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Optimal Boundary Regularity of Proper
Harmonic Maps between Asymptotically
Hyperbolic Spaces

Jingru Niu

Abstract. This paper studies the optimal boundary regularity of harmonic maps between a
class of asymptotically hyperbolic spaces. To be precise, given any smooth boundary map with
nowhere vanishing energy density, this paper provides an asymptotic expansion formula for
harmonic maps under the assumption of C! up to the boundary.

1 Introduction

Let M denote the interior of a compact smooth manifold with boundary M, and let g
be a nondegenerate smooth metric on M. Letr € C®(M) withr > 0on M, r~'(0) =
M. Consider the metric g on M given by g = r~%g. Then we call g a conformally
compact metric and (M, g) a conformally compact manifold. In addition, if (M, g)
satisfies |dr|z = 1 on M, it can be shown in [24] that this condition is equivalent
to the sectional curvature uniformly tends to —1 as we approach the boundary oM.
When this additional condition holds, we say that the conformally compact manifold
(M, g) is asymptotically hyperbolic.

Suppose that M and N are Riemannian manifolds of dimensions m and n

m . .
respectively, and their Riemannian metrics are ds%w = 2 gijdx'dx/ and dsjzV =
i,j=1

n
> hpgduPdu?, respectively. Then the energy density function of a C Umap u :
a,B=1
M — N is defined by
1 ;:0uP ou?
— g2t 77
e ()= 28 oxi gxi PO
and the total energy of u is given by

E (u) = / N e(u)dx.

The harmonic map equation from M into N, which is the Euler Lagrange equation
for critical points of the total energy functional, can be written as
ouP ou

T(M)X :AMI,{S +gl]F;q67W :O,S = 1’ A,
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2 J. Niu

where I'},, are the Christoffel symbols of N.

The model example for asymptotically hyperbolic manifolds is Poincaré model
for hyperbolic space H™ given by the unit ball B” with metric dsﬁzﬂm = (l_;:;z)zds(z).
Here, p denotes the Euclidean distance measured from the origin, and ds(z) stands
for the standard Euclidean metric. Under this equivalence relation, a map from the
(m — 1)-dimensional sphere $™~! to the (n — 1)-dimensional sphere S"~! can be
interpreted as a map from the boundary at infinity of H” to the boundary at infinity of
H". Schoen [27] proposed a conjecture: For every quasiconformal mapping f : S! —
S, there exists a unique harmonic and quasiconformal extension H (f) : H> — HZ.
Li and Wang [21] extended this conjecture to the case where m = n > 2.

The results of uniqueness, existence, and regularity properties for the Dirich-
let problem at infinity for proper harmonic maps between hyperbolic spaces was
obtained by Li and Tam [18, 19, 20] when the harmonic map is C! up to bound-
ary. In their work [20], they investigated the boundary regularity of these harmonic
maps and posed some thought-provoking questions. Specifically, they wondered if
the singularities of these harmonic maps could be understood by showing that near
the boundary, the harmonic map must have an expansion similar to those in the com-
plex Monge - Ampere equation [12] and the Bergman Laplacian [10]. Donnelly [4, 5]
generalized a portion of their findings to any rank one symmetric spaces. When the
boundary map is a quasiconformal map, Li, Tam and Wang [20, 21] established the
uniqueness and Lemm and Markovic [23, 22, 13] proved existence using heat flow
theorem in [28]. Benoist and Hulin [2] completed the proof of the Schoen-Li-Wang
conjecture when both the domain manifold and the target manifold are symmetric
spaces of rank one. The complex case was studied by Donanelly [6] and Li and Ni
[15] and Li and Simon [16], etc.. When boundary map is smooth and has nowhere
vanishing energy density, Chen, Li and Luo provide an asymptotic expansion for-
mula for the harmonic map between balls in Berman metrics in [3], so they obtained
the optimal regularity of harmonic maps in the case of complex spaces.

