Canad. Math. Bull. Vol. 16 (4), 1973

## A NOTE ON THE IMPLICATIONAL CLASS GENERATED BY A CLASS OF STRUCTURES

BY G. GRÄTZER AND H. LAKSER (<sup>1</sup>)

We use the notations of [2], particularly for operators on classes of structures; in addition,  $\mathbf{P}_r^*(K)$  (respectively,  $\mathbf{P}_r(K)$ ) denotes the class of all reduced products of families of structures in K (those with respect to a proper dual ideal, respectively). We prove:

THEOREM. Let K be a class of structures. The universal Horn class generated by K is  $ISPP_{p}(K)$  and the implicational class<sup>(2)</sup> generated by K is  $ISP*P_{p}(K)$ .

The proof of the theorem is based on Lemma 1, due to A. I. Mal'cev [6], and Lemma 2.

LEMMA 1 (A. I. Mal'cev). The universal Horn class generated by the class K is  $ISP_r(K)$ , and the implicational class generated by K is  $ISP_r^*(K)$ .

LEMMA 2. For any class K of structures  $\mathbf{P}_r(K) \subseteq \mathbf{IP}_s \mathbf{P}_p(K)$  and  $\mathbf{P}_r^*(K) \subseteq \mathbf{IP}_s^* \mathbf{P}_p(K)$ .

**Proof.** Let  $(\mathfrak{A}_i \mid i \in I)$  be a family of structures in K, let  $\mathscr{Q}$  be a dual ideal in the lattice of subsets of I, and let  $\prod_{\mathscr{Q}} (\mathfrak{A}_i \mid i \in I)$  be the reduced product with respect to  $\mathscr{Q}$ . Now

$$\prod_{\mathscr{Q}}(\mathfrak{A}_i \mid i \in I) = \prod (\mathfrak{A}_i \mid i \in I) / \Theta(\mathscr{Q}),$$

where  $\Theta(\mathcal{D})$  is the congruence on  $\prod (\mathfrak{A}_i \mid i \in I)$  determined by requiring that  $a \equiv b(\Theta(\mathcal{D}))$  iff  $\{i \mid a(i) = b(i)\} \in \mathcal{D}$ . Let D be the set of all prime dual ideals containing  $\mathcal{D}$ . Then  $\mathcal{D} = \cap (\mathcal{D} \mid \mathcal{D} \in D)$  and it follows immediately that  $\Theta(\mathcal{D}) = \bigwedge (\Theta(\mathcal{D}) \mid \mathcal{D} \in D)$ . Thus  $\prod_{\mathcal{D}} (\mathfrak{A}_i \mid i \in I)$  is isomorphic to a subdirect product of the family  $(\prod_{\mathcal{D}} (\mathfrak{A}_i \mid i \in I) \mid \mathcal{D} \in D)$ . Observing that D is nonvoid iff  $\mathcal{D}$  is proper completes the proof.

The theorem now follows by noting that

$$\operatorname{ISPP}_p(K) \subseteq \operatorname{ISP}_r(K) \subseteq \operatorname{ISIP}_s \mathbb{P}_p(K) \subseteq \operatorname{ISPP}_p(K),$$

and similarly for  $\mathbf{ISP}^*\mathbf{P}_p(K)$ .

<sup>(1)</sup> The research of both authors was supported by the National Research Council of Canada.

<sup>(\*)</sup> An implicational class, also called a quasivariety, is a class determined by sentences which are the universal closures of formulas of the form  $(\Phi_2 \wedge \cdots \wedge \Phi_n) \rightarrow \Phi_1$ ,  $n \ge 1$ , where all  $\Phi_i$  are atomic formulas.

Two corollaries follow directly:

COROLLARY 1 (Fujiwara [1]). The universal Horn class generated by K is ILSP(K) and the implicational class generated by K is  $ILSP^*(K)$ .

**Proof.** We need only recall that  $P_p(K) \subseteq ILP(K)$  ([2, p. 160, Exercise 100]) and that universal classes are closed under L.

COROLLARY 2. Let K be a finite set of finite structures. Then the universal Horn class generated by K is ISP(K), and the implicational class generated by K is  $ISP^*(K)$ .

**Proof.** Since K consists of a finite number of finite structures,  $P_p(K) \subseteq I(K)$ . Corollary 2 is in a very convenient form for computation. For example, it provides a counterexample to a claim of Shafaat [7]. Specifically, we construct an



implicational class of pseudocomplemented distributive lattices that is not equational. Let  $\mathfrak{L}_1$  be the pseudocomplemented distributive lattice depicted in Figure 1 and let  $\mathfrak{L}_2$  be that depicted in Figure 2. Then, since  $\mathfrak{L}_2$  cannot be embedded in  $\mathfrak{L}_1$ so as to preserve pseudocomplementation and since  $\mathfrak{L}_2$  is subdirectly irreducible (see [5], also [3]),  $\mathfrak{L}_2 \notin ISP^*(\mathfrak{L}_1)$ . Since  $\mathfrak{L}_2$  is a homomorphic image of  $\mathfrak{L}_1$ , we conclude that  $ISP^*(\mathfrak{L}_1)$  is not an equational class.



Figure 2

We remark in closing that by using Lemma 2 we can give a very short proof of Lemma 1. The fundamental result of Horn [4] states that a universal class is a Horn class iff it is closed under P. Now a class is a universal axiomatic class iff it is closed under I, S and  $P_p$ ; thus a class is universal Horn iff it is closed under I, S, P and  $P_p$ . Consequently,  $ISP_r(K)$  is a universal Horn class and the consequence  $ISP_r(K) \subseteq ISPP_p(K)$  of Lemma 2 shows that  $ISP_r(K)$  is the least universal Horn class containing K. An analogous proof holds for implicational classes.

## REFERENCES

1. T. Fujiwara, On the construction of the least universal Horn class containing a given class, Osaka J. Math. (to appear).

2. G. Grätzer, Universal algebra, Van Nostrand, Princeton, N.J., 1968.

3. G. Grätzer and H. Lakser, The structure of psuedocomplemented distributive lattices. II: Congruence extension and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343-358.

4. A. Horn, On sentences which are true of direct unions of algebras, J. Symbolic Logic 16 (1951), 14-21.

5. H. Lakser, The structure of pseudocomplemented distributive lattices. I: Subdirect decomposition, Trans. Amer. Math. Soc. 156 (1971), 335-342.

6. A. I. Mal'cev, Several remarks on quasivarieties of algebraic systems, (Russian), Algebra i Logika Sem., no. 3, 5 (1966), 3-9.

7. A. Shafaat, Quasivarieties of pseudocomplemented distributive lattices are varieties, Notices Amer. Math. Soc. 17 (1970), 425.

UNIVERSITY OF MANITOBA, WINNIPEG, MANITOBA