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Abstract

In this paper we show that if/ (X) e 1[X] is a nonzero polynomial, then a>(n)\f (n) holds only on a set
of n of asymptotic density zero, where for a positive integer n the number a>(n) counts the number of
distinct prime factors of n.

2000 Mathematics subject classification: primary 11A25,11N37.
Keywords and phrases: sum-of-divisors function, Euler function, number of prime divisors function.

1. Introduction

Let n be a positive integer and let coin), £2(n), r(n), (f>{n) and a{n) be the classical
arithmetic functions of n, that is, co(n), £2 (n), and x{n) count the number of distinct
prime divisors of n, the total number of prime divisors of n, and the number of divisors
of n, respectively, while 4> (n) and a (n) are the Euler function of n and the sum of
divisors function of n, respectively. We also let f (X) e 2[X] to be any nonzero
polynomial with integer coefficients.

In [2], it was shown that the set of positive integers n for which co (n) \n is of density
zero, and it was asked whether the same is true for the set of integers n for which
Q(n)\n. This question was answered in a greater generality in [4]. In this paper, we
investigate the density of the sets of positive integers n on which one of the given
'small' arithmetic function of n divide either / (n), or the value of/ in some other
arithmetic function of n.

We have the following result.

THEOREM 1.1. (1) The set of positive integers

(1.1) {n | / ( n ) = 0 (mod co(n))}
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150 FlorianLuca [2]

is of asymptotic density zero. The same is true for the sets obtained if one replaces
co(n) in (1.1) by either Q(n) or z(n).
(2) The set of positive integers

(1.2) ( « | / ( T ( B ) ) S O (mod co(n)))

is of asymptotic density zero. The same is true for the set obtained if one replaces
co{n) in (1.2) by fi(n).
(3) The set of positive integers

(1.3) {n\<j){n) = Q (mod w(n))}

is of asymptotic density one. The same is true for the other five sets obtained from
(1.3) by independently replacing 0(n) by o~(n), and co(n) by either Q(n) or x{n).
(4) The set of positive integers

(1.4) { n | / ( « ( n ) ) = 0 (mod<»(B))}

has an asymptotic density for every polynomial f (X) e Z[X]. This density is zero
unless f has nonnegative integer roots, in which case it is positive. Similarly, the set
obtained if one interchanges Q(n) by co(n) in (1.4) has an asymptotic density, which
is zero unless f has integer roots which are either negative or zero, in which case it is
positive.

The densities of the sets appearing at part (4) of Theorem 1.1 are computable.
Namely, the density of the set (1.4) is

k>O,k€l
f(k)=O

where dk > 0 is the Renyi's constant (see [11]) given by

# ( l < n < x | Q(n)-u(n) = k]
dk : = lim .

* - • » x

Similarly, the density of the set obtained if one interchanges f2 (n) by co(n) in (1.4) is

k<0Ml
/(*)=0

Theorem 1.1 gives information about the asymptotic densities of the sets of positive
integers [n | / (<f>(n)) = 0 (mod co(n))} and likewise when co{n) is replaced by either
£2(«) or r(n), or when <p(n) is replaced by a(n). Indeed, from part (3) of Theorem 1.1
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we get that the asymptotic density of such sets is zero unless / (0) = 0, in which case
the asymptotic density is one. We point out that if one replaces the polynomial / (n)

by the nth Fibonacci number Fn in (1.1), then the statement asserted at part (1) of
Theorem 1.1 still holds. This has been done in [5], and it is likely that a combination
of the arguments from the method of proof from there with our present arguments
and some results from [7] can yield a similar result when Fn is replaced by any
nondegenerate linearly recurrent sequence of integers.

2. Preliminary results

In this section, we point out a 'large' set of integers which is suitable for our
purposes, and then in the next section we verify that every positive integer n from our
large set satisfies all the congruences or the incongruences asserted by the theorem.