There also have been several relevant works on harmonic maps between asymptot-
ically hyperbolic spaces. Leung [14] employed the heat flow method to demonstrate
the existence of harmonic maps between asymptotically hyperbolic conformally
compact manifolds. Regarding boundary regularity, Economakis proved that any
C"! local harmonic map whose boundary map is smooth and has nowhere vanishing
energy density admits a polyhomogeneous expansion at the boundary in [8]. Econo-
makis adopted an approach that is purely microlocal, as can be seen in the references
[25, 26, 12]. Donnelly [7] proved existence and uniqueness for asymptotic Dirchlet
problems for harmonic maps from Hadamard manifolds to complete simply con-
nected manifolds with nonpositive sectional curvature. Kim and Lee [11] proved the
existence of nonconstant bounded harmonic maps on a Cartan-Hadamard manifold
of pinched negative curvature by solving the asymptotic Dirichlet problem. Aku-
tagawa and Matsumoto [1] generalized the result of Li and Tam [19], they proved
an existence theorem for harmonic maps with C! boundary conditions between
asymptotically hyperbolic manifolds. For other studies on harmonic maps between
asymptotically hyperbolic spaces, see [9, 24].
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 3

Compared with the above works, this article has two advantages. First, it improves
the boundary regularity in Li and Tam [20] and achieves the optimal boundary
regularity. Second, it reduces the assumption of [8] for harmonic maps between
asymptotically hyperbolic spaces to C! up to the boundary, and obtains an expan-
sion of harmonic maps between a class asymptotically hyperbolic spaces. Moreover,
in the Poincaré disk model, this expansion is global. In the case where both M and
N are hyperbolic spaces, according to the asymptotic expansion obtained in this arti-
cle, it is easy to see that the coefficient of the first power of the logarithm, which
has an impact on the regularity, can be completely determined by the boundary map.
Moreover, the specific expression of this coefficient can be calculated.

Let H™ and H" be hyperbolic spaces of dimensions m and n, respectively. The
hyperbolic space H" is identified with B™ = {x € R™||x| < 1} with the Poincaré
metric given by

4(dx' @ dx' + -+ dx™ @ dx™)
(1-p?)? ’

m .
where p? = 3 (x')%. Under this identification, the idea boundary of H™ can be
i=1

8Hm =

viewed as S”~!. Similarly we identify H" with the unit ball B” in R with Poincaré
metric given by
4(du' @ du' +-- -+ du" ® du™)

(1= ul?)?
Also, the idea boundary of H" is identified with S~ In terms of these coordinates,
the tension field of a map u : H™ — H" is given by

an =

(1-p%)2 O (m = 2)(1 = p?) ;0uP
p_ LT F ) AP E S oY VAW i
To(u)? = Aou +i:1 > X -

4 oxt (LD
+ ﬂ(Z(u Vou)Vou? — (Vou, Vou)u?),p=1,--- ,n |
2(1 _ |u|2) 9 9 b 9 9 b

where (u, Vou) = 3, (u?,Vou?) and (Vou, Vou) = 3, (Vou, Vou?). The notation
g=1 gq=1

Ao denotes the euclidean Laplacian and Vq denotes the euclidean gradient. (-, -)
represents the inner product of two n-dimensional vectors.

We assume that M is a class of asymptotically hyperbolic spaces. In the Poincaré
disk model B™ = {x € R™||x| < 1}, it has a metric

: 4(dx' @ dx' + - - + dx™ ® dx™)
- (1-p?)?

where p = |x|. The term hps(x) is a symmetric 2-tensor, which serves as the
perturbation term. It has the expansion

gm + ha (x), (1.2)

m
I = ) hijx’ @ dx.
i,
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When expressed as a function of the variables (p,0), h;; € C* (B™) adheres to a
decay condition. Precisely, for any non-negative integer s, k , the following relation
holds:

IVEVyhijl = O((1 = [pI)*¥),p = 17,a > ~1,

Similarly, we assume that N is an asymptotically hyperbolic space and we identify
N with the unit ball B” in R” with Poincaré metric given by

_ A(du' @ du' +- - + du" ® du™)
N = (1 - JuP)?

