges to 0. Let 

gn(r) = \r~2j(r-1 + isn)\ - \j(r + isn)\. 

Then by the triangle inequality, |gw(r)l is l e s s than or equal to the sum of 

\\r-2j(r-i + isn)\ - \r-*tn'(r-i)\\ 

and 

\\j(r + isn)\ - \m'(r)\\ + \\r~W(r^)\ - |m'(r)| | . 

Let m(t) + m{l/t) — c, where c is a constant. Now m' exists except on a 
countable set, and so dm/dr + (dm/du) (du/dr) = 0 wherever m! exists if 
u = 1/r. Therefore m' (r) = r~2mr (V-1) almost everywhere and so 

Thus 

Now define 

J ||r 2m'(r l)\ — \rn'(r)\\dr = 0. 
1/a 

Hm f \gn(r)\dr = 0. 

W ( 0 = I \j(r + isn)\ dr 
•Jl/a 

in the interval [1/a, a]. Then |mw |(l/a) = 0 for all n, and 

d\mn\ = I IJO + Wn)| #> 
1/a « / l /o 

is uniformly bounded in ?z. Therefore, by the Helly theorem, there is a sub
sequence {np} of {n} such that |mw | —•> \m\ as £ —» oo, and we also have 

r l /a «/1/a 

for all continuous functions/ on the interval [1/a, a]. 
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Let k be any integer. Then tk is continuous and bounded in [1/a, a] and 

J»a pa 

tkd\mn\(t) = tk\j(t + isn)\dt. 
1/a *J\/a Now let u = 1/t. Then 

J»a /»a 

/* d|ww| (0 = I ^~*|w~ 2 i (^ _ 1 + w») I dw. 
1/a * / l / a 

But by definition, lu^jiw1 + isn)\ = gn(u) + \j(u + wTO)| and thus 

J»a /«a /»a 

/*d|ran |(0 = I u~k\j(u + isn)\du + I u~kgn(u) du 
1/a J 1/a *Jl/a and so 

J»a pa pa 

tk d\mnp\(t) = rkd\mnp\(t)+ rkgKp (t) dt. 
1/a * / l / a «/1/a Taking limits as p approaches infinity, the result now follows. 

Henceforth, a /-unitary operator U will be called J-real-unitary if it has 
positive real spectrum and if | |£(£/)| | = cll^(^)llsP for all polynomials p(t) 
where c is a real constant. The measure m(t:x, y) of Proposition 6 will be called 
the measure associated with U, x, and y. 

THEOREM 5. Let U be a J-real-unitary operator in a J-space H such that the set 
{ Unv: « = 0 , 1 , 2 , . . . } generates the space H for some v in H. Assume that 
\\pn(JJ)v\\ —»0 if and only if j \pn(t)\

2 d\m\(t) —» 0, where m is the measure 
associated with U, v, and v, and {pn(t)} is a sequence of polynomials. Then U is 
J-isomorphic with the J-unitary operator M in L2(|w|), where Mf (t) = tf(t) and 
Jf(t) = X ( 0 / ( 1 / 0 with X = dm/d\m\. 

Proof. Since U is /-real, 

{{U - zT\v) = f (t - zY1dm{t) 
J 1/a 

by Proposition 6, where m may be considered a real finite signed Borel measure 
on the interval [1/a, a] which contains the spectrum of U. From the Neumann 
expansions of both sides about 0 and oo and the identity principle of complex 
variables we have 

x indm(t) = (JTV^V) 
1/a 

for all integers n. Therefore 

P tndm{t) = (Unv,v) = (o, U~nv) = (U~nv, v) = f t~ndm(t). 
J 1/a J 1/a 

Thus we have, by changing t to 1/t in the last integral, 

tnd(m(t) + m ( l / 0 ) = 0 J*' 
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for all integers n. Thus m(t) + m(l/t) is a constant. Therefore 