We denote by Q, C 2 , . . . positive computable constants which are either absolute or
depend only on the polynomial / . For a positive integer k and positive real number x,

we denote by logt x the recursively defined function given by log, x := maxflogx, 1}
and logt x := max{log(logjl_, x), 1), where log denotes the natural logarithm function.
When k = 1, we simply write log, x as log* and we thus understand that it is always
> 1. We also use the Landau symbols O and o and the Vinogradov symbols » and <£
with their usual meanings. We write n(x) for the number of prime numbers p < x.

For a positive integer n, we use P(n) and p(n) to denote the largest prime factor of n

and the smallest prime factor of n, respectively.
We set S(x) := log5*, and we use the notations p, q, and r to denote prime

numbers. For a positive integer n, we write a>\ (n) and a>i («) for the number of distinct
prime factors of n which are congruent to 1 and 3 modulo 4, respectively. Thus, we
always have &>(n) = a>\(n) + co3(n) + s, where s = 0 or 1 according to whether n is
odd or even.

We begin with the following claim.

LEMMA 2.1. Let x be a large positive real number and let A(x) be the set of

all positive integers n in the range yfx < n < x and which satisfy the following

conditions:

(1) max{|o)(n) - log2JC|, \£l(n) — Iog2*|) < 8(x) log2
/2jc.

(2) mr\{co\(n), a>j(n)} > log2(x)/4.

(3) Write

(2.1) n :=
pap ||n

Then, ma\p\n{ap} < log7x andap — 1 whenp > log7x.
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Then the set A(x) contains all positive integers n < x except for o(x) of them.

REMARK. Note that if n e A(x) then, by condition (3) of Lemma 2.1, we have that
the inequality

(2.2) Q(n) - co(n) = ^ ( a p - 1) < 7r(log7x)(log7.x - 1) < log?* <

holds for large values of x.

PROOF OF LEMMA 2.1. It is obvious that there are LV*J — °0O numbers n < x
which are not in the range ^/x < n < x.
(1) Since both estimates

(2.3) 5Z M " ) - Io82*)2 = O(x log2*)

and

(2.4) J2 ("(") - lo82^)2 = O(x log,*)
\<n<x

hold (see [14]), it follows that there are at most O(x/82(x)) — o(x) positive integers
n < x which fail to satisfy the inequality asserted at part (1) of the lemma.
(2) Let E be any set of prime numbers and for x > 0 write

(2.5) E(x) := T - .
*—^ Dp<x *
pe£

For any positive integer n, write co(E,n) for the number of primes dividing n which
belong to E, and let 0 < a < 1 be any fixed positive real number. Then, a result of
Norton (see [9, 10]), says that if E(x) > 0, then the number of positive integers n < x
such that \co(E, n) — E(x)\ > aE{x) is at most C(a)x/E(x)l/2, where C(a) is some
computable number depending on a and E. Take E — E, := [p \ p = i (mod 4)}
with / = 1 or 3, take a :— 1/3, and assume that x > 5. Then Et{x) ^ 0 and the
estimate

(2.6) £,«= Ĵ
p=i (mod 4)

holds for both i = 1 and 3. And so, if we assume that n < x fails condition (2) of
the lemma for some / = 1 or 3, then o>,(«) < log2(x)/4 holds for such n, and with
estimate (2.6) we conclude that w,(n) < 2E(x)/3 holds for such n < x and for large
values of x. Thus, the inequality \co(Eh n) — E(x)\ > E(x)/3 holds for such n, and
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by the above result from [9, 10], we know that the number of such positive integers
n < x is

(3) Suppose first that there exists a prime number p > log7x such that p2\n. The
totality of such n < x is at most

£ - = °X

P >log7

Assume now that ap > log7 x holds for some p. Since we may assume that p < log7 x,
it follows that the number of such positive integers n < x is at most

y ^ x ^ xn(log7x) xlog7.x _
2 ^ piogix < 2Xo&x < (logfix)c' ~° x '

where we put C\ := log 2. •

LEMMA 2.2. Ẑ f x be a large positive real number and let A(x) be the subset
appearing in Lemma 2.1. Let B(x) be the subset of n G A(x) with the following
property.