+ hn(x), (1.3)

where hpy(x) is a symmetric 2-tensor (i.e., the perturbation term) and has the
expansion

n
hN = Zzud!’ll ® dlzl]
)

When expressed as a function of the variables (p, 6), h; ;€ C% (B™) satisfies the
decay condition: for any non-negative integer s, k,

VAV Rl =0((1 = [ul)?™),p > 17,6 > -1.
In terms of these coordinates, the tension field of amap u : M — N is given by

&%ur
OxioxJ

m o2
rwr =3 (s v o1 -2y
ij=1

2 R0 w

2
L =022+ 00 =g
2 1— |ul?
X (2¢u, Vou)Vou? — (Vou, Vou)u?),p =1,--- ,n.

+O((1 = lu)**)

Let ¢o : ™! — §"!. The Dirichlet boundary value problem for a proper
harmonic map is given by

7(u) =0in B™

1.5
u = ¢y on dB™. (15

The main purpose of this paper is to study optimal boundary regularity for proper
harmonic maps between asymptotically hyperbolic spaces similar to those in [17].
The main theorem is

Theorem 1.1 Let M and N be asymptotically hyperbolic spaces with metrics (1.2)
and (1.3) respectively in the Poincaré disk model. Let u be a harmonic map from
M to N so that u € C' as a map from B™ to B". Suppose that the boundary map
@0 of u, when restricted to sm=1 jsin C® (Sm_l, S"‘l), and has nowhere-vanishing
energy density with respect to the stanard metrics. Then u € C"™®(B™, B") for all
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0 < a < 1. Moreover, the solution u of (1.5) has the following asymptotic expansion:

oo o 5]
u(x) ~ go+ Y dp)d+ 30Ny (x)d (log(-a))!,  (1.6)
k=1

k=m+1 I=1

where ¢, andakyl € C®(B™;B"), d(x) = |x| - 1.
Remark 1.2 Here (1.6) is understood in the sense that, for every my > m + 1 and

with W, = o + 2 Sr(x)d* + z 2 wkl<x)d’<(log( d))!, we have |V} VS (u —

=1Il=m+1
Wing)| = O(d"‘o+1 / €), for any £ > 0 and non-negative integers s, ;.

Remark 1.3 |¢o|> = 1 on S™~!. Differentiating with respect to 6; € S™~!, we can
get (Go, Dg;¢o) =0on S™~ 1, j=1,--- m—1.

The main challenge is that since harmonic map is a systems of semi-linear
equations, the comparison principle is not applicable in some cases. To address this,
we use the method of Fourier series expansion for functions on the Poincaré ball
model to prove that taking the derivative in the tangential direction has little effect on
the boundary regularity, see Lemma 3.2. For the mixed terms of different components
in the system of equations, we regard it as a whole for estimate.

The organization of this paper is as follows. In Sect. 2, we construct a good

approximate sollution w. This approximate solution has the form w = ¢o+ Z @ (-

D4+ 41,1 (p = 1) og(1 = p), where ¢(6), 41,1 (6) € C=(S™; S" ') and
(W) = O((1 = p)"™*?log(1 - p)). In Sect. 3, we extend methods and conclusions of
[19] to the harmonic maps between asymptotically hyperbolic spaces . Moreover, by
using the method of Fourier series expansion, we prove that taking derivatives in the
tangential direction has little effect on the boundary regularity. In Sect. 4, we prove
Theorem 1.1 by using the method of solving ordinary differential equations.

2 The coefficient functions ¢o, - - - , P, Ym+1.1

In this section, we mainly prove Theorem 2.1. The coefficients ¢o, - - - , @, Ym+1,1
are completely determined by ¢¢. Based on the expressions of 79 and 7 in (1.1) and
(1.4), we can make a modification to ¢, - - - , @, Ym+1,1 in Theorem 2.8. As a result,
we obtain @1, ¢a, -+, @y Uypery iD C°°(Sm 1,871} and the vector function w =

b0+ z Srd* + 1. ldm+1 log(—d),d = p—1 such that |7(w)| = (dm+210g(—d)).

