Multilinear Proofs for Convolution Estimates for Degenerate Plane Curves

Jong-Guk Bak

Abstract. Suppose that $\gamma \in C^{2}([0, \infty))$ is a real-valued function such that $\gamma(0)=\gamma^{\prime}(0)=0$, and $\gamma^{\prime \prime}(t) \approx$ t^{m-2}, for some integer $m \geq 2$. Let $\Gamma(t)=(t, \gamma(t)), t>0$, be a curve in the plane, and let $d \lambda=d t$ be a measure on this curve. For a function f on \mathbf{R}^{2}, let

$$
T f(x)=(\lambda * f)(x)=\int_{0}^{\infty} f(x-\Gamma(t)) d t, \quad x \in \mathbf{R}^{2}
$$

An elementary proof is given for the optimal $L^{p}-L^{q}$ mapping properties of T.
Fix an integer $m \geq 2$. Suppose that $\gamma \in C^{2}([0, \infty))$ is a real-valued function such that $\gamma(0)=\gamma^{\prime}(0)=0$, and $\gamma^{\prime \prime}(t) \approx t^{m-2}$. That is, there exist constants $c_{1}, c_{2}>0$ such that $c_{1} \leq \gamma^{\prime \prime}(t) / t^{m-2} \leq c_{2}$ for $t>0$. Let Γ be a curve in the plane given by $\Gamma(t)=(t, \gamma(t))$, $t>0$, and let λ denote the measure $d \lambda(\Gamma(t))=d t$ on Γ. Define a singular convolution operator T by

$$
(T f)(x)=(\lambda * f)(x)=\int_{0}^{\infty} f(x-\Gamma(t)) d t, \quad x \in \mathbf{R}^{2}
$$

for suitably nice functions f, say continuous functions with compact support. The problem is to determine all pairs (p, q) such that T is bounded from $L^{p}\left(\mathbf{R}^{2}\right)$ to $L^{q}\left(\mathbf{R}^{2}\right)$. Recently a lot of work has been done on this type of problems (see e.g. [RS], [O1], [O3] and the references given there).

Let $A=(2 /(m+1), 1 /(m+1)), B=(m /(m+1),(m-1) /(m+1))$ be points in the plane. It is well known that for T to be bounded from $L^{p}\left(\mathbf{R}^{2}\right)$ to $L^{q}\left(\mathbf{R}^{2}\right)$, it is necessary that $(1 / p, 1 / q)$ is on the closed line segment $A B$. (In fact, this may be shown as follows. Assume that T is bounded from $L^{p}\left(\mathbf{R}^{2}\right)$ to $L^{q}\left(\mathbf{R}^{2}\right)$. Taking f to be the characteristic function of the square $[0, \delta] \times[0, \delta]$ for small $\delta>0$ shows that $\delta^{1+1 / q} \leq C \delta^{2 / p}$. Thus $1+1 / q \geq 2 / p$, and so by duality $(1 / p, 1 / q)$ is in the closed triangle with vertices $(0,0),(1,1),(2 / 3,1 / 3)$. Now taking f to be the characteristic function of the rectangle $[0, a] \times[0, \gamma(a)]$ shows that $a^{1+(m+1) / q} \leq C a^{(m+1) / p}$ for $a>0$, which implies that $1+(m+1) / q=(m+1) / p$. Therefore, it follows that $(1 / p, 1 / q)$ is on $A B$. See e.g. [RS], [BMO], [O3].)

It is possible to prove the converse statement-that T is bounded from $L^{p}\left(\mathbf{R}^{2}\right)$ to $L^{q}\left(\mathbf{R}^{2}\right)$, if $(1 / p, 1 / q)$ is on the closed segment $A B$-by using the methods in [C2] based on the

[^0]Littlewood-Paley theory (see also [Se]). Thus the following theorem holds. The purpose of this note is to give an elementary proof of this result.

Theorem 1 There exists a constant $C=C\left(m, c_{1}, c_{2}\right)$, independent of f, such that

$$
\begin{equation*}
\|\lambda * f\|_{L^{q}\left(\mathbf{R}^{2}\right)} \leq C\|f\|_{L^{p}\left(\mathbf{R}^{2}\right)} \tag{1}
\end{equation*}
$$

if and only if $\left(\frac{1}{p}, \frac{1}{q}\right)$ is on the closed line segment $A B$.
The proof is an adaptation of the multilinear proof of (1) given by Oberlin [O2] in the case that λ is the arc length measure on the unit circle. (See [B] for a proof of (1) on the open segment $A B$. The latter proof also applies to some curves and surfaces which contain a point where the curvature vanishes to infinite order.) In what follows, the symbol C denotes a positive constant which may not be the same at each occurrence.