Write

co(n) := W\(n)u)2(n), where W\(n) := FT g \
qhi \\n

?<log3xlog5j:

7/ien, 102(1) > Iog2/3* is square free, coprime to n, and has p (u;2(«)) < 21og2 x.
Similarly, if one writes

Q(n):= Wdn)W2(n), where W,(II) :=
l i ( )

r <log3 Jt log5 x

then W2(n) > Iog2
/3.x is squarefree, coprime to n, and has p (W2(n)) < 21og2

/2.x.
Then the set B(x) contains all positive integers n < x except for o(x) of them.

PROOF OF LEMMA 2.2. We shall deal only with the statement concerning the func-
tion co(n) because the statement about £2(n) can be dealt with in an entirely similar
way.

Assume that n e A(x) but that w2(n) < log^3*. Then co(n) — W\{n)w2{n),
where W\(ri) < Iog2;t + <5(jc)log2

/2;c < 21og2;t, and P(iV\(n)) < log3x Iog5;c. We
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estimate the number of values wi (n) can take. Suppose that y > z > 0 and put
1>(y,z) := #{n < y \ P(n) < z}. We shall show that if z := 21ogylog3)\ then

, z) = ;yo(1). To see this, we put

logz \ logy/ logz \ z )

and then, by [13, Theorem 2 on page 359], we know that the estimate

(2.7) +
logz Iog2(2y)

holds uniformly in y > z > 0. It is clear that the factor that multiplies Z appearing
on the right-hand side of (2.7) is 0(1), and with our choice for z we have

7
i • i ^ i

log z log z log2 y

And thus, we have

= exp (o,z) = exp(O(Z)) = expl

Setting y := 2 log2 *, and noting that log3 x log5 x < 2 log y log3 y = z, we get

In particular, the inequality

(2.9) V(21og2;c, log3x Iog5;c) < log2
/12x

holds for large values of*. Inequality (2.9) tells us that u>\(n) can take no more
than Iog2

/12;c values. Thus, the total number of values of co(n) = W\{n)w2{ri)
which are smaller than 21og2* and for which w2(n) < log2

/3* holds is at most
(log2jr)

1/3+1/12 = log2
/12jc. However, from [3, page 303], we know that if j is any

fixed positive integer, then the number of positive integers n < x having co(n) = j is

(2.10) «
log"2*'

Since our j can take only log2
/12x values, we conclude that the number of positive

integers n < x for which w2(n) < logl/3 x is

«—77r-l°g2 * = — J T H - = O(JC),
log x log2' x
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which takes care of the first condition from the lemma.
We next show that w2{n) is squarefree for almost all n < x. Assume that n e A(x)

but w2(n) is not squarefree. Notice that p(w2(n)) > log3 x log5 x. Pick a prime
number p > Iog3;c log5x and assume that,/ := co(n) is a number which is divisible
by p2. Since co(n) < 21og2x, it follows thatp < C2log2

/2x, where C2 '•= -s/2. But
j is also a number in the interval

(2.11) y := (\og2x - 8(x)log\/2x,\og2x + S(x)\og\/2x)

whose length is 28(x) log^2*, and so the number of such numbers j which can be
multiples of p2 is

For every one of these numbers; , the number of positive integers n < x witho>(/i) = j
is, by (2.10), <£ x / log^2 x. Thus, for a fixed prime number p, the number of positive
integers n e A(x) and for which p2\co(n) is

_ x<5(*) , J:

P2 logJ'V

Summing up the above inequalities over all the prime numbers p in the range
log3jclog5;c < p < C2log2

