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Abstract

There are two types of quartic normal extensions of the rational field, depending on the Ga-
lois group of the generating equation. All such extensions are described here in a uniquely
parametrized form.

1991 Mathematics subject classification (Amer. Math. Soc.) 11 R 16.

It is well known that every quadratic extension of the rational field Q is
normal. This is no longer true for quadratic extensions of a quadratic field,
for example Q(v/2) is not normal over Q(v2). Quadratic extensions are
easy to describe: as D runs through all squarefree integers not equal to 1,
Q(vVD) runs through all quadratic (normal) fields. In the following we shall
describe all normal quartic fields.

In a sense the normal quartic extensions of Q are well known. Indeed the
only transitive permutation groups of order 4 are the cyclic group

G, ={1, (1234), (13)(24), (1432)}
and the Klein group
G, ={I, (12)(34), (13)(24), (14)(23)}

and so adjunction of a root of a quartic equation to Q generates a normal
extension only if the Galois group of the equation over Q is either G, or
G,. From here it follows easily that a quartic normal extensions is either

of the form Q(va +bvD) where a, b are non-zero integers and D is
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a squarefree greater than 1, or of the form Q(v4, vB) where 4, B are
distinct squarefree integers not equal to 1. Our purpose here is to find ap-
propriate restrictions on these integers so as to obtain a unique description
of the extensions.

THEOREM. Quartic normal extensions K of the rational field Q are one
of the following two types.

1. Let D be a squarefree integer greater than 1 with no prime factor of the
Jorm p=—1 (mod4); r, s, an integer solution of r2+s% =D with s> 0;
and k an odd squarefree integer such that (k,D) = 1. Set a = D +svVD.
Then K = Q(vka).

2. Let A, B be squarefree integers not equal to 1 with A< B,

max(|4|, |B|) < |4B|/(4, B)*.
Then K = Q(VA, VB).

The parameters D, s, k in the first case and 4, B in the second case
uniquely specify the extensions.
We need four lemmas.

LEMMA 1. Given the quartic equation

(1) x*+axd +bx*+ex+d=0

2

over Q, there exists a transformation y = u+vx +wx”, u, v, w € Q,

which transforms (1) into

(2) v 4y’ +4=0
if and only if the Galois group of (1) over Q is a subgroup of the dihedral
group

G ={I, (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)}

where I is the identity permutation.

Proor. Essentially this lemma is due to van der Ploeg [2], but not quite
in such an explicit form and we give an independent proof. If there exist as
transformation y = u+vx + wx?® with rational coefficients, u, v, w such
that (1) can be changed into (2) then (1) is soluble by extraction of square
roots alone, hence its group is a subgroup of G. Conversely suppose that the
Galois group of (1) is a subgroup of G. Let the four roots of (1) be x,, x,,
Xy, X,,then ¥ = x,x; + x,x, is invariant under G and so ¥ € Q. Hence
v is a rational root of the Ferrari resolvent

z —bzz+(ac—4d)z—a2a'+4ba'—c2 =0.
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Let o,, 0,, 0, denote the elementary symmetric polynomials of the roots
of (1); then

2 2
(X, =Xy +Xx;—Xx,)" =0, —40, + 4y,
2 2.2 2 3
(Xy = Xy + X3 — X4)(X] — X3 + X3 — X;) = 6, — 40,0, + 40, + 20, .
Set y, = u+vx; + wxiz, i=1,2,3,4. Then the quartic equation with

roots y,, ¥,, V3, ¥, has the form (2) provided that y, +y,+y;+y,=0
and y, -y, +y; -y, =0, that is

4u+vo, +w(012 —20,) =0, v(x, —x, + Xy - x,) +w(xl2 —x§ +x32 —xf) =0.
Multiplying the second equation by x, — x, + x; — x, , we get

v(a} — 40, + 4y) + w(a; — 40,0, + 40, + 20,¥) = 0,
giving the rational solution

u=%a2b+ac—2b2+ <—-%a2+2b) l//,'u=a3—4ab+4c+2ac//,

w=d’—4b+4y.
It follows that (1) can be changed into (2) by the transformation y = u +

vx+wx2.