P tnd\m\(t) = P t~nd\m\{t) 
«Jl/a Jl/a 

for all n by Proposition 7. 
Now consider L2(\m\) with Af/(0 = tf{t) and / /(*) = X ( 0 / ( 1 / 0 , where 

X = dm/d\m\. The Hilbert inner product is 

[/,£]= f f(t)W)d\m\(t). 
Therefore 

[//,*] = f f(X/t)gU)dm(t) and [/, /g] = f f(t)J(ï/ï) dm(t). 
•Jl /a «Jl/a 

Since the polynomials are dense in L2(|ra|) [1], it suffices to show that 
[Jf, g] = [/» ̂ ] f o r / ( 0 = tw and g(0 = J*. For this pair of functions, 

Vf,g] = f rwdm(t) and [/, Jg] = f T ( 

«Jl/a «Jl/a 

—(q-w) dm(t), 

and these are equal by the above. Thus J = J*. 
To show that J2 = / , we need only show that [Jf, Jg] = [f, g] for all pairs / 

and g where f (t) = tw and g(t) = tQ. For this pair of functions, 

[Jf.Jg] = f r ' ^ d M t o = P ^d |« | (o = [/lg], 
«Jl/a «Jl/a 

again by the above. From the fact that \X\ is identically one [28] and all the 
preceding, we conclude that J is invertible, self-ad joint, and unitary. This 
implies that X(t) = X(l/t). The space L2(|m|), as above, is a /-space and the 
indefinite metric is given by (/, g) = [Jf, g]. 

A calculation shows that M is /-unitary and that 

{(M-z)-\,e) = P (t-z)-1dm(t)= ((U-zyyv), 
•Jl /a 

where e(t) = 1. By assumption, ||Ai(C/)fl|| —> 0 if and only if 

J \pn(t)\* d\m\(t) = ||A>(il4>||2 

converges to zero. Finally, the set {Mne: n = 0, 1, 2, . . .} generates L2(\m\) 
since this is the set of all powers of t. Therefore by Lemma 1, the operators U 
and M are /-isomorphic. 

Now we make the following definition. Let U be a /-unitary operator in a 
/-space H with one-point spectrum eib for real b. If 

i((U - eib)(U+ e™)-1 - (U* - e~ib)(U* + e~ib)-1) 

has one-dimensional range spanned by a vector vin H with Jv = v and | |p| | = 1, 
then we call U a J-Volterra-unitary operator with vector v and spectrum eib. 
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THEOREM 6. Let U be a J-Volterra-unitary operator with vector v and spectrum 
eib in a J-space H such that the set { Unv: n = 0, 1, 2, . . .} generates H. Then U is 
J-isomorphic to —e~ibM in the Lebesgue measure space L2(0, 1), where 

Mf(t) = - / ( * ) + 2ia V e~ia{t-s)f{s)ds 

and Jf(t) = f (1 — t). The real number a is determined by the equation 

i((U - eib)(U+ eiJ))~l - (U* - e-ib)(U* + e~ih)-l)v = av. 

Proof. Let V = -e~ibU. Then {Vnv: n = 0, 1, 2, . . .} generates H, and V is 
/-unitary with one-point spectrum — 1 . Also 

i((V+ I){V - I)-1 - (V* + I)(V* - I)-1) 

has one-dimensional range spanned by v. Let A = i(V + I)(V — I)'1. Then A 
is /-self-adjoint with one-point spectrum 0 and A + A * has one-dimensional 
range spanned by v. Consider the function 1 — a((A — z~~l)~lv, v) = F(z). 
Since Jv = v, then F(z) = 1 — a[(A — z~l)~lv, v] due to the fact that 
(u, Jv) = [u, v] for all u and v in H. 

