
Dynamical Evolution of Dense Stellar Systems
Proceedings IAU Symposium No. 246, 2007
E. Vesperini, M. Giersz & A. Sills, eds.

c© 2008 International Astronomical Union
doi:10.1017/S1743921308015615

Resonance, Chaos and Stability in the
General Three-Body Problem

R. A. Mardling
School of Mathematical Sciences, Monash University, Victoria, 3800, Australia

email: mardling@sci.monash.edu.au

Abstract. Three-body stability is fundamental to astrophysical processes on all length and
mass scales from planetary systems to clusters of galaxies, so it is vital we have a deep and
thorough understanding of this centuries-old problem. Here we summarize an analytical method
for determining the stability of arbitrary three-body hierarchies which makes use of the chaos
theory concept of resonance overlap. For the first time the dependence on all orbital elements
and masses can be given explicitly via simple analytical expressions which contain no empirical
parameters. For clarity and brevity, analysis in this paper is restricted to coplanar systems
including a description of a practical algorithm for use in N-body and other applications. A
Fortran routine for arbitrarily inclined systems is available from the author, and animations of
stable and unstable systems are available at www.maths.monash.edu.au/∼ro/Capri.

Keywords. gravitation, instabilities, methods: n-body simulations, planetary systems, globular
clusters: general, binaries (including multiple): close

1. Introduction
Most stable hierarchical triples are characterized by the following behaviour: (1) no

energy exchange between the inner and outer orbits; (2) slow cyclic evolution of the
eccentricities associated with angular momentum exchange between the orbits (except
for coplanar systems in which the two inner bodies have the same mass); (3) apsidal
advance of both orbits; and (4) nutation and precession of the orbital planes for inclined
systems. The exceptions to (1) are those systems which are in resonance in which case a
slow, cyclic exchange of energy between the orbits pertains.

In contrast, unstable hierarchies, defined here as those in which one body escapes
the system (so-called Lagrange instability), by necessity involve substantial exchange
of energy between the orbits. They therefore must involve orbital resonances, and the
difference between a stable and an unstable resonant system is that the latter involves
more than one resonance.† This, for example, explains why it is that Neptune and Pluto
can exist in a stable resonance (in particular, the 3:2 resonance), while the overlap of two
or more resonances explains the absence of orbits at some positions in the asteroid belt
which are resonant with Jupiter (Murray & Dermott 2000).

It has been known since the 1960s (Walker & Ford 1969) that the overlap of neigh-
bouring resonances is a diagnostic of chaotic behaviour (the so-called resonance overlap
stability criterion, greatly expanded upon in Chirikov 1979). It is a consequence of the
famous KAM theorem (Kolmogorov 1954), itself an outgrowth of Poincare’s work on
the restricted three-body problem early last century. The first application of this crite-
rion to the restricted problem was performed by Wisdom (1980) who used a Hamiltonian

† More accurately, a stable system may involve more than one resonance if they are, in some
sense, linearly superposed (Mardling 2008a, in preparation).
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Figure 1. Coordinate system for an aligned coplanar system. The point C (the origin)
corresponds to the centre of mass of m1 and m2 .

formulation, setting the stage for the present application to the general problem (although
here we are inspired by the simpler analysis outlined in Murray & Dermott 2000).

Thus the main task in determining the stability or otherwise of a given hierarchical
configuration is that of identifying the widths of orbital mean-motion resonances and
where they overlap. These resonances are nonlinear, and are defined by the pendulum-like
libration (as opposed to circulation) of the so-called resonance angles, linear combinations
of all the angles appearing in the problem which occur naturally in a Fourier expansion
of the disturbing function, that is, the interaction term which couples the inner and outer
orbits.

This paper is a summary of Mardling (2008a, in preparation).