In fact according to the proof of Theorem 2.1, for any mo > 0, we can obtain
W, such that |7(W,,,)| = O(d™*'log(~d)). However, @,,,, cannot be completely
determined by ¢o. We temporarily set the value of Em +1 to zero, and Lemma 4.2 will
make the correction.
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Theorem 2.1 Let ¢g € C®(S™ ', S" ) be a boundary map with nowhere-
vanishing energy density. There exist vector functions ¢1, - ,Om,Wms1,1 in
C=(S™1, 8"=1) such that the vector function

m
w= Z $rd" + Ymer 1d™ ! log(=d),d = p - 1.
k=0

satisfies

(Dlro(w)| = 0(d™* log(=d)),

@@ o) =TT 4 4,y - [TV
m-— =
(3)1 = M -

1 1—w)?
< ——— < C for some constant C > 0,
-pP

where ¢(60) = ¢x(560),Yms1,1(0) = Yims1,1(s0), for any s € (0,1),0 € S™ 'k =

1 m.

Since e(¢g) > 0 on S !, we have % = 2(¢o,¢1) > 0 by (3). Letu €

C?(B™, B"). Then 1y(u) = 0 if and only if

m - O0u
P = )1 = p o 2 20m =2)(1 = e’ 57 .

+2(1 = p?)p(2u, Vou)Vou — (Vou, Voudu) = 0

Lemma 22 LetT = Z X' If ¢ € C2(B™\{0}) with ¢(x) = ¢(sx),Vs € (0, 1),
then Tgp(x) =0,Vx € B'"

Proof ¢(x) = ¢(sx),Vs € (0, 1). Then for any x € B™,

m

To(x) =T(p(sx)) = Zx —¢(sx) Z sxi%(sx) — 0, ass — 0.

i=1 i=1

Next, We will calculate Equation (2.1) in two parts.
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2.1 Computation of p(1 — |u|?)(1 - p?)Agu + Z 2(m = 2)(1 — |uf?) px’ 2%

m .
Letd =p-1,T := x’%. Let ¢ (x) = ¢x(sx) be smooth functions except the
i=1

origin and
(x) = > prd(x)*. 2.2)
k=0

For k > O with ¢_; = ¢_» =0, define

Dil¢] == [Aopi-3 +3M0Pr—2 + 2A0pr—1 + (k — 1) (k +m — 3)dr_1
+k(3k +2m — 5) gy + 2k (k + Dpar] +20m = 2)[(k = Doy (2.3)
+ 2k + (k+1)prs1].

Lemma 2.3 Let ¢ € C®(B™, B") with the asymptotic expansion (2.2) near d B™.
Then

p(1 - 2)A0¢+Zz(m 2)px ZDk . (2.4)

Proof Notice that for any non-negative integer k and for each i ranging from 1 to
m, it holds that

3(prd*) _ 09k Ky o1 X
B i AR
O (prd*) i 0k - 1x
) _8(xi)2d +2k——d . 2.5)
k-2 x' 2 k-1, 1 (in)2
+k(k—1¢rd™ " (=) "+ k¢pd™™ (= - —5—).
p PP

Recall the definitions p = d + 1, 1 — p?> = —d(d + 2). Summing the second equation
in (2.5) over i from 1 to m and then multiplying the result by p(1 — p?), we can
calculate Ag(¢xd*) multiplied by (1 — p?)p. According to Lemma 2.2, we have

(1= p*)pAo(¢prd")
— [Aopd®™ " (d + 1)(d +2) + k(k — 1)prd* ' (d + 1)(d +2)
+k(m—1)prd*(d +2)]

= — [Aogrd" ™ +3M0pid" ™ + (200¢i + k(k = D + k(m — 1) )d*!
+ (3k(k = D)oy + 2k (m — 1)p)d* + 2k (k — 1) prd*'].
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Next, by summing the above expression over k from 0 to co, we get
(1= p*phos