LEMMA 2. All integer solutions of

(4) +yt=7"

are obtained by one of the following:

1. x=k*@u' - 6utvi +vY), y= 4k2uv(u2 —v%), z=k(u? +v%) where
(u,v)=1, u+v=1 (mod2), k any integer,

2. x= D(m2 - nz), y = 2Dmn, z = DI, where D > 1 is squarefree
with no prime factor = —1 (mod4) and m,n,l are integers satisfying
m* +n® = DI*.

This is essentially due to Euler, see [1, p. 621]. It can be obtained directly
from the parametric solution of Pythagorean triples. Solutions of m*+n*=
DI? of course always exist.

LEMMA 3. Let D > 1 be squarefree with no prime factors of the form

= -1 (mod4), d|D, d >0 with d =D (mod2); r,s,t an integer
solution of r* +s* = D* with (r,s) = 1. Then the equation 2+ y2 =D
has an integer solution x,y such that (rx +sy,sx—ry)=d.

PRrROOF. Since (r, s) =1, ¢ cannot be even or have a prime factor p = —1
(mod4). Let r+is = (a+ib)e+if)(u+ iv)2 be a factorization in the
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Gaussian domain such that a® + b> = d, * +v* =1, (u,v) = 1. This
factorisation can clearly be accomplished so that no (odd) prime factor p
of (D, t) divides (e + if)(u +iv). Set x +iy = (a+ ib)(e — if), then
X2+ y2 =D and
(r+is)(x—iy)=rx+sy+i(sx—ry)
=@ +b)e+iN u+iv) =de+if)u+iv)

Since (e+if)(u+iv) has no rational integer divisor, (rx+sy, sx—ry)=d.

LEMMA 4. Let D,, D, be squarefree integers greater than 1 with no prime
Jactors p = -1 (mod4); r;, s;, t,(i =1, 2) integers satisfying r,.2 +s,.2 =
DA (s;»t;)=1;and k,, k, squarefree integers. Set

0, = \/k,. (t,.D,. + s,.\/H,.) ,

i=1,2. Then Q(6,) = Q(8,) ifand only if D, = D, and
5) k,(t,t,D + rr, + ns,s,) k,(t,t,D —r,r, — ns,s,)
2k, D ’ 2k, D

are rational squares for n = +1 or —1, where D =D, = D,.

Proor. Note that if either of the expressions (5) is a rational square then
so is the other, since
22,2 2
(t, &, D+ riry + 18,8,) (8, D — riry, — s, 8,) = ;D" — (r,1r, + 15,5,)
2
= (ry5, = 1rys,)".
Suppose that D, # D,, then /D, € Q(6,) but /D, ¢ Q(6,). Therefore
if Q(0,) = Q(6,) we must have D, = D, = D and there exists ¥, v, w,
x € Q such that 0;’) = u+v0§’)+w0§’)2+x0§’)3, j=0,1,2,3 where 6,
6/, 6" are the conjugates of 6,, i=1,2. Since 6, =-6,, 0, = -6;, we
have u =0, w =0 hence

3 ’ ! 3 " 3 " ’ 3
0,=v0, +x6,,0,=v0,+x6,,0, =-v0, —x0{,0, =-v6, —x0,.