2. The disturbing function
Using Jacobi coordinates (Fig. 1), the equations of motion for the inner and outer

orbits of a hierarchical triple are

µi r̈ +
Gm1m2

r2 r̂ =
∂R
∂r

(2.1)

and

µoR̈ +
Gm12m3

R2 R̂ =
∂R
∂R

(2.2)

respectively, where µi = m1m2/m12 and µo = m12m3/m123 are the reduced masses
associated with the inner and other orbits with m12 = m1 + m2 and m123 = m12 + m3 ,
and

R = −Gm12m3

R
+

Gm2m3

|R − α1r|
+

Gm1m3

|R + α2r|
(2.3)

is the disturbing function which here has the dimensions of energy (in the study of
the restricted three-body problem it has the dimensions of energy per unit mass). Here
αi = mi/m12 , i = 1, 2. Since the orbits interact via the disturbing function, it contains
all the information about energy and angular momentum exchange and hence stability
or otherwise of the system. We therefore focus attention exclusively on R, our aim being
to write it in a form which reveals in a simple way the explicit dependence of stability on
all the orbital parameters. In particular these are {ai, ei , Ii ,�i,Ωi ,Mi}, that is, the inner
semi major axis, eccentricity, inclination, longitudes of periastron and ascending nodes
and mean anomaly respectively, with {ao, eo , Io ,�o,Ωo ,Mo} the corresponding elements
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for the outer orbit. This is best done using spherical harmonics (rather than Legendre
polynomials, eg., Roy & Haddow 2003) because, together with the use of Euler angles,
they allow one to explicitly separate the dependence on the inner and outer elements.
Thus (2.3) becomes

R = Gµim3

∞∑
l=2

l∑
m=−l

(
4π

2l + 1

)
Ml

(
rl

Rl+1

)
Ylm (θ, ϕ)Y ∗

lm (Θ, ψ), (2.4)

where r is the distance between bodies 1 and 2, α1r, θ and ϕ, and R, Θ and ψ are the
spherical polar coordinates of bodies 2 and 3 respectively relative to a fixed (non-inertial)
coordinate frame with origin at the centre of mass of bodies 1 and 2 (Fig. 1), Ylm is a
spherical harmonic defined as in Jackson (1975), and the mass factor Ml is given by

Ml =
ml−1

1 + (−1)lml−1
2

ml−1
12

(2.5)

so that M2 = 1 for any masses while Ml = 0 when l is odd and m1 = m2 . Our intention
is to expand R in a double Fourier series with basis frequencies νi and νo , the inner and
outer orbital frequencies respectively. To clearly demonstrate how the formulation works,
we assume that the system is coplanar and choose the coordinate system to be such that
all three bodies lie in the x− y plane. Then θ = Θ = π/2, ϕ = fi + �i and ψ = fo + �o ,
where fi and fo are the inner and outer true anomalies, that is, the angular positions
of bodies 2 and 3 relative to their periastron directions. The disturbing function then
becomes

R = Gµim3

∞∑
l=2

l∑
m=−l,2

c2
lmMl e

im (�i −�o ) (
rl eimfi

) (
e−imfo

Rl+1

)
, (2.6)

where

c2
lm =

4π

2l + 1
[Ylm (π/2, 0)]2 (2.7)

and the sum over m is in steps of two for the coplanar case. This paper will involve
quadrupole l = 2, m = −2, 2 terms only with the relevant value of c2

lm being c2
22 = 3/8.

For uncoupled orbits, the quantities in brackets in (2.6) are periodic with period 2π/νi

and 2π/νo respectively and so can be expanded in individual Fourier series such that

(r/ai)leimfi =
∞∑

n ′=−∞
s

(lm )
n ′ (ei)ein ′Mi , (2.8)

and
e−imfo

(R/ao)l+1 =
∞∑

n=−∞
F (lm )

n (eo)e−inMo , (2.9)

where the mean anomalies are related to the orbital frequencies by

Mi =
∫

νi(t) dt + εi − �i and Mo =
∫

νo(t) dt + εo − �o. (2.10)