2x, we get that the totality of the positive integers
n e A(x) and for which w2(ji) is not squarefree is

(2.13)
^ logi'**

Since

(2.14)
, P2 Vlogs^^-^iogs^/'

i» r loo, r • x ^^J w * -̂̂ J ^

and

n(C2log2

iogr*

it follows that (2.13) is bounded above by

x8(x) x
« : : + i = o(x).

log3 x log4 x log5 x log3 x
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We now show that n and w2(n) are coprime for almost all n < x. Let n e A(x) and
let p be a prime number dividing both n and w2(n). We now have log3 x log5 x < p <
21og2x. Fix such a prime p. By condition (3) from Lemma 2.1, we know that p || n,
therefore n = pm and a>{m) = co(n) — 1. Fix alsoy such that co(n) = pj. Then
m < x/p and co(m) = pj — 1 is fixed. The number of such numbers m is, by (2.9),

x 1

'lOg2/2(*//>)
«

where the last inequality above follows from the fact that the inequalities p <
21og2;c < xl/2 hold for large x. Moreover, since pj is a number in the interval
J? shown at (2.11), it follows that j can take at most

p

values. Thus, the number of numbers n e A(x) for which p\gcd(n, w2(n)) with a
fixed value of p is

xS(x) x
p1 p log2 x

Summing up the above inequalities over all the possible values of p, it follows that
the number of positive integers n e A(x) for which w2{n) and n are not coprime is

(2.15) <&x8(x) J2 ~T +1^727 £ -•
p>log3xlog5x " * p<21og2x "

Since

1
(2.16)

p<21og2Jt
 r

we get, with (2.14) and (2.16), that (2.15) is bounded above by

« f»W +
 xJ2Zf = oix).

log3 x log4 x log5 x log2 x

Finally, we show that for almost all n < x we have p(w2(n)) < 21og2
/2x. Assume

that this is not so for some n e A(x). In this case, since co(n) < 21og2x, it follows
that w2(n) is a prime number p > 21og2

/2;c, and co(n) = pj, where j < log^2* has
P(j) < log3 x log5 x. We now fix the number j and notice that since pj belongs to
the interval J shown at (2.11), then p must be a prime number in the interval

(2.17) fr.= r2hL.
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Let Ttj (x) be the number of prime numbers in the interval J^ shown at (2.17). Then,
forj fixed, the number of values of co(n) = pj is at most 7Tj(x), and for each one
of these values, by (2.10), the number of positive integers n < x with co(ri) = pj is
«; x/ Iog2/2*. So, the number of positive integers n < x for which co(n) — pj with
j fixed and p prime is <3C ;CJT; (A:)/ log^ x, and so the totality of the positive integers
n e A(x) for which p(w2(n)) > 21og2

/2jt is

no more than 2y/log;y prime numbers. Thus, since 8(x) > 1 and j < log^2* =

1 /I

Let us now notice that the interval ^ is an interval of length 28(x) log2 x/j, and,
by a result of Montgomery (see [8, page 34]), any interval of length y can contain

than
o(8(x) Iog2

/2;c), we get the inequality

(2.19) 7 r , ( x ) « -
2

/ 2 ; t

-, if 7 < log2
/4x;

1/2.

In particular, (2.18) can be bounded from above by

x8(x) vv 1
(2.20) ± 1 E

log3x s—1 j log''

Clearly, ^Oog^jc, log3* log5jc) < ^(21og2^, log3x log5x) = (log2x)o(1> (see
(2.8)), therefore

- I = exp(log5x + 0(1)) « log4A;,
p<\ogjx
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therefore

(2.22) ?M
r u ; l og3*

and now (2.21) and (2.22) imply that the right-hand side of (2.20) is o(x).
Finally, the statement about Q (n) follows in an entirely similar way due to the fact

that a similar upper bound as (2.11) holds for the number of numbers n < x having a
fixed value of Q(n). •