=- [Z Aopr—3d* +3 Z Aoi—rd"
k=3 k=2
+ ) @A0grr + (k= 1) (k = 2)gpr + (k= 1) (m = Dp—p)a*
k=1

+ 3 Bkl = D +2k(m = )gi)d* +2 " k(k + 1) grsrd¥] (2.6)
k=0 k=0

)

=- Z[A()¢k—3 +3M0pk—2 +200pk—1 + (k = 1)(k +m = 3)pr_y
=0

+ k(3k +2m — 5) ¢y + 2k (k + 1) prr11d*

(e8]

= Z DL[g]d".
k=0

We multiply the first equation of (2.5) by 2(m — 2)px’ and then sum over i from
1 to m. By applying Lemma 2.2, we can derive

S - a5 & 9 i
Z 2(m - Z)lea((b—k.) = Z 2(m - Z)px’(i’.‘dk + k¢kd’<—1x_)
i=1 ox' izl 0x p

2.7)
=2(m - 2)kprd* ' (d +1)?
=2(m = 2)[kprd"*" + 2k prd* + kprd*].
We sum the equation (2.7) over k from O to co. This summation yields
m
;0
Z 2(m — 2)px‘;¢.
— oxt
=) 2(m—2)[k¢pd™" + 2kprd* + krd* ]
(2.8)

2(m = 2)[(k — 1)pg_1d* + 2kprd® + (k + 1)prs1d*]

D}[g]d".

~
1l
(=)

By adding the equation (2.6) and (2.8), we obtain

99

1-p?)pA 2(m —2)px;
(1-p%p 0¢+; (m = 2)pai -

= > .(Di[g]+ Di[ghd* = > Dilgld".
k=0 k=0
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u
Next, we will use the following notations:
Y (x) = i Y gd® with g ; = 0 when k < Im + 1
k=1
and
u(x) = ¢(x) + i Yi1(x) (log(=d))".
I=1
First, we have the operator Dy [u] given by
Di[u]l =Dil[¢] = 26k Y] +mica Y] = (m = D) Y] = 2 2[Y2] 2.9)

+2(m = 2)(Yr-11 +20k,1 + Yka1,1)
and the operator Dy ;[u] defined as
Dii[ul =Dy [yi] = 2(1 + Dép o1 [l + (L+ Dmic e [Wr41]

(I + 1) (m = Dt W] = U+ DU+ 205 142 [Y142] (2.10)
+2(m =2)(1+ 1) (Wh—1,141 + 2Wk 141 + Wkt 141)s

where D [¢] is defined by (2.3) and we have the following definitions for the terms
involving &k [Wil, mii[¢i], and Cic i [yi],

Eralwi] = (k= Di—10 + 3k +2(k + Dfier 1, (2.11)
Mt il = Y-+ 3%k + 2¢ k411, (2.12)
i) = -1+ 20k, (2.13)
For the function (log(—d))*, notice the following partial derivative relationships

9 (log(=d))! =1(tog(-d)) ™ =
dp

ﬁxi
aZ(IOg(_d))l _ leﬂ
1 (xh)? 11 (x)?
~ l(log(~d))™ = P +I(log(=d))’ ‘3(;— -

Additionally, we have the following summation and Laplacian relationships

Ao(log(-d))’
=I(I - 1)d*(log(-d))' "% = 1d~>(log(~d))" " + I(m — 1)d~ ' p~ ' (log(-d))'~".

i=1

Let v; = y;(log(—d))’. Recall the definitions p = d + 1,1 — p?> = —d(d + 2).
According to the second equation in (2.14), we can calculate (1 — p?)pAgvy,
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(1= p*)pAovy

=(1 - p)plAgwi (l0g(~a))' + Zza"”’ BllogCa)y

= +¥ido(log(=d))']

