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We show that large-amplitude, non-planar, Alfvén-wave (AW) packets are exact nonlinear
solutions of the relativistic magnetohydrodynamic equations when the total magnetic-field
strength in the local fluid rest frame (b) is a constant. We derive analytic expressions
relating the components of the fluctuating velocity and magnetic field. We also show that
these constant-b AWs propagate without distortion at the relativistic Alfvén velocity and
never steepen into shocks. These findings and the observed abundance of large-amplitude,
constant-b AWs in the solar wind suggest that such waves may be present in relativistic
outflows around compact astrophysical objects.
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1. Introduction

Black holes and neutron stars are among the most remarkable objects in the universe.
In addition to warping space–time, they generate powerful plasma outflows, which, in
the case of supermassive black holes, can manifest as radio sources that extend up to a
million light years through intergalactic space. Because the plasma around these compact
objects and their outflows are often relativistic, with flow velocities comparable to the
speed of light and magnetic energy density comparable to (or much greater than) the
rest-mass energy density of the plasma, the plasma physics of these environments has
been the subject of a great deal of recent study (Thompson & Blaes 1998; Blandford
2002; Chandran, Foucart & Tchekhovskoy 2018; Li, Zrake & Beloborodov 2019; Nathanail
et al. 2020; Ripperda, Bacchini & Philippov 2020; Yuan et al. 2020; Chashkina, Bromberg
& Levinson 2021; Li, Beloborodov & Sironi 2021; Ripperda et al. 2021; TenBarge et al.
2021; Yuan et al. 2021). It is therefore of interest to study how the basic building blocks
of plasma physics, for example the plasma waves, behave in a relativistic system.

One of the most important waves in non-relativistic plasma physics is the Alfvén wave
(AW) (Alfvén 1942; Barnes & Suffolk 1971; Barnes & Hollweg 1974; Goldstein, Klimas
& Barish 1974). This wave has prompted a great deal of study, in part because of its
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ubiquitous presence in spacecraft observations of the solar wind (Belcher & Davis 1971).
The prevalence of this wave in the solar wind may be due to the fact that long-wavelength
propagating fluctuations that are not AWs quickly dissipate, either through steepening into
shocks, turbulent mixing or damping due to wave–particle interactions (Barnes & Hollweg
1974; Cohen & Kulsrud 1974; Vasquez & Hollweg 1996; Schekochihin et al. 2009). In
contrast, AWs are undamped in a collisionless plasma in the long-wavelength limit (Barnes
& Suffolk 1971), and they undergo only weak turbulent mixing when most of the AWs
propagate in a single direction along the background magnetic field lines (as happens in
the solar wind, in which most of the AWs propagate away from the Sun in the plasma
rest frame). AWs in non-relativistic plasmas also possess a polarization state in which the
waves do not steepen into shocks, irrespective of their amplitude. This is the ‘spherical
polarization state’, in which the total magnetic-field strength B is a constant. Indeed, in a
homogeneous, non-relativistic plasma, a nonlinear, three-dimensional AW packet in which
the total magnetic-field strength, density and pressure are constant is an exact solution to
the compressible magnetohydrodynamic (MHD) equations (Goldstein et al. 1974). In the
solar wind, the observed AWs are often nearly perfectly spherically polarized.

AWs play an important role in space and astrophysical plasmas. For example, they
contribute substantially to the heating of the solar corona and the energization of the solar
wind. Convective motions at the solar photosphere shake the magnetic field lines that
connect the solar surface to the distant interplanetary medium, thereby launching AWs
that transport energy outward from the solar surface. In many models, the dissipation of
this AW energy flux is the dominant heating mechanism in the solar corona and solar
wind (Cranmer, Van Ballegooijen & Edgar 2007; Verdini et al. 2009; van der Holst
et al. 2014; Chandran 2021). A similar energization mechanism could arise in relativistic
astrophysical plasmas, in which a dense central object (e.g. a black-hole accretion disk,
or the surface of a proto-neutron star) has a turbulent surface and is threaded by a
magnetic field (e.g. Metzger, Thompson & Quataert 2007). Relativistic AW turbulence
has been the subject of several recent studies (e.g. Thompson & Blaes 1998; Cho 2005;
Chandran et al. 2018; Ripperda et al. 2021; TenBarge et al. 2021) and relativistic AW in
the magnetically dominated regime have been implicated in the energization of pulsar
and magnetar magnetospheres (Bransgrove, Beloborodov & Levin 2020; Yuan et al.
2020, 2021; Beloborodov 2021).