3. The proof of Theorem 1.1

PROOF. We let x be a large positive real number and we shall assume that n e B(x),
where B(x) is the set described in Lemma 2.2. Part (1) of the theorem is the toughest
cookie in the jar and so we shall prove it last.
(2) Let n e B(x), and write n as in (2.1). Then T := x{n) = 2wM~km, where
k := #{p\n | ap > 1} and m := \\a >1(ap + 1). Condition 3 of Lemma 2.1 insures
that k < 7r(log7 x) < log7 x, and that the inequality

m < exp(7r(log7;c)log(log7;c + 1)) < exp(21og7jr) = log^*

holds when x is large. In particular, there are a number < log7 x logg x < log5 x such
pairs (it, m), and they all have P(m) < Iog7;t + 1. Let p be a prime number in the
interval^ := (log3jc Iog5;c, 21og2

y'2;c). By Lemma 2.2, we know that co(n) has such
a prime factor for all n e B(x). Assume now that n is a number in B(x) such that
p \co(n), write co(n) := pj, and assume further that n satisfies congruence (1.2). With
the fixed value of p, the congruence/ (T) = 0 (mod p) puts r into at most d residue
classes modulo p, where d := deg(/). Let a be one of these residue classes. Since
r = 2"('1)-*/n = 2'~km (mod p), we get that 2j~km = a (mod p). Note that both 2
and m are invertible modulo p. Put t(p) for the multiplicative order of 2 modulo p.
For fixed values of a, it, m, the congruence 2j~km = a (mod p) puts j into a fixed
congruence class modulo t{p). In particular, with p fixed, the number a>(n) = p/
belongs to at most dlogsx congruence classes modulo pt(p). Since this number is
also in the interval <? shown in (2.11), we get that the number of values that pj can
assume for a fixed value of p is

/ + k*x.
ptip)

For everyone of these values of pj, by inequality (2.10), there are <£ jr/log^2*
numbers numbers n for which co(n) = pj . Thus, for fixed p, the number of numbers
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n e B(x) satisfying congruence (1.2) and for which p \co(n) is

x8(x)\ogsx xlog5x

Pt(p) l o g ^ V

Summing up the above inequalities over all the primes p in the interval ^/, and using
the obvious fact that t(p) ~3> \ogp, we get that the number of numbers n e B(x)
satisfying congruence (1.2) is

(3.1) ^JWlofe* J ^ -±- + ^ ^ l o g ^ ) .

Since the estimate YLP>y l/(pl°&P) "^ 1/logy holds for all y > 1, we get that (3.1)
is bounded from above by

The same argument applies when o)(n) is replaced by Q (n).
(3) In [6, Lemma 2], it is shown that there exists an absolute constant C3 such that if
x is large and if we set g(x) := C3 log2 x /log3x, then both <p(ri) anda(n) are divisible
by the least common multiple of all the prime powers p" < g(x) for all n < x with
o(x) exceptions (in [6, Lemma 2] this is only shown for the function </> but the argument
from there can be adapted in a straightforward way to yield the corresponding result for
the function a). Let M{x) denote the least common multiple of all the prime powers
up to g (x). To get statement (3) of Theorem 1.1 f or a> (n) and Q (n), we show that both
coin) and Q(n) divide M(x). To see this, assume that p" || co(n). lip < log3 x log5 x,
then, by Lemma 2.2, we have p" < Wi(n) = co(n)/w2(.n) <JC log^x = o(g(x)).
Assume now that p" || w2(n). In this case, by Lemma 2.2, we have that a = 1. If
w2(n) is not prime, then there exists another prime number q (necessarily larger than
logj* logjjc) such that pq\w2(n). Thus, p < w2{n)/q <g log2x/(log3;c log5x) =
o(g(x)). Finally, if w2{n) is prime, then w2(n) — p(w2(n)) < 21og2

/2x = o(g(x)).
And thus, we have shown that co(n) divides M(x), and therefore both $(n) and cr(n),
and a similar argument applies to £2(rc).