Proof By duality and interpolation it is enough to prove (1) when $(1 / p, 1 / q)=A=$ $(2 /(m+1), 1 /(m+1))$, or to prove the equivalent multilinear estimate

$$
\begin{equation*}
\left|\int_{\mathbf{R}^{2}} \prod_{j=1}^{m+1} T f_{j}(x) d x\right| \leq C \prod_{j=1}^{m+1}\left\|f_{j}\right\|_{\frac{m+1}{2}} \tag{2}
\end{equation*}
$$

By the multilinear trick of Christ (see [C1], [D1]), (2) follows from

$$
\begin{equation*}
\left|\int_{\mathbf{R}^{2}} \prod_{j=1}^{m+1} T f_{j}(x) d x\right| \leq C\left\|f_{1}\right\|_{1} \prod_{j=2}^{m+1}\left\|f_{j}\right\|_{m, 1} \tag{3}
\end{equation*}
$$

where $\|\cdot\|_{p, q}$ stands for the Lorentz space norm on \mathbf{R}^{2}. It is enough to show this when $f_{j} \geq 0$ and f_{1} is the point mass at the origin, in which case (3) becomes

$$
\begin{equation*}
\int_{0}^{\infty} \prod_{j=2}^{m+1} T f_{j}(\Gamma(t)) d t \leq C \prod_{j=2}^{m+1}\left\|f_{j}\right\|_{m, 1} \tag{4}
\end{equation*}
$$

(To see that (4) actually implies (3), replace each f_{j} in (4) by its translate $f_{j, x}(y)=f_{j}(x+y)$, and integrate in x after multiplying both sides by $f_{1}(x)$.)

The estimate (4), in turn, follows by the multiple Hölder inequality from

$$
\left(\int_{0}^{\infty}[T f(\Gamma(t))]^{m} d t\right)^{1 / m} \leq C\|f\|_{m, 1}
$$

which is equivalent to the estimate

$$
I \equiv \int_{0}^{\infty} T f(\Gamma(t)) g(t) d t \leq C\|f\|_{m, 1}\|g\|_{L^{\frac{m}{m-1}}(P)}
$$

for nonnegative functions f on \mathbf{R}^{2} and g on $P=[0, \infty)$.

The transformation $x_{1}=t-s, x_{2}=\gamma(t)-\gamma(s)$ of P^{2} into \mathbf{R}^{2} is one-to-one off the line $s=t$, and the absolute value J of the Jacobian is given by $J=\left|\gamma^{\prime}(t)-\gamma^{\prime}(s)\right|$. So

$$
I=\int_{0}^{\infty} \int_{0}^{\infty} f(\Gamma(t)-\Gamma(s)) g(t) d s d t=\int f(x) \tilde{g}(x) d x
$$

where $\tilde{g}(x)=g(t) J^{-1}$. Hence, by Hölder's inequality for Lorentz spaces,

$$
I \leq C\|f\|_{m, 1}\|\tilde{g}\|_{\frac{m}{m-1}, \infty}
$$

It remains to show that

$$
\|\tilde{g}\|_{\frac{m}{m-1}, \infty} \leq C\|g\|_{L^{\frac{m}{m-1}}(P)}
$$

That is, we need to prove

$$
\begin{equation*}
\left|\left\{x \in \mathbf{R}^{2}: \tilde{g}(x)>\alpha\right\}\right| \leq C \int_{0}^{\infty}\left(\frac{g(t)}{\alpha}\right)^{m /(m-1)} d t \tag{5}
\end{equation*}
$$

The left-hand side of (5) is equal to the integral $\int_{G} J d s d t$, where

$$
G=\left\{(s, t) \in P^{2}: g(t) J^{-1}>\alpha\right\}
$$

We split the integral into the part with $t>s$ and the part with $s>t$. Since

$$
J=\left|\int_{s}^{t} \gamma^{\prime \prime}(u) d u\right| \approx\left|t^{m-1}-s^{m-1}\right|
$$

we have $J \approx t^{m-2}(t-s)$ when $t>s>0$, and $J \approx s^{m-2}(s-t)$ when $s>t>0$. So

$$
\int_{G \cap\{t>s\}} J d s d t \leq C \int_{\left\{(s, t) \in P^{2}: 0<t^{m-2}(t-s)<C g(t) / \alpha\right\}} t^{m-2}(t-s) d s d t
$$

For each fixed $t>s$, the substitution $u=t^{m-2}(t-s)$ shows that the last integral is bounded by

$$
C \int_{0}^{\infty} \int_{0}^{C g(t) / \alpha} u^{1 /(m-1)} d u d t \leq C \int_{0}^{\infty}\left(\frac{g(t)}{\alpha}\right)^{m /(m-1)} d t
$$

because $|\partial u / \partial s|=t^{m-2} \geq u^{(m-2) /(m-1)}$. The term $\int_{G \cap\{s>t\}} J d s d t$ is estimated similarly. Thus we have shown (5), and the proof is complete.