AWs also play a crucial role in the transport and confinement of cosmic rays. When
the average cosmic-ray drift velocity through a plasma exceeds the Alfvén speed, the AW
becomes unstable and grows, leading to wave pitch-angle scattering of the cosmic rays
(Lerche 1966; Wentzel 1968; Kulsrud & Pearce 1969). This same process plays a critical
role in diffusive shock acceleration. The streaming of cosmic rays away from a shock in the
upstream direction amplifies AWs, which scatter the cosmic rays, causing them to return
to the shock, thereby enabling the repeated shock crossings required to accelerate particles
to high energies (Bell 1978).

The tendency for AWs to develop spherical polarization in non-relativistic plasmas has
important implications for the way that AWs affect the transport of energetic particles and
energize plasma outflows. For example, in contrast to large-amplitude, linearly polarized
AWs, large-amplitude spherically polarized AWs do not cause magnetic mirroring of
cosmic rays. In addition, numerical simulations suggest that when the amplitudes of
the fluctuating and background magnetic fields are comparable, spherically polarized
AWs necessarily develop discontinuous magnetic-field rotations (Valentini et al. 2019;
Squire, Chandran & Meyrand 2020; Shoda, Chandran & Cranmer 2021). Copious
abrupt magnetic-field rotations are indeed observed in the solar wind close to the Sun
(Bale et al. 2019; Kasper et al. 2019; Horbury et al. 2020), but fewer are observed
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farther away, implying that these discontinuities erode over time, possibly via plasma
instabilities (Tenerani et al. 2020). The development and decay of these discontinuities
provide a dissipation channel for AWs that can alter the rate at which wave energy is
thermalized and, in principle, the way that the dissipated wave energy is apportioned
among different particle species (cf. Howes 2010; Kawazura et al. 2020). If a relativistic
analogue of the spherically polarized state exists for the relativistic AW, this could
have important implications for energetic particle propagation and turbulent heating in
relativistic plasmas. This possibility is the focus of this Letter.

Previous work on large-amplitude relativistic AWs has been limited to two simplified
cases. First, in the magnetically dominated limit, where the magnetic energy density is
much larger than the energy density of the plasma, the inertia of the plasma may be
neglected and arbitrary AW are exact nonlinear solutions, travelling at the speed of light
c (Thompson & Blaes 1998). Second, when the magnetic field is not so dominant and the
plasma inertia may not be neglected, exact nonlinear AW solutions have been found for
the so-called ‘simple wave’, in which the magnetic-field strength in the local fluid frame
is a constant and the fluctuations depend only on a single scalar variable φ(xμ) (Barnes
& Suffolk 1971; Greco 1972; Anile 1989). It was shown that the simple AW propagates
without steepening. This was apparently rediscovered by Heyvaerts, Lehner & Mottez
(2012), who also showed that the simple AWs are necessarily planar (1 + 1-dimensional).

In this Letter, we extend this work to more general 3 + 1-dimensional structures,
without assuming plane polarization or that the system is magnetically dominated. We
show that any fluctuations in the magnetic-field 4-vector and velocity 4-vector that are
proportional to each other in the same way as linear AWs are exact nonlinear solutions
to the relativistic MHD equations in flat space–time, provided that the mass density,
internal energy, pressure and background magnetic field are constants. In these solutions,
the magnetic-field strength in the local fluid rest frame is a constant. The resulting wave
packets propagate through the plasma at the relativistic Alfvén velocity without steepening
into shocks.

2. Elsasser formulation of general relativistic magnetohydrodynamics

The equations of general relativistic magnetohydrodynamics (GRMHD) (Anile 1989)
describe the motion of a perfectly conducting fluid under the influence of the
electromagnetic fields and gravity,1 and may be derived assuming that the electric field
vanishes in the local fluid rest frame. These equations are, first, the conservation of mass

∇ν(ρuν) = 0, (2.1)

the stress–energy equation
∇νTμν = 0, (2.2)

and the induction equation
∇ν(bμuν − bνuμ) = 0. (2.3)

In these equations, ∇ν denotes the covariant derivative, ρ is the mass density, uμ is the
fluid 4-velocity, the GRMHD stress–energy tensor is

Tμν = Euμuν − bμbν +
(

p + b2

2

)
gμν, (2.4)