To see that x(n) divides both <p(n) and a(n), write

We first assume that q is an odd prime divisor of r(«). Then, by condition (3) of
Lemma 2.1,

n ("p+
P<l0g7JC

/'"'' lit
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and ap < log7 *, therefore we deduce that

log(<7c<) < Y^ lo%(ap + X) « ^Oog,*) log(log7 x + 1) « log7* < log,;*
p <log7 x

p°P \\n

holds for large*, and so qc* < exp(log6*) = log5* = o(g(x)). Hence, qc" divides
M(x). Assume now that q = 2 and for every p\n write dp for the exponent at
which 2 divides ap + 1. Then, c2 = YlP\n^p anc*' W condition (3) of Lemma 2.1,
we have dp — 1 whenever p > log7* and dp < C4log(log7* + 1) < log7* with
C4 := 1/ log 2, whenever /? < log7x. Thus, with conditions (1) and (3) of Lemma 2.1,
the inequality

(3.2) c2 < coin) + ^ dp

P <log7 x
p'P \\n

< log2x + Six) Iog2/2x + 7T(log7x) log7x < log2x + 28ix) log2
/2j:

holds for large values of x. However, the power at which 2 which divides 0 (n) is, by
Lemma 2.1, at least

(3.3) coin) + co,in) - 1 > ^M. _ 6(x)lOg2
/2;t - 1,

and it is clear that the right-hand side of (3.3) is larger than the right-hand side of (3.2)
for large x. Thus, 2Cl \<f>in). To see the statement for <r, notice that by Lemma 2.1, we
have that the power at which 2 divides cr(n) is at least

(3.4) coin) + co^in) - 1 - 27r(log7;t) > 5 1 ° | 2 * - 1 - Six) log,72* - log,*,

and it is clear that the right-hand side of (3.4) is also larger than the right-hand side of
(3.2) for large *. This shows that 2C2 divides <r(n) as well. We point out that the fact
that the set shown at (1.3) with </>(n) replaced by ain) and coin) replaced by r(n) is
of asymptotic density zero has also been proved in [1].
(4) Write Ain) := fil(n) - coin). If n satisfies congruence (1.4), then/ (A(n)) = 0
(mod coin)). By the remark following Lemma 2.1, we know that A(«) < log6*,
therefore \f (A(n))| <SC log£ *, where we use again d for the degree of the polyno-
mial / . However, by condition (1) of Lemma 2.1, we know that coin) » log2*, and
therefore |/(A(n))| < coin) holds when n G Bix) and* is large. Thus, except for
a set of asymptotic density zero of positive integers n, the congruence (1.4) forces
/(A(n)) = 0. Since A(n) is a nonnegative integer, this will happen only if/ has
nonnegative integer roots k, and A in) = k for such n and with k one of these nonneg-
ative integer roots. Conversely, if/ has nonnegative integer roots k, then any number
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n with A(n) = k will satisfy congruence (1.4). The corresponding statement about
/ (co(n)) being a multiple of £2(n) can be dealt with in a similar way.
(1) Let w2 be a squarefree number belonging to the interval Jt: — (log2

/3 x, 2 log2 x)
having p(w2) > Iog3.x Iog5;c, and assume that w satisfies congruence (1.1) and that
w2{ri) = w2. By Lemma 2.2, we know that if n e B(x), then n has such a factor
w2 which is moreover coprime to n. Since w2 is squarefree and its smallest prime
factor is large, it follows that for large x the congruence / (n) = 0 (mod w2) implies
that we may replace / by the product of all its primitive nonassociated factors in
Z[X], that is, we may assume that / (X) is primitive and squarefree as an element
of Z[X]. Write again d for the degree of / . The congruence f (n) = 0 (mod w2)
puts n into at most da(W2) congruence classes modulo w2. Let a (mod w2) be such a
congruence class. Then n = a + w2m holds with some nonnegative integer m, and
since by Lemma 2.2 we know that w2 and n are coprime, it follows that a and w2 and
coprime. We also write co(n) = w-^j. Fixings and a, we conclude that n < x is in
the arithmetic progression a (mod w2), and has a fixed value of a>(n) = w-J. It is
known that for every fixed positive integer /, the number of positive integers n < x
with n = a (mod w2) having a>(n) = I is