Here εi and εo are the mean longitudes at epoch of the inner and outer orbits respectively
(eg. Murray & Dermott 2000). This definition of the mean anomaly takes into account
the fact that the semi major axes and hence the orbital frequencies vary with time when
a system is in resonance (equations (3.2) and (3.3); Brouwer & Clements 1961 p. 286).
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Figure 2. The eccentricity functions (a) s
(22)
1 (ei ) and (b) f

(22)
n (eo ) ≡ F

(22)
n (eo ) · (1 − eo )l+1 ,

n = 5, 20 (solid curves) together with their approximations (dashed curves) (2.13) and (2.14).
The values of n were chosen to illustrate the general behaviour of f

(22)
n (eo ) as n increases, and

also to indicate that the approximation improves with increasing n.

Table 1. Data for scaling function (2.15).

α22 β22 γ22

n � 9 1.046 0.891 0.097
n � 10 0.448 0.134 2.4 × 10−4

The Fourier coefficients

s
(lm )
n ′ (ei) =

1
2π

∫ 2π

0
(r/ai)leimfi e−in ′Mi dMi (2.11)

and

F (lm )
n (eo) =

1
2π

∫ 2π

0

e−imfo

(R/ao)l+1 einMo dMo (2.12)

give the dependence of the disturbing function on the inner and outer eccentricities
and may be approximated respectively by Taylor series and by asymptotic expansions
(Mardling 2008a, in preparation). To eighth-order in ei , the relevant function of the inner
eccentricity for this paper is

s
(22)
1 (ei) � −3ei + 13

8 e3
i + 5

192 e5
i − 227

3072 e7
i . (2.13)

In general, the leading term of such an expansion is O(e|m−n ′|
i ). This approximation

is plotted in Fig. 2a (dashed curve) together with its numerically integrated “exact”
solution (solid curve). The approximation diverges slightly for ei ∼> 0.8. The asymptotic
expression for F

(lm )
n (eo) is (Mardling 2008a, in preparation)

F (lm )
n (eo) � slmn · 2m /

√
2π

(l + m − 1)!!
(1 − e2

o)
(3m−l−1)/4

em
o

n(l+m−1)/2e−nξ(eo ) , (2.14)

where ξ(eo) = Cosh−1(1/eo) −
√

1 − e2
o and slmn is an empirical scaling factor designed

to match the amplitudes of the exact and asymptotic expressions. It is given by

slmn = 1 − αlm n−βl m exp(γlm n), (2.15)

where the relevant fitting constants for this paper are given in Table 1. Note that
lim

eo →0
F (lm )

n (eo) = 1 when n = 2 and is zero otherwise. Note also that lim
eo →1

(1−eo)l+1F (lm )
n (eo)

is finite (Fig. 2) so that lim
eo →1

F (lm )
n (eo) is infinite, ensuring resonance overlap and hence
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instability for all configurations as eo → 1 (see next Section). Fig. 2b plots the numeri-
cally integrated “exact” function f

(lm )
n (eo) ≡ (1−eo)l+1F

(lm )
n (eo) (solid curves) together

with the scaled asymptotic version (dashed curves) for the cases n = 5 and 20. Since the
scale factor is O(1) (0.3 ∼< slmn ∼< 0.78 for 2 � n � 1000), the resonance widths (next
Section) are not very sensitive to it and it can be omitted from the asymptotic expression
(2.14). Note that (2.14) is closely related to Heggie’s analysis of energy exchange during
binary flybys (Heggie 1975).