Next, fix a real number $m \geq 2$, and let $\Gamma(t)=\left(t, t^{m}\right), t>0$. Then $d \mu=t^{(m-2) / 3} d t$ is (a constant multiple of) the affine arc length measure on this curve. Consider the convolution operator

$$
(\mu * f)(x)=\int_{0}^{\infty} f(x-\Gamma(t)) t^{(m-2) / 3} d t, \quad x \in \mathbf{R}^{2}
$$

A multilinear argument also gives an easy proof of the following result, which was proved originally by using complex interpolation (see e.g. [D2]).
Theorem 2 There is a constant C such that

$$
\|\mu * f\|_{L^{q}\left(\mathbf{R}^{2}\right)} \leq C\|f\|_{L^{p}\left(\mathbf{R}^{2}\right)}
$$

if and only if $\left(\frac{1}{p}, \frac{1}{q}\right)=\left(\frac{2}{3}, \frac{1}{3}\right)$.

Proof The change of variables $t=s^{3 /(m+1)}$ gives

$$
(\mu * f)(x)=C \int_{0}^{\infty} f\left(x-\left(s^{b}, s^{3-b}\right)\right) d s,
$$

where $0<b=3 /(m+1) \leq 1$. A reduction as above shows that the inequality $\|\mu * f\|_{3} \leq$ $C\|f\|_{3 / 2}$ follows from

$$
\begin{equation*}
\int_{G} J d s d t \leq C \int_{0}^{\infty}\left(\frac{g(t)}{\alpha}\right)^{2} d t \tag{6}
\end{equation*}
$$

where $J=C(s t)^{b-1}\left|s^{3-2 b}-t^{3-2 b}\right|$ and $G=\left\{(s, t) \in P^{2}: J<g(t) / \alpha\right\}$. For each fixed t, put $u=(s t)^{b-1}\left|s^{3-2 b}-t^{3-2 b}\right|$. Since $0<b \leq 1$, we have $|\partial u / \partial s| \geq c(t / s)^{2-b} \geq c>0$ when $t>s>0$, and $|\partial u / \partial s| \geq c(s / t)^{1-b} \geq c>0$ when $s>t>0$. Therefore, we obtain

$$
\int_{G} J d s d t \leq C \int_{0}^{\infty} \int_{0}^{C g(t) / \alpha} u d u d t
$$

which implies (6).

References

[B] J.-G. Bak, Sharp convolution estimates for measures on flat surfaces. J. Math. Anal. Appl. 193(1995), 756771.
[BMO] J.-G. Bak, D. McMichael and D. Oberlin, Convolution estimates for some measures on flat curves. J. Funct. Anal. 101(1991), 81-96
[C1] M. Christ, On the restriction of the Fourier transform to curves: endpoint results and the degenerate case. Trans. Amer. Math. Soc. 287(1985), 223-238.
[C2] \longrightarrow Endpoint bounds for singular fractional integral operators. Preprint.
[D1] S. Drury, A survey of k-plane transform estimates. Commutative harmonic analysis (Canton, NY, 1987), 43-55; Contemp. Math. 91, Amer. Math. Soc. Providence, Rhode Island, 1989.
[D2] ——, Degenerate curves and harmonic analysis. Math. Proc. Cambridge Philos. Soc. 108(1990), 8996.
[O1] D. Oberlin, Convolution estimates for some measures on curves. Proc. Amer. Math. Soc. 99(1987), 56-60.
[O2
[O3]
[RS] F. Ricci and E. M. Stein, Harmonic analysis on nilpotent groups and singular integrals III: fractional integration along manifolds. J. Funct. Anal. 86(1989), 360-389.
[Se] S. Secco, Fractional integration along homogeneous curves in \mathbf{R}^{3}. Preprint.

Department of Mathematics
Pohang University of Science and Technology
Pohang 790-784
Korea
email: bak@euclid.postech.ac.kr

[^0]: Received by the editors February 25, 1998; revised May 22, 1998.
 Partially supported by KOSEF 971-0102-009-2 and the Korea Research Foundation (1998).
 AMS subject classification: 42A85, 42B15.
 (C)Canadian Mathematical Society 2000.