(3.5) «
<P(w2)\og2"x

and that estimate (3.5) above is uniform in our range / < 2 log2 x and w2 < 2 log2 x.
Indeed, this can be obtained from the main result in [15] together with inequality
(2.10). Now co(n) = wj is a number in the interval J shown at (2.11), and so the
number of numbers j when w2 is fixed is

w2

Summing up the above inequalities over all the allowable values of j , we conclude
that if w2 and a are fixed, then the number of such numbers n e B(x) which are
congruent to a modulo w2 is

<<; xS(x) _ x

w2(p(w2)

Summing up the above inequalities over all the possible values of or, we conclude
that the number of numbers n e B(x) satisfying congruence (1.1) and for which
w2(n) = w2 is fixed is

w2<f>(w2) <f>(w2)log\/2x
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Finally, summing up inequalities (3.6) over all the allowable values of w2, we get that
the number of numbers n e B(x) satisfying congruence (1.1) is

0.7)
&

Notice that that dw^J = (2a>(u"))Cj < (xiw2))
c\ with C5 := Iogrf/log2. Since for

every e > 0 the inequality z{t) < f holds for all positive integers t > te, it follows
that if we set e := (6C5)~\ then the inequality da>iW2) < tu2

/6 holds for all w2 e X
and for sufficiently large values of x. Since we also know that <j>{m) » m/log2m
holds for all positive integers m, it follows that the inequality 4>{w2) > w5

2
6 holds

for all w2 € X and when x is sufficiently large. Thus, if x is large the expression
appearing at (3.7) can be bounded above by

r2l0^x dsr ds x r ds<<xHx)L. ^^r*L<,
x8(x)

« . 2/9 +l ^
2/9 + , 1/6 = °(X)-log^X lOg2

/OX

The same argument applies when co(n) is replaced by £l(n).
Finally, to see the statement with co(n) replaced by r(n) in (1.1), write h(x) :=

L(log2x)/2JJ and let n e B(x) be a number satisfying congruence (1.1) with r(n)
instead of co(n). By condition (3) of Lemma 2.1, if we set again c2 to be the exponent
at which 2 divides x{n), we have that the inequality

(3.8) c2 > co(n) - n(loglX) > log2x - S(x) log2
/2^ - \oglx > ^ ^

holds for large x. We write K for the number of irreducible factors of / , and we
write / i , . . . , f K for these irreducible factors. The congruence / (n) = 0 (mod 2^)
together with the lower bound (3.8) on c2, imply that there exists i = 1,..., K such
tha t / , (n ) = 0 (mod 2hix)) holds. Since all t h e / , ' s are irreducible, with i fixed the
above congruence puts n into at most C6 arithmetic progressions of ratio 2hu>, where
one can choose Cf, to be an upper bound for the absolute values of all the discriminants
of the polynomials /,- for i = 1, . . . , AT. Thus, if n e B{x) satisfies (1.1) with co(n)
replaced by r (n ) , thenn is in at most C7 := K C6 arithmetic progressions of ratio 2/l(*).
Each one of these arithmetic progressions will contain at most
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positive integers n < x, thus the total number of numbers n e B(x) satisfying
f (n) = 0 (mod r(n)) is at most

which completes the proof of our theorem. •

We point out that when/ (n) := n, the problem of estimating the number of positive
integers n < x for which x(n)\n was treated by Spiro in [12].
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