Substituting (2.8) and (2.9) into (2.6) gives

R = Gµim3

∞∑
l=2

l∑
m=−l,2

∞∑
n ′=−∞

∞∑
n=−∞

c2
lmMl

(
al

i

al+1
o

)
s

(lm )
n ′ (ei)F (lm )

n (eo) exp[iφmnn ′ ]

(2.16)

= 2Gµim3

∑
L0

ζm c2
lmMl

(
al

i

al+1
o

)
s

(lm )
n ′ (ei)F (lm )

n (eo) cos φmnn ′ (2.17)

where

φmnn ′ = n′Mi − nMo + m(�i − �o) (2.18)

is a resonance angle,
∑
L0

≡
∞∑

l=2

l∑
m=mm i n ,2

∞∑
n ′=−∞

∞∑
n=−∞

, (2.19)

ζm =
{

1/2, m = 0
1, otherwise and mmin =

{
0, l even
1, l odd.

(2.20)

In going from (2.16) to (2.17) we have used the fact that s
(lm )
n ′ and F

(lm )
n are real so that

s
(lm )∗

n ′ = s
(lm )
n ′ and F

(lm )∗
n = F

(lm )
n and consequently, s

(l−m )
−n ′ = s

(lm )
n ′ and F

(l−m )
−n = F

(lm )
n ,

and have grouped together terms with the same value of |m| (thus the factor 1/2 in the
definition of ζm ).

3. Pendulum-like behaviour of the resonance angle
We now have the disturbing function expressed in such a way that the dependence on

all the orbital elements is evident. In particular, all angles (orbital phases and longitudes
of periasta) appear in various linear combinations in the resonance angles. For most con-
figurations (in particular, non-resonant stable configurations), all resonance angles cycle
rapidly through all angles with a frequency dominated by the inner orbital frequency.
The main consequence of this is that no energy is exchanged on average between the
inner and outer orbits. Energy is exchanged during outer periastron passage, but this is
“returned” as the system moves away from periastron. This behaviour is demonstrated
in an animation available at www.maths.monash.edu.au/∼ro/Capri. However, for some
configurations, one or more resonance angles librate between two fixed values, and this
results in substantial permanent energy exchange between the orbits, except when a sys-
tem is exactly in resonance which occurs when φ̇mnn ′ = 0 for some {mnn′}. Permanent
energy exchange in an unstable system is demonstrated at the above website.

A system is defined to be in resonance if a resonance angles librates, and is unstable if
it resides in two overlapping resonances. Hence the task now is to identify the resonances
and determine which configurations reside in two or more. This can be done by examining
the behaviour of the resonance angles which, not surprisingly, satisfy the equation of
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motion of a pendulum. Referring to the definition of a resonance angle, (2.18), we label
a resonance with the notation [n : n′](m). In particular, resonances with m = 0 or m = 2
are referred to as quadrupole resonances while those with m = 1 or m = 3 are octopole
resonances.

Starting with the definition (2.18) as well as (2.10) for the mean anomalies, we have

φ̈mnn ′ = n′ν̇i − nν̇o + n′ε̈i − nε̈o + (m − n′)�̈i − (m − n)�̈o

� n′ν̇i − nν̇o . (3.1)

Neglecting the second time derivatives of the longitudes is valid as long as the eccentric-
ities are not vanishingly small. For systems near the stability boundary, this is only ever
possible in the case of extreme mass ratios since eccentricity is always induced otherwise
(Mardling 2008a, in preparation). To proceed we note that ν̇i/νi = − 3

2 ȧi/ai and similarly
for ν̇o , and use Lagrange’s planetary equation for the rate of change of the semi major
axis (Brouwer & Clements 1961):

1
ai

dai

dt
=

2
µiνia2

i

∂R
∂λi

=
2

µiνia2
i

∂R
∂Mi

= −4 νi

(
m3

m12

)∑
L0

n′ ζm c2
lmMl

(
ai

ao

)l+1

s
(lm )
n ′ (ei)F (lm )

n (eo) sin (φmnn ′) (3.2)

and
1
ao

dao

dt
=

2
µoνoa2

o

∂R
∂λo

=
2

µoνoa2
o

∂R
∂Mo

= 4 νo

(
m1m2

m2
12

)∑
L0

n ζm c2
lmMl

(
ai

ao

)l

s
(lm )
n ′ (ei)F (lm )

n (eo) sin (φmnn ′) , (3.3)

where λi,o = Mi,o +�i,o . The ratio of orbital frequencies is the most fundamental quan-
tity in this problem. Putting