— [Aogid(d + 1)(d +2) (log(~d))" + Z 2(d +2) ﬂxll(log( )

+1(I-Dd Y d+1)(d+ 2)',[/1(10g(—d))l 2 1d7 N (d + 1)(d + 2)y;(log(—d)) !
+1(m = 1)(d + 2y (log(—d))" ']

— [Aoyid(d +1)(d +2) (log(—d))’

+2(d +2)ITy; = 1d~"(d + 1)(d + )¢y + 1(m — 1)(d + 2)y;) (log(—d))' !
+1(1=1)d™" (d + 1)(d + 2)y; (log(~d))' ],

where T = Z x'-2-. Finally, for the infinite sum Z vy, we have
I=1

(1= pP)pdo( Y vi)
1=1
=~ [ Aogd(d + 1)(d +2) (log(~d))’
=1

+ Z(Z(d +2)(L+ DT — (L + Dd™ (d + 1)(d + 2)¢1a1 (2.15)
=1

+ L+ 1) (m = 1)(d + 2)y11) (log (=)’
+ i(z +2)(1+1)d™ " (d + 1)(d + 212 (log(-d))' +2(d +2)Ty,
=1

—d7 N d+ D) (d+2)y1 + (m = 1)(d + 2 +2d7"(d + 1)(d +2)y>].

Similar to the computation of (2.6), we have
= > Aogd(d + 1)(d+2) = p(1 = pP)Aogr = Y D [wld*. (2.16)
I=1 k=1

By Lemma 2.2, Ty ; = 0. Notice that ¢ ; = 0 when k < ml + 1. We can computer
the term 2(d +2) (L + 1) T4,

2(d +2)(1+ DT 22d +2)(I+1) ) ipnTd"
k=1

=2(d+2) ([ +1) ) yipk(d* +d*)
k=1
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After arranging according to the powers of d, we can obtain
2(d +2)(I + DT ¥
=2(1+1) Z ke o1 (d5" + 3d% +24%71)

k=1

> 2.17
=2(1+1) Z[(k = Dktge1 + 3k@p g1 + 20k + D se1]d” @17

k=1

=21+ 1) Y éx et [Yrnld",
k=1

where & 141 [¥i41] is defined in (2.11). Next, we can perform a calculation on the
terms (I + )d™'(d + 1)(d + 2)¢141, (I + 1)(m = 1)(d + 2)y;4; similar to that on
2(d +2)(l + 1)Ty 41 to obtain

(1+1)d™(d +1)(d + 2141
=(1+1)(d* +3d +2) D Y d"!

k=1

= (2.18)
=(l+1) Z(l//k—l,l+1 + 30k 11+ 2Wker 41"
=

=1+ 1) ) i [Wrald",
k=1

where 7y j+1[¥1+1] is defined in (2.12) and

L+ 1) (m = 1)(d+ 21 =L+ 1) (m = D)(d+2) )" Y pad"
k=1
=L+ D)(m = 1) D Wit +2e)d* (2.19)
k=1

=(I+1)(m-1) Z St [Wrs1]d",
=1

where (i 141 [¢+1] is defined in (2.13). And finally
A+2)(I+ 1)d™ (d+1)(d+ 2

=(I+1)(1+2) Z(lﬂk—l,m + 30k, a2 + 20k 1e2)d"
=l (2.20)

=(l+1)(I+2) Z M2 [Wisa]d®.
=l

Therefore substituting (2.16)-(2.20) into (2.15), we have
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(1- PZ)PAO(Z )

ZZ(D =20+ Dépaa [l + L+ D [
=1 k=1 2.21)
L+ D)(m = D Y] = U+ DU+ 2min2[Yire])d* (log(=d))!
+ > (26 [yl +mea [yl = Om = D[yl = 2nea[ya])a*
For the second part
& ;0(log(=d))!
2(m - 2)p2x, = 20m - DpL Y. w5 og(-d)) + i B

i=1

iD [1]d* (log(=d)) +2(m = 2)lyi(d +2 + )(10g( ).
k=1

Summing / from 1 to oo, we get

2(m - 2)p2x, (Z v1)