1In this paper, we will in fact neglect gravity, but it may be useful to write the general relativistic equations for future
work.
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where gμν is the metric tensor, the magnetic-field 4-vector is

bμ = 1
2ε

μνκλuνFλκ , (2.5)

with b2 = bμbμ > 0, Fλκ the Faraday tensor divided by
√

4π, εμνκλ the Levi-Civita tensor,
and

E = ρ + U + p + b2, (2.6)

where U is the internal energy and p is the thermal pressure. We use units such that the
speed of light c = 1. We use the notation

A2 = AμAμ, (2.7)

to denote the magnitude squared of any 4-vector Aμ; for spacelike 4-vectors, we also write
A = √

A2.
The 4-velocity satisfies

u2 = −1, (2.8)

and (2.5) implies that
uμbμ = 0. (2.9)

Chandran et al. (2018) noticed that, just as in non-relativistic MHD, (2.2) and (2.3) may
be cast in a useful pseudo-symmetric Elsasser (1950) form by multiplying (2.3) by ±E1/2,
adding to (2.2) and dividing the two resulting equations by E . This results in

∇ν(z
μ
±zν

∓ + Πgμν) +
(

3
4

zμ
±zν

∓ + 1
4

zμ
∓zν

± + Πgμν

)
∂νE
E , (2.10)

where

zμ
± = uμ ∓ bμ

E1/2
, Π = 2p + b2

2E , (2.11a,b)

and ∂ν refers to differentiation with respect to the coordinate ν. Equation (2.10), along
with (2.1) and an equation of state, comprise the Elsasser formulation of GRMHD. These
equations have been used recently by TenBarge et al. (2021) to study weak AW turbulence
in the small-amplitude, magnetically dominated, anisotropic limit.

In the following, we restrict ourselves to the case of special relativity, for which the
Minkowski metric may be written in Cartesian coordinates gμν = diag(−1, 1, 1, 1), and
the covariant derivative reduces to the simpler 4-gradient operator ∇ν = ∂ν . Thus, our
results only apply when the length and time scales of the fluctuations are small compared
with the scales over which the metric changes significantly.

3. Fluctuations on a uniform background

We take each quantity to be the sum of a background value plus a fluctuation

ρ = ρ̄ + ρ̃ p = p̄ + p̃ U = Ū + Ũ,

uμ = ūμ + ũμ bμ = b̄μ + b̃μ zμ
± = z̄μ

± + z̃μ
±.

}
(3.1)

We take the background quantities to be uniform in space and time,

{ρ̄, Ē, Π̄, ūμ, b̄μ} = const., (3.2)
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and consider fluctuations satisfying

ρ̃ = Ẽ = Π̃ = 0, ũμ = − b̃μ

E1/2
. (3.3a,b)

The final equation of (3.3a,b) implies that z̃μ
− = 0. We assume that the fluctuations are

localized in space–time around a sequence of events Xμ; at another sequence of events
X′μ, bν(X′μ) → b

μ
and uμ(X′μ) → uμ as |(X − X′)2| → ∞.

It follows from (2.8) that

uμuμ = u2 + ũ2 + 2uμũμ = −1. (3.4)

The space–time localization of the fluctuations combined with the constancy of ūμ implies
that u2 = −1, and hence

ũ2 = −2uμũμ. (3.5)

Equation (2.9) further restricts the solution by requiring that

1
E1/2

uμbμ = 1
E1/2

uμbμ − ũ2 − zμ
+ũμ = 0. (3.6)

The localization of the fluctuations and the constancy of ūμ and b̄μ imply that uμbμ = 0,
so (3.6) becomes

ũ2 = −zμ
+ũμ. (3.7)

Subtracting (3.5) from twice (3.7), we find that

ũ2 = 2
E1/2

b
μ
ũμ. (3.8)

Finally, we calculate the scalar b2. This is

b2 = bμbμ = b
2 + E ũ2 − 2E1/2b

μ
ũμ = b

2
, (3.9)

a constant, where we have used (3.8) in the last equality. Thus, the wave packet has constant
4-magnetic-field magnitude, analogous to the constant-B2 constraint for a large-amplitude
AW in non-relativistic MHD (Barnes & Hollweg 1974; Goldstein et al. 1974).

At each point in space–time, we may boost into an accelerating frame moving with the
instantaneous local fluid velocity uμ, the local fluid rest frame. In this frame, bt = 0 and,
therefore, the magnetic-field 3-vector has magnitude squared B2 = b2, which is a constant
and therefore the same at each point; B2 is not spatially constant in an arbitrary fixed
inertial frame.