Consequently g, = —v>(87 + 87) — 2ux(6} + 67%) — x*(6° + 6F),
0, = 0767w +ux(6) +67) +x°6°67)

where g,, g, are the elementary symmetric polynomials of the ng ). Hence
v and x satisfy

6) tv? + 2k, 12D — yvx + k(4L D? - 3t,r’D)x’ = k]i_ltz

https://doi.org/10.1017/51446788700034637 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034637

(5] Quartic normal extensions 477

and

k,r
(7) ’U2+2k1t1D'Ux+k12rfD 2— k—r,é +1 or — 1.
171

Multiplying (6) by VD, (7) by r, and adding we obtain
k
(t,VD +r)( +k,(2t,D - r,VD)x)* = k—?(tZ\/B +¢&r,)
hence

(8) v+k1(2zID—r1\/B)x=isl\/%(zzﬁ+¢r2)(zl¢5—rl)

1

for some sign on the right hand side.
Similarly subtracting r, times (7) from VD times (6) we obtain

k
v+k,(2,D+rvVD)x = :i:sl\/%z—(tzx/ﬁ ~&n)t,VD+r)
1Y %
for some sign on the right. Eliminating v we have

2klrlslx/5x =+ \/—i—f—(tzx/ﬁ - érz)(tlx/_ﬁ +r)

k
+ \/k—?(tzx/l—)+§r2)(tl\/5— r)
for one of the four possible choices of sign on the right. Squaring gives
k,
(klrlslx) 7%, D(t t,D ~&rr, - &ns;s,).
Conversely suppose that for some 5 = =*1 it is true that (k,/2k,D) x

(t,t,D —&rr, — ¢ns,s,) is a rational square for both ¢ = +1 and ¢ = 1.
Then

1 k,
X = W\/Zk D(t t,D-&rr, ~ &ns,s,)

defines a rational number for £ = 1. Define v by (8) with some sign on the
right. Then v and x satisfy (6) and (7) as seen by reversing all calculations.
But then v is rational. For multiplying (7) by ¢, and subtracting from (6)

we obtain K
vx = S (tyr —¢nt) - 2k,t,Dx’
2kl 1 1

and rationality of v follows. Hence 6, = v6, + x013 € Q(6,) and is easily
seen to be of the form 6, = \/kz(t2D +5,VD).
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We are now ready to prove our theorem. We first show that the extensions
described in the theorem are indeed normal. In the case of the first type
extension let r* +s° = D , r>0, s>0, D> 1 squarefree with no prime
factors +—1(mod4). Let k be squarefree and set 8 = vVka, a = D+svD.
Its conjugates are

0' = \/k(D - svD) = r(6* —kD)/s6, 6" = -6, 6" = -¢',

therefore Q(6, 6', 8", 8"') = Q() is normal. In the case of the second type
extension let 4, B be squarefree, not equal to 1, 8 = VA + vVB. Clearly,
Q(vA, vB) = Q(8) is a quartic extension and the conjugates are

!

6 =vVA-vVB=(4-B)/0,0"=-6,0"=-¢
Therefore Q(0, 6', 8", 8") = Q(8) is normal.
Now adjunction of a root of (1) to Q can generate a quartic normal ex-
tension only if the Galois group of the equation is either

G, ={I, (1234), (13)(24), (1432)}

or
G, ={I, (12)(34), (13)(24), (14)(23)},

over Q. By Lemma 1 there exists a transformation y = u+vx+wx® over Q
such that (1) is changed into (2). Therefore we may assume that our quartic
normal field is generated by a root of an equation of the form (2). We may
also assume that the coefficients p, ¢ in (2) are integers, otherwise multiply
y by a suitable integer to get rid of the denominator.

Suppose the group of (2) is G, . We first show that the extension K is of
the following type:

1* Let D be asin type 1, r, s, ¢ an integer solution of r* +s*> = Dr’
with s >0, t >0, (s,¢)=1; and k asquarefree integer. Then K = Q(6)

where 6 = \/k(tD + svD). Let 7., Ty, T3, T, be the elementary symmetric
polynomials of the roots y,, y,, y;, ¥, of (2),then 7, =0, 7,=p, 71,=0,
7, = ¢, therefore

3
(.Vl +y2“y3_y4)(y1 "y2+y3—y4)(y1 =V,—V3 +.V4) =T —4T1T2+8T3 =0.