σ =
νi

νo
=

[(
m12

m123

) (
ao

ai

)3
]1/2

(3.4)

and using this to write ai/ao in terms of σ, then combining (3.1), (3.2) and (3.3), gives
a pendulum equation for the evolution of the [n : n′](m) resonance

φ̈mnn ′ = −n′2ν2
oAmnn ′ sin (φmnn ′) , (3.5)

where

Amnn ′ ≡ −6 ζm

∞∑
l= lm i n ,2

c2
lm s

(lm )
n ′ (ei)F (lm )

n (eo)
[
M

(l)
i σ−(2l−4)/3 + M (l)

o (n/n′)2σ−2l/3
]

� −6 ζm c2
lm s

(lm )
n ′ (ei)F (lm )

n (eo)σ−(2l−4)/3
[
M

(l)
i + M (l)

o σ2/3
]
, (3.6)

and we have put n/n′ � σ in the last step. Here we have assumed that the only term
contributing to the variation of φmnn ′ is the one depending on φmnn ′ . Except for low-
order resonances with relatively low values of σ, it is also adequate to include only the
lowest value of l in (3.6). Note that lmin = 2 if m is even and lmin = 3 if m is odd. The
dependence on the masses is through the functions

M
(l)
i = Ml

(
m3

m12

)(
m12

m123

)(l+1)/3

and M (l)
o = Ml

(
m1m2

m2
12

) (
m12

m123

)l/3

. (3.7)
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Taking Amnn ′ to be approximately constant over one libration period, (3.5) can be inte-
grated once to give

1
2 φ̇2

mnn ′ − n′2ν2
oAmnn ′ cos φmnn ′ = constant. (3.8)

From (3.5) we see that if Amnn ′ > 0 libration is about φmnn ′ = 0, while for Amnn ′ < 0 it
is about φmnn ′ = π. The separatrix is the solution curve which contains the hyperbolic
fixed point (φmnn ′ , φ̇mnn ′) = (π, 0) for Amnn ′ > 0 and (0, 0) for Amnn ′ < 0. For most
systems of interest in this paper, Amnn ′ > 0. Therefore we define the quantity

Emnn ′ = 1
2 φ̇2

mnn ′ − n′2ν2
oAmnn ′(1 + cos φmnn ′), (3.9)

so that the separatrix corresponds to Emnn ′ = 0 and is given by

φ̇mnn ′ = ±n′νo

√
2Amnn ′(1 + cos φmnn ′) = ±2n′νo

√
Amnn ′ cos

(
φmnn ′

2

)
. (3.10)

Solutions are libratory when Emnn ′ < 0 and circulatory when Emnn ′ > 0. From (2.18) we
have that

φ̇mnn ′ � n′νi − nνo = n′νo(σ − n/n′) ≡ n′νo δσnn ′ , (3.11)

where we have neglected the contributions from the rates of change of the longitudes
(since generally �̇i,o � νo). Thus we define the auxiliary quantity

Emnn ′ = 1
2 (δσnn ′)2 −Amnn ′(1 + cos φmnn ′), (3.12)

which again indicates the libratory or circulatory nature of a system according to whether
Emnn ′ < 0 or Emnn ′ > 0 respectively. Exact resonance corresponds to (φmnn ′ , δσnn ′) =
(0, 0).

Since a system is defined to be in resonance when a resonance angle librates, from
(3.10) and (3.11) the resonance half-width is defined to be

∆σmnn ′ = 2
√

Amnn ′ . (3.13)

Since the expression for Amnn ′ , (3.6), depends on the orbital parameters through simple
functions, it becomes easy to determine the stability or otherwise of any given system.
However, formally a system potentially resides in infinitely many resonances so our next
task is to determine which resonances govern the stability of a system.