Equation (2.1) with ρ constant and flat space–time gives

∂ν ũν = ∂ν z̃ν
+ = 0, (3.10)

and the + Elsasser equation (2.10) then gives

zν
−∂ν z̃μ

+ = 0, (3.11)

with the − Elsasser equation vanishing by virtue of (3.10) and (3.3a,b). (3.11) is a linear
wave equation for the evolution of z̃μ

+; thus, a three-dimensional Alfvénic wavepacket
of (apparently; see (5.1)) arbitrary amplitude and arbitrary shape propagates without
distortion on a homogeneous background.
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4. Components in the background rest frame

We define a background rest frame (BRF)2 in which the homogeneous background (3.2)
is at rest. In this frame uμ = (1, 0, 0, 0), and b

μ = (0, 0, 0, b), where we have chosen to
align the z direction with the background magnetic field. Since uμ is a future-directed
4-velocity, it is straightforward to show, working in the BRF and using (3.4), that ũ2 ≥ 0,
a relation that holds in all frames since ũ2 is a scalar. (The equality ũ2 = 0 is obtained
only when ũμ = 0.) Calculating (3.5) and (3.8) in the BRF, the t and z components of the
fluctuation are given by

ũt = 1
2

ũ2, ũz = −E1/2

2b
ũ2 (BRF), (4.1a,b)

and the magnitude of the remaining (perpendicular) fluctuation components ũ⊥ =√
(ũx)2 + (ũy)2 is

ũ⊥=
√

ũ2 + (ũt)2 − (ũz)2 = ũ

√
1 − ũ2

4σ
(BRF), (4.2)

where σ = b2/(ρ + U + p). Providing ũ2 thus gives us nearly all the information in
the fluctuation 4-vector, apart from the direction in the y-z plane that the perpendicular
fluctuation points. To determine this, we must use (3.10) and a particular functional form
for ũ2. This amounts to solving a two-dimensional first-order quasilinear partial differential
equation with analytic coefficients for one of the components (say, ũx).

Evaluating the fluid 3-velocity vi = ui/ut and magnetic-field 3-vector Bi = biut − btui, it
is clear that, in the BRF, B2 is not constant, the 3-vector magnetic and velocity fluctuations
are not related to each other by a constant of proportionality, and do not in general even
point in the same direction.

5. Maximum amplitude

Equation (4.2) implies an upper limit on the magnitude of the fluctuations,

ũ ≤ ũmax = 2b√
ρ + U + p

. (5.1)

In the non-relativistic case, this has been recently noticed in solar wind AWs by (Matteini
et al. 2018). The observed magnitude of the fluid 3-velocity in the BRF is

v =
√

uiui

ut
= ũ

√
1 + ũ2/4

1 + ũ2/2
(BRF), (5.2)

an increasing function of ũ; v < 1 and v → 1 as ũ → ∞.

6. Alfvén velocity and wave frame

The propagation of the wave is controlled by the constant time-like 4-vector zμ
−, with

z2
− = b2

E − 1 < 0. (6.1)

(In the limit b2 → ∞ while keeping ρ, U and p constant, z2
− → 0.) An observer moving

with 4-velocity zμ
−/

√
−z2

− sees a time-independent structure; such an observer is in the

2In Chandran et al. (2018), this was called the average fluid rest frame.
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wave frame (WF). The WF 3-velocity relative to another frame is vi
w = zi

−/zt
−, and

specifically, relative to the BRF is

vi
w = vi

A = b
E1/2

(0, 0, 1) (BRF). (6.2)

Thus, the three-dimensional relativistic AW propagates along the background field lines at
this relativistic Alfvén velocity, just like the planar AW (Barnes & Suffolk 1971; Heyvaerts
et al. 2012). Note that this does not depend on ũμ, so the wave does not steepen into a shock.
If all of b2/ρ, U/ρ, p/ρ � 1, we recover the usual non-relativistic Alfvén velocity. As
b2 → ∞, v2

A → 1, the ultra-relativistic limit of the AW previously studied by (for example)
Thompson & Blaes (1998) and Heyl & Hernquist (1999).