The roots can be arranged so that y, -y, +y,—y, = 0 say, and since 7, =0,
we get

2 2 2 2
V3=V V4=V Y v =—T, =D, YV, =T4=4.

Consider y = (1/16)(y, + iy, — y; — iy4)4 over Q(#). It belongs to G,
and so its value is

. 4 2 2,2 2.2 .
W=y +ip)t = 07 + 9D - 82yl £ 4i YRR +02) - 4y

=p’ — 8¢ +4i\/q(p® - 4q) € Q(i).
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But p and g are integral, so there exists an integer 7 such that q(p2—4q) =
T 2, hence (p2 - 8q)2 + (4T)2 = p4. By Lemma 2, one of the following two
conditions holds.

1. There exist integers u, v with (#,v) =1, u+v =1 (mod2), and
an integer k # 0 such that p = k(u2 + vz) and

p2 -8 = k2(u4 —6uv’ + v4) or 4k2uv(u2 - vz).

2. There exists a squarefree integer D > 1 with no prime factor = -1
(mod 4), and integers m, n, [ satisfying m? +n® = DI? , such that p = D/
and p> - 8q = D(m2 —n%) or 2Dmn. In Case 1 we have g = k*u*v? or
(1/8)k*(u? = 2uv — v?)?. If (2) is

y +k(u +v )y 24k =0 then (y2+ku2)(y2+kv2) =0,

and the equation is reducible and does not generate a quartic field. So (2) is
vkl + 0%y’ + -ilgkz(u2 ~2uv ~ ¥ =0,

its roots are

= (2172 —k[206 + v%) £ V2(? + 2uv — v2)]

2 and u? + 2uv — v? are

with independent + signs. By definition uw +v
coprime,
(u2 + 2uv — v2)2 + (u2 - 2uv - v2)2 = 2(u2 + vz)2

b

and so Q(y) is an extension of type 1 with D =2, ¢ = u + vz, § =
iu2 +2uv — vzl .
In Case 2 we have
g = (1/4)Dn” or (1/8)D(m — n)>.

If (2) is y* + DIy* + (1/4)Dn* = 0, its roots are
= (:i:l/2)<\/—lD+ nvD + \/—ID— n\/l_)>

with m? + n* = Dlz, hence Q(y) is an extension of type 1% with ¢ =
/1, n), s=Inl/d, n), r=m/{, n), k= (=l n). If (2) is y* +
Dly* + (1/8)D(m — n)* =0 and D is odd then

= (£1/2)\/~1(2D) £ (m + n)VZD.

By the equality (m + n) +(m-— n) =2DI? , Q(y) is an extension of type
1* with t=|l{/(I,m+n), s=|m+n|/(I,m+n), k=(=1/|I))({, m+n).
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Similarly if D is even, since (m + n)2 F2mm=DI*, m+n and m-n
must be even,

y = +\/=I(D/2) £ ((m + n)/2)\/D]2

and by the equality ((m+n)/2)2 +((m— n)/2)2 = (D/2)l2 , Q(y) is again an
extension of type 1% with ¢ = |{|/(/, (m+n)/2), s = |m+n|/2(], (m+n)/2),
k = (=1/lH{{, (m + n)/2). It follows that if the group of (2) is G, then
adjunction of its roots to Q generates an extension of type 1°.