4. The [n : 1](2) resonances
The first thing one must do to determine whether or not a system is in resonance

is to check which exact resonances it is near. Since the rational numbers are dense on
the number line, a system is always inside some resonance. However, as we have shown,
resonance widths are proportional to e−nξ(eo ) through the functions F

(lm )
n (eo), where

n � n′σ so that for a given σ, n ∝ n′. Thus the [n : 1](m) resonances always dominate.
Moreover, the dependence of the resonance widths on n and σ � n together with their
dependence on the mass ratios ensures that, for coplanar systems, the quadrupole m = 2
resonances are widest. Thus the [n : 1](2) resonances determine the stability of most
coplanar configurations except planetary-like systems for which both m2 and m3 are less
than around 0.01m1 . In the latter case resonances with n′ > 1, that is, resonances which
sit between the [n : 1](2) resonances (see Fig. 3) are important (Mardling 2008a, in
preparation) because the [n : 1](2) widths are limited by the mass ratio dependence in
(3.6).
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Figure 3. An illustration of the importance of including the induced inner eccentricity. Here
the masses are equal and ei (0) = 0. The curves are the resonance boundaries given by (3.6): the
resonance widths are zero in (a) for ei = 0. The resonance overlap stability criterion correctly
predicts the stability boundary in (b) when ei = e

(in d )
i (eqn (5.1)).

5. Induced eccentricity and secular effects
Consider an equal mass coplanar configuration for which the initial inner eccentricity

is zero. According to (3.13), (3.6) and (2.13) the resonance widths should be zero. Fig. 3a
is a stability plot for equal mass configurations with initially circular inner binaries, for
various initial period ratios and outer eccentricities. A dot corresponding to the initial
conditions is plotted if a direct numerical integration of the three-body equations of
motion results in an unstable system. Rather than integrating the system until one of
the bodies escapes, two almost identical systems (the given system and its “ghost”) are
integrated in parallel and the difference in the inner semi major axes at outer apastron
is monitored (because this variable is approximately constant for non-resonant systems).
Taking advantage of the sensitivity of a chaotic system to initial conditions, this differ-
ence will grow in proportion to the initial difference between two systems (10−7 in the
inner eccentricity) for a stable system, but will grow exponentially for an unstable system
(Mardling 2001). The stability boundary should correspond to points where neighbour-
ing resonances overlap. Clearly zero resonance width is incorrect! However, if one uses
the inner eccentricity induced after the first outer periastron passage, resonance overlap
correctly predicts the stability boundary (Fig. 3b).

If the initial inner eccentricity is ei(0), the inner eccentricity following outer periastron
passage, e

(ind)
i , is given approximately by (Mardling 2008a, in preparation)

e
(ind)
i =

[
ei(0)2 − 2βnei(0) sin(φ2n1) + β2

n

]1/2
, (5.1)

where

βn = 9
2 π(m3/m123)f (22)

n (eo)/n. (5.2)

5.1. Octopole variations for coplanar systems
For systems with m1 �= m2 , secular octopole contributions to the disturbing function
(ie., terms with n = n′ = 0) can cause the inner eccentricity to vary considerably on
timescales of thousands of inner orbits (Murray & Dermott 2000; Mardling 2008b, in
preparation). This is especially important for close planetary systems. While the outer
eccentricity also varies, the main effect on the resonance widths comes from the variation
of s

(22)
1 (ei) which is a maximum at the maximum of the octopole cycle in ei . Referring
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Figure 4. Comparison of (a) experimental and (b) theoretical data for equal mass coplanar
systems with ei (0) = 0. The structure at the top of (a) is a result of exchanges being deemed
stable (the “ghost” orbit behaves almost identically before rapid escape).

