
JFP 20 (5 & 6): 415–416, 2011. c© Cambridge University Press 2011

doi:10.1017/S0956796810000250

415

Special Issue Dedicated to ICFP 2008
Editorial

PETER THIEMANN

Institut für Informatik, Universität Freiburg

Georges-Köhler-Allee 079, 79110 Freiburg i. Br., Germany

(e-mail: thiemann@acm.org)

HENRIK NILSSON

School of Computer Science, University of Nottingham

Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK

(e-mail: nhn@cs.nott.ac.uk)

The 13th ACM SIGPLAN International Conference on Functional Programming

(ICFP) was held in Victoria, British Columbia, Canada, in September 2008. Peter

Thiemann chaired the program committee. After the conference, the authors of a

selection of the presented papers were invited to submit extended versions of their

work for this special issue of Journal of Functional Programming dedicated to ICFP

2008. All submitted papers were reviewed by at least three referees, including at

least one expert, following the standard JFP procedures. In the end, four papers

were accepted. These cover a broad range of topics and, taken together, we think

they represent well the scope of ICFP 2008.

Obtaining a meaningful space profile for a functional program is hard. It is even

harder for parallel functional programs. In their paper Space profiling for parallel

functional programs, Daniel Spoonhower, Guy Blelloch, Bob Harper and Phillip

Gibbons pick up this challenge and present a semantics-based space profiler for

parallel functional programs on shared memory multiprocessors. The underlying

cost semantics enables their profiler to obtain results that are independent of

implementation details of, e.g. the run-time system. At the same time, the profiler

reveals that the choice of a scheduling policy can make an asymptotic difference for

space consumption. This paper provides valuable insights for anyone interested in the

formalisation of space usage in (parallel) functional programs and in applying such

formalisations in practical tools. It, thus, contributes to both theory and practise.

In his paper Concrete stream calculus, Ralf Hinze explores how the fact that

suitably restricted equations on streams (infinite sequences of elements) having

unique solutions can be exploited to develop a straightforward technique for

proving properties about streams and stream programs. When applicable, this proof

technique is an attractive alternative to coinduction as it boils down to equational

reasoning, which likely is more familiar to many than the coinductive treatment. The

development retains a practical focus by being carried out in Haskell. This paper

is therefore a great starting point for people who want to learn about an elegant

approach to stream programming and how to reason formally about such programs,

https://doi.org/10.1017/S0956796810000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000250


416 P. Thiemann and H. Nilsson

as well as to those who have a general interest in reasoning about coinductive data

types and corecursive programs.

A major hardware trend over the past decade has been that parallel processing

capabilities, through multi-core processors, hyper threading and the like, have

become commonplace even for low-end systems dedicated to irregular, everyday

tasks, as opposed to high-end systems for heavy scientific computation or other

specialist domains with a fairly regular problem structure. However, the design of

languages suitable for fully reaping the benefits of this development is arguably

lagging behind. In their paper Implicitly-threaded parallelism in manticore, Matthew

Fluet, Mike Rainey, John Reppy and Adam Shaw discuss a new functional

programming language that employs a number of novel language features aimed

at filling this gap. The paper focuses on the implicitly threaded parallel aspects

of the language and then in particular on those that clearly distinguish it from

other parallel language designs: a novel parallel binding form, a non-deterministic

parallel case and exceptions in the presence of data parallelism. Detailed examples

illustrate the discussed language features, and the paper also covers the employed

implementation strategies. This paper should thus appeal to a broad audience, from

those who are interested in parallel programming in a functional setting to language

implementers.

In the final paper, NixOS: a purely functional linux distribution, Eelco Dolstra,

Andres Löh and Nicolas Pierron describe how functional programming principles

can be applied to system configuration to address hard, real-world problems such as

how to reliably upgrade systems, roll back changes easily, if needed and reproduce

a configuration deterministically on another machine. The context of their work is

NixOS, a non-trivial Linux distribution that uses a novel package manager to build

the entire system configuration from a modular and purely functional specification,

thus comprehensively demonstrating the practical utility and scalability of their

approach.

We would like to thank the authors and the referees for their efforts in producing

and reviewing these papers. In addition we would like to thank Matthias Felleisen

and Xavier Leroy for the opportunity to publish the papers as a special issue of the

JFP, and David Tranah for assistance, practical advice and patience.

Peter Thiemann and Henrik Nilsson

Special Issue Editors

https://doi.org/10.1017/S0956796810000250 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000250