Next we show that any extension of type 1° is of type 1. So sup-
pose st = th, (s,t) = 1, k squarefree, 8 = \/k(tD+svVD). If

here 2|k, set B =tD+rvD, B=tD-rVD, then 6 = \/kB/2+\/kB/2

with (¢,r) =1 (since (¢,s) = 1) and clearly Q(0) = Q(\/kB/2). So we
may assume 2t k. Let (k,D)=d, k=kd, then (k,,D)=1and 21k,

2 +d hence D/d + D = 0(mod2). By Lemma 3, the equation xt+ y2 =D
has an integer solution x, y such that (rx +sy, sx —ry) = D/d. Now
(rx + sy)2 + (sx — ry)2 = (r2 + sz)(x2 + yz) = (tD)2
hence there exist integers u, v with (u,v) =1, u+v = 1(mod2) such
that rx + sy = (D/d)(® — v*) or (D/d)(2uwv), tD = (D/d)(u* +v?). If
rx+sy = (D/d)u* —v?), set n = \/k,(D + yvD) and apply Lemma 4 with
O, =n(r,=x,5,=y,t,=1)
and
0,=0(r,=r,s,=5,1,=t,k, =k).

The expressions (5) in Lemma 4 and uz, v? respectively hence by the
Lemma, Q(n) = Q(6). Similarly if rx + sy = (D/d)(2uv) then sx —ry =
(D/d)(u* —v®) and setting 5 = \/k,(D + xvD) we can apply Lemma 4 with
6,=n (rn=y,5,=x,t =1), 6, =0. The expressions in (5) are now

v?, u? respectively, and we again conclude that Q(n) = Q(6). In either case

the extension is of type 1. (Since Q(vka) = Q(Vka), a =D ~svD, we
may assume at any rate s > 0).
To show uniqueness of the parameters s, k, suppose that

n, =\ k(D +s,VD),
n,= V kz(D + 32\/1_)) ’ Q('h) = Q(”z)

By Lemma 4 (and changing the sign of s, if necessary)
(k,/2k,D)(D + r,r, + 5,5,)

https://doi.org/10.1017/51446788700034637 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700034637

9] Quartic normal extensions 481

. 2, 2 2, 2
is a square. Now r| +s; =D, r; +s5, = D, hence

2 2 2
(ryry+s,8,)" +(r;s, —r,s)" =D".

Set (r,r,+s,s,, D) = d, then there exist integers u, v satisfying (u, v) =1,
u+v = 1(mod2) such that r,r, + 5,5, = d(u2 - vz) or d2uv), D =
d(u2 + vz) . Suppose r,r, + 5,5, = d(u2 - vz) , then
ky(D +ryry +5,5,)/2kD = k2142/k1(142 + 112)

hence klkz(u2 + v2) is a square. But (k,,D) =1, (k,,D) =1 and k,
k,, D are squarefree therefore k, = k, and W +vi=1 , d = D. But then
nrtss, =D, rs,—sr,= 0 which together with ’12 +s12 =D, rf +s22 =D
give r,=r,, 5, =5,.

If r,ry, +s5;5, =d(2uv) then

(u+ 11)2k2

2k1(u2 +v?)
As before, it implies k, =k, , W+l = 2,D=2d, rr,+s;5,=2d=D,
rs,—sr,=0 hence r,=r,, 5,=5,.

Finally suppose that the group of (2) is G,. Then all three quantities

Y, = V1V +V3Ve Wy = ViV3+VoVss W3 =Y, +Y,Y; belong to G, and are
roots of the Ferrari resolvent of (2),

k .
57 2= (D +rry+5,5,) = , 2k1k2(u2 +v?) is a square.

2k, D

(9) 2’ —pz* —4qz +4pq = 0.

Hence (9) has three rational roots. But (9) is (z — p)(z2 —4g)=0 andso ¢
is a square f 2 . Since G, is transitive, the roots

1
y=25(V-p+2f £V-p-2f)
of (2) are quartic algebraic numbers. Let
—p+2f=m2M, —p—2f=n2N
where M, N are squarefree. Then the field is generated by any two of the
squareroots of M, N, MN/(M, N )2 . Exactly one of these three numbers
has a largest absolute value. Denoting by 4, B the other two we may assume

A < B, max(|4|, |B|) < |4B|/(4, B)* and we obtain Q(y) = Q(vV4, VB),
an extension of type 2. Uniqueness of the parameters 4, B is obvious.
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