to this maximum as e
(oct)
i , it is given approximately by (Mardling 2007)

e
(oct)
i =

{
(1 + A)e(eq)

i , A � 1,

ei(0) + 2e(eq)
i , A > 1,

(5.3)

where A = |1 − ei(0)/e
(eq)
i | and e

(eq)
i is the “equilibrium” or “fixed point” eccentricity

e
(eq)
i =

(5/4)(ai/ao) eo/(1 − e2
o)∣∣∣1 −

√
ai/ao(m2/m3)/

√
1 − e2

o

∣∣∣ . (5.4)

6. A stability algorithm
Here we summarize the steps one can follow to implement the resonance overlap sta-

bility criterion for coplanar systems for which the [n : 1](2) resonances alone determine
the stability. This scheme is valid for coplanar systems with both m2/m1 > 0.01 and
m3/m1 > 0.01, or, for systems with at least one of m2/m1 > 0.05 or m3/m1 > 0.05.
(1) Identify which [n : 1](2) resonance the system is near and calculate the distance δσn

from that resonance: δσn = σ − n, where n = 	σ
 (the nearest integer for which n � σ);
(2) Take the associated resonance angle to be zero rather than the definition (2.18) (see
discussion below): φ2n1 = 0;
(3) Calculate the induced eccentricity from (5.1) and (if m1 �= m2) the maximum oc-
topole eccentricity from (5.3). Determine ei = max[e(ind)

i , e
(oct)
i ] for use in s

(22)
1 (ei);

(4) Calculate A2n1 from (3.6);
(5) Calculate E2n1 and E2 n+1 1: deem the system unstable if E2n1 < 0 and E2 n+1 1 < 0.
Fig. 4 compares the experimental data shown in Fig. 3 with data generated using the
algorithm above. A dot is plotted if a system is deemed to be unstable. The boundary
structure is reproduced reasonably well, although the boundary itself should be slightly
lower, a result of the fact that the resonance overlap criterion does not recognize the
unstable nature of points near to but outside the separatrix.

A Fortran routine for arbitrarily inclined systems is available from the author.
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7. Summary and Discussion
A stability criterion for the coplanar general three-body problem has been presented

which involves no empirical parameters. While previous studies have concentrated on
the coplanar circular restricted three-body problem, we can now see how stability works
for all mass ratios and eccentricities through a simple transparent expression for the
resonance widths. The [n : 1](2) resonances determine stability for most configurations,
while [n : n′](2), n′ > 2 resonances are important for two-planet-type configurations. The
latter is a result of the dependence of the resonance widths on the mass functions (3.7).

We have also shown that it is vital to include the induced inner eccentricity as well
as the maximum inner eccentricity achieved in an octopole cycle when m1 �= m2 . We
note here that inclined systems also require a knowledge of the maximum eccentricity
achieved in a Kozai cycle (Mardling 2008a, in preparation).

Given the simple functional form of (3.6), it is possible to determine which systems
have similar stability properties. For example, given ei(0), eo and σ, a system with
m2/m1 = 0.1 and m3/m1 = 0.35 will have similar stability properties to a system with
m2/m1 = 20 and m3/m1 = 7.45 (ie, M

(l)
i + M

(l)
o σ2/3 is the same for both; note that

m3/m123 in (5.1) is similar for both systems).
An analysis of the success or otherwise of this formulation of the stability problem is

given in Mardling (2008a, in preparation). Here we note that its main drawback is that
the resonance overlap stability criterion doesn’t recognize that systems outside but near
the separatrix are often unstable (thus we take φ2n1 = 0 in the algorithm). Nonetheless,
it is possible to invent remedies for individual applications, many of which do not require
such high resolution anyway. For example, the study of the evolution of triple systems
formed through binary-binary collisions in N-body simulations requires that one knows
unequivocally when such a system is stable, since a mistake has the potential to grind
the whole simulation to a halt. The fact that the algorithm presented here will sometimes
make the opposite mistake (deem an unstable triple stable) if the configuration is close
to the stability boundary should not have much effect on the overall evolution of the
cluster.
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