
Canad. Math. Bull. Vol. 16 (4), 1973 

A NOTE ON THE IMPLICATIONAL 
CLASS GENERATED BY A CLASS 

OF STRUCTURES 
BY 

G. GRÂTZER AND H. LAKSER C1) 

We use the notations of [2], particularly for operators on classes of structures; 
in addition, P*(K) (respectively, Pr(K)) denotes the class of all reduced products of 
families of structures in K (those with respect to a proper dual ideal, respectively). 
We prove: 

THEOREM. Let Kbe a class of structures. The universal Horn class generated by K 
is ISPP^iQ and the implicational class(2) generated by K is ISP*PP(X). 

The proof of the theorem is based on Lemma 1, due to A. I. MaPcev [6], and 
Lemma 2. 

LEMMA 1 (A. I. MaPcev). The universal Horn class generated by the class K is 
ISPr(K), and the implicational class generated by K is ISP*(AT). 

LEMMA 2. For any class K of structures1^r(K) ç IP,¥„(%:) andF?(K) £ W*FP(K). 

Proof. Let (91* | î e /) be a family of structures in K, let J2 be a dual ideal in the 
lattice of subsets of/, and let Yl# (% \iel) be the reduced product with respect to 
J . Now 

nMier) = n(%\ieI)l®(2), 
where @(J2) is the congruence on J J (% | i' si) determined by requiring that 
a=6(0(j2)) iff {i | a(i)—b{i)} e J2. Let D be the set of all prime dual ideals con
taining J . Then i = n ( ® | ^ e i ) ) and it follows immediately that ®(^)= 
A (0(^) 13) G D). Thus IX2 (% \iel) is isomorphic to a subdirect product of 
the family (J\9 (% \ i e I) \ 2 e D). Observing that D is nonvoid iff J2 is proper 
completes the proof. 

The theorem now follows by noting that 

ISPP^X) c ISPf(K) <= I S I P J W s LSEPP(K), 

and similarly for I S P * ? ^ ) . 

0) The research of both authors was supported by the National Research Council of Canada. 
(*) An implicational class, also called a quasivariety, is a class determined by sentences which 

are the universal closures of formulas of the form (<3>2 A • • • A On)->Ox, «]>1, where all ®t are 
atomic formulas. 
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Two corollaries follow directly: 

COROLLARY 1 (Fujiwara [1]). The universal Horn class generated by K is 
ILSP(X) and the implicational class generated by K is ILSP*(X). 

Proof. We need only recall that V9(K) ç ILP(X) ([2, p. 160, Exercise 100]) and 

that universal classes are closed under L. 

COROLLARY 2. Let K be a finite set of finite structures. Then the universal Horn 
class generated by K is ISP(X), and the implicational class generated by K is ISP* (K). 

Proof. Since K consists of a finite number of finite structures, J*P(K) £ I(X). 
Corollary 2 is in a very convenient form for computation. For example, it 

provides a counterexample to a claim of Shafaat [7]. Specifically, we construct an 

2. 

Figure 1 

implicational class of pseudocomplemented distributive lattices that is not equa-
tional. Let 2± be the pseudocomplemented distributive lattice depicted in Figure 1 
and let £2 t>

e that depicted in Figure 2. Then, since £2 cannot be embedded in 2± 

so as to preserve pseudocomplementation and since £2 is subdirectly irreducible 
(see [5], also [3]), £2 ^ I S P * ^ ) . Since £2 is a homomorphic image of £l9 we 
conclude that ISP*(£3) is not an equational class. 
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Figure 2 

We remark in closing that by using Lemma 2 we can give a very short proof of 
Lemma 1. The fundamental result of Horn [4] states that a universal class is a 
Horn class iff it is closed under P. Now a class is a universal axiomatic class iff it is 
closed under I, S and Y*v\ thus a class is universal Horn iff it is closed under I, S, 
P and Pj,. Consequently, ISPr(^) is a universal Horn class and the consequence 
lSPr(K) c ISPP„(iT) of Lemma 2 shows that ISPr(ZQ is the least universal Horn 
class containing K. An analogous proof holds for implicational classes. 
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