7. Structure in the WF

In the WF, the spatial components of zμ
− = zμ

− are zero and so

ui = −bi/E1/2 (WF). (7.1)

Using (2.9), we may obtain
bt = −E1/2γ v2 (WF), (7.2)

where v2 is the square of the 3-velocity vi = ui/γ and γ = ut. Then, we may calculate the
magnetic-field 3-vector,

Bi = biut − btui = −E1/2vi (WF), (7.3)

so in the WF the 3-velocity is parallel and proportional to the magnetic-field 3-vector,
just like in the non-relativistic case. This also implies ∂iv

i = 0 in the WF. We may also
calculate

b2 = bibi − (bt)2 = Ev2 = B2 (WF), (7.4)

and so, since b2 is constant, in the WF v2 and B2 are both constant, just like in the
non-relativistic case (Matteini et al. 2015).

Let us consider the components of the stress–energy tensor (2.4) in the WF. First, using
(7.2) and (7.4),

Ttt = ρ + U + 3b2

2
(WF), (7.5)

a space–time constant for our solution. Applying (7.2) again,

Tti = Tit = Evi (WF), (7.6)

which from (7.3) has no spatial divergence, maintaining the constancy of Ttt in the equation
∂νTtν = 0. Finally,

Tij =
(

p + b2

2

)
δij (WF), (7.7)

a space–time constant, thus enforcing the constancy in time of Tit in the equations ∂νTiν =
0. The cancellation of the first two terms in the space–space components of (2.4) in the
WF generalizes the result for the non-relativistic AW that the centrifugal force exactly
balances the tension force in the magnetic field, keeping the fluid flowing exactly along
the field lines in the WF.
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8. Discussion

Our analysis has shown that some of the unique properties of the AW survive,
even with relativistic fluctuation velocities and arbitrarily strong magnetic-field strength.
Specifically, just as in the non-relativistic case (Goldstein et al. 1974), a three-dimensional
Alfvénic structure propagates in time without steepening into a shock,3 no matter its
fluctuation amplitude; equivalently, the propagation velocity in the rest frame of the
background is always the relativistic Alfvén velocity (6.2), which is independent of
the fluctuation amplitude. Also analogous to the non-relativistic case, the magnitude b2

of the magnetic-field 4-vector bμ is a space–time constant. This implies correlations
between different components of the fluctuation to enforce this constraint. Unlike in the
non-relativistic case, in a general inertial frame the magnetic-field 3-vector does not have
constant magnitude; however, in the WF moving at the Alfvén velocity, both the velocity
and magnetic field 3-vectors have constant magnitude, as in the non-relativistic case. Also
in the WF, the plasma 3-velocity is parallel and proportional to the magnetic-field 3-vector.

In what situations might one see large-amplitude relativistic AWs? In a statistically
homogeneous medium, one might expect equal fluxes of z̃μ

± AWs, a nonlinear, turbulent
situation. However, if the waves are excited by some particular event or set of events, they
will mainly travel away from that event. We might postulate (inspired by non-relativistic
plasma physics) that sufficiently far from the source, the other, non-Alfvénic modes largely
dissipate, and then we are left with just the AWs. This situation would be relevant, for
example, in outflows around a compact object like a black hole (Chandran et al. 2018). One
caveat is that in this case the background is likely to be highly inhomogeneous, and these
inhomogeneities will reflect the waves and thus drive turbulence. However, as previously
mentioned, in the non-relativistic case it can be shown that even including this turbulence
(Cranmer & Van Ballegooijen 2005; Verdini & Velli 2007; Perez & Chandran 2013; Van
Ballegooijen & Asgari-Targhi 2016; van Ballegooijen & Asgari-Targhi 2017; Chandran &
Perez 2019), in fact the normalized amplitude B̃/B of the primary outward-travelling AWs
tends to grow with distance from the central object (in the solar wind case, the Sun Parker
1965; Hollweg 1974), with the other, reflected, components remaining relatively small: i.e.
the fluctuations are approximately large-amplitude AWs. This is thought to be a possible
origin for the ‘switchbacks’; abrupt magnetic-field reversals recently observed by NASA’s
Parker Solar Probe in the near-Sun solar wind (Squire et al. 2020). If this result carries over
to the relativistic case (as it appears to, cf. Chandran et al. 2018), large-amplitude AWs of
the type discussed in this Letter may also exist in relativistic environments. Energization
by large-amplitude AW have already been studied in the magnetically dominated limit
(Thompson & Blaes 1998; Cho 2005; Yuan et al. 2020; Li et al. 2021; Ripperda et al.
2021): our results apply both in this limit and when the magnetization is less extreme,
and thus may be important for the study of the heating and observed dynamics of plasma
around compact objects (Akiyama et al. 2021a,b).
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