The operator A here satisfies [14, Theorem 8 (i) and (ii)], and so F(z) = eaz. 
Furthermore, 

(«1 + 212) Z ziWU'viA'v] = (l/a)(F(z1)F(z2) - 1). 
P,Q=0 

Also the operator aW given by 

(aW)f(t) = ('af(s)ds 

satisfies the same conditions that A does and so 

1 - a((aW - z~l)~le, e) = F(z), 

where e is the identity function in L2(0, 1). Also 

(z1 + z2) £ zM{aW)\ (aW)9e] = {l/a){F{z1)F(z2) - 1). 
p,q=0 

Equating the coefficients of 2/22* in the two equal summations above, we have 
[Apv, Aqv] = [(aW)pe, (aW)qe] for all non-negative integers^? and q. Recall that 
A = i(y+ I)(V - I)-1. Thus 

V= - 1 - 2 f: (-iA)n 

w = l 

by a power series expansion. Thus 

[Vv, V%] = [ ( - / - 2 g {-iAf^Jv, ( -1 - 2 g (-Î4)»)'»] . 

The right-hand side of this last equality is clearly a sum of terms of type 

0r.[ATv, A°v] = 0rs[(aWye, (aWye]. 
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Adding up we have 

Y( co \ v / oo \q ~| 

[V*v, Vv] = \\-I - 2 £ {-iaWfJ e, \-I - 2 Ç (-«aW0"J *J . 

However, 
00 

- J - 2 X) {-iaWf = M 

by definition. Therefore [ F ^ , FV| = [Mpe, Mqe] iorp, q = 0, 1, 2, . . . . In par
ticular, ||£jfc(T0i>|| —> 0 if and only if ||£fc(Jtf)e|| —> 0, where \pk(t)\ is a sequence 
of polynomials in /. 

Recall that ((A - z~l)~lv,v) = ( l / a ) ( l - eaz) and (4 + A*)v = av. But 
(4 - z-1)-1 = ( l /2 i ) ( l - w ) ( 7 - ^)~1(T r - / ) by the definition of A where 
w = (1 + is)( l — iz)"1. 

Therefore we have 

(2i)"1(l - ^ ( ( F - ^ - K F - i> , i ; ) = arl(l - exp(ia(l - w)(1 + w)~1)). 

Since ( F — w)~l(V —I) = I — (1 — w)(V — w)"1, we have 

(2f)_1(l ~ w) ((»,») - (1 - w)((V - w)~lv,v)) 

= a~1(l — exp(ia(l — w)(l + ze;)-1)), 

and therefore 

( ( 7 - w)-1»,») = ( l - w ) - 1 - 2 ^ a - 1 ( l - w ) ~ 2 ( l - e x p ( m ( l - w ) ( l + w)-1)). 

Both sides of this last equation are analytic except at w = 1. Let L2(0, 1), ikf, 
and J be as in the conclusion of the theorem. Then L2(0, 1) is a /-space with 
indefinite metric (/, g) = [//, g] and M is /-unitary. Since for each 
n = 0, 1, 2, . . . we have 

(M + I)n+le(t) - 2(M + I)ne(t) = -2(2ia)ne-iattn/nl, 

the set {{M + I)ne: n = 0, 1, 2, . . .} generates L2(Q, 1), where e is the identity 
function in that space. Therefore the set {Mne: n = 0, 1, 2, . . .} generates 
L2(0, 1) [1]. Also, 

oo 

((M+I- Z)-\, e) = - £ Z - ^ a i f + /)"c, e) 

= - Z " 1 - £ Z""-1 f (M + l)ne(t)7(T^T) dt 

and this equals 

^ i Jo Jo (« — 1)! 
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Thus 

((M+ I - Z)-le,e) 

and so 

((M - w)~le,e) = (1 - w)~l - 2iarl(l - w)~2(l - exp(m(l - w)(l + w)-1)), 

where w = Z — 1. The last expression is equal to ((V — w)~lv, v). Therefore 
((M — w)-^, e) = ( (F — w)~lv, v). 

Thus by Lemma 1, the operators M and V are /-isomorphic and hence 
— e~ibM and Z7 are /-isomorphic. 

Note that these two operators are also Hilbert isomorphic, i.e. unitarily 
equivalent. 
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