Yioa

D} [y1]d* (log(- d>>’+Zz<m Dlyy(d+2+ = )(log< —d))"™!
=1

ED”48
GE M

D; [¢1]d" (log(=d))’

N
Ii
L
~
Ii
L

2(m =2)(L+ D (d +2 + é)(log(—d))l +2(m =2y (d+2+ é)

e

(D7) +2(m = 2) (1 + 1) (Yrieo1,101 + 20k 141 + Wit 1+1))

Mz

~

=1

x d* (log(=d))! +2(m =2) 3" (Wi-1,1 + 2kt + s 1)d"
k=1

~
1l
—_

(2.22)
Therefore the summation of equations (2.21), (2.22) and (2.4) yields

(1= p*)pAg +2(m =2)pT)(¢ + Z ¥1(x) (log(—d))")
=1

ZED]{[M +

k=0
where Dy [u] and Dy ;[u] are defined in (2.9) and (2.10).

D Drluld* (log(-d))",

k=1

Mz

~
I
—
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 13

As a summary, we have proved the following lemma.

Lemma 2.4 Let i =0 when k <ml+1 and let

u(x) = )" gr()d + > >y i(x)a (log(-a))". (2.23)

k=0 =1 k=1
Then
(1= p*)pAg +2(m = 2)pT)u(x)

00

=" Dilu)d* + i i Dy [u]d*(log(=d))",
k=0

=1 k=1
where D [u] and Dy ;[u] are defined in (2.9) and (2.10).

Define

Apql8] = (8p.0g), Aklgl = > Apqldl,

prq=k

Aglu] = Z (@arp.1) + (- Va.) + Z Z Was:¥p.i)s

a+B=k s+t=l a+B=k
Bilul == ) Aql¢]Dplul, (2.24)
a+B=k
and
Bealul :== > (Aalg]Dpilul + AgDplul)
arpk (2.25)
= > > AaslulDg,lul.

s+t=l a+f=k

Theorem 2.5 Let u be defined in (2.23) with |¢o| = 1, then
(1= [u)((1 = p*)pAg +2(m = 2)pT)u(x)

= > Biluld* + > " Bii[uld* (log(-d))'.
k=0

=1 k=1

Proof According to the expression of u, we have

1= Ju? =1 —i > (par dp)d"

k=0 a+B=k
"2
-2

=1 k

(Bas¥p1) + (Pps Wa1))d* (log(-d))’

a+fB=k

D0 D Wassvpnd (log(-d))!

a+fB=k s+t=I

~

M M
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Since {¢g, ¢o) = 1, we can get
L= fu? == Aclgld = > 3" A xluld* (log(-d))'.
k=1 =1 k=1

By Lemma 2.4, substituting the expression for 1 — |u|? obtained above, we get

= (1= [uP)((1 = p*)pAo +2(m = 2)pT)u(x)

k=1 a+p=k
+3°30 > (Aalg]Dp[ul + Ay Dplul)d* (log(~d))’
I=1 k=1 a+B=k

The proof of the proposition is complete.

Computation of 2(1 — p?)p(2(u, Vou)Vou — (Vou, Vou)u)

Given that u(x) = Y ¢p(x)d* + ¥ ¥ ¢r.i(x)d*(log(=d))!, we can proceed to
k=0 I=1 k=1

calculate its partial derivative with respect to x;,

o Z(a‘”d" ko 4 ZZ[ WLl gk 10g(-a))

=1 k=1 0x;
+kygd*” 1z (10g( —d))' + g d*~ 1z (IOg( d)' ']

Z(a¢k [(k+ 1) @rs1 +iqr, ks (2.26)
— ox; Jel

(o] (o] a
+ 30 Gk gl

=1 k=1 !

+ [k + Drgr g + (1 + 1)wk+1,1+1]d"’§<log(—d))’
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 15

Recall that the definition of (-, -), we can compute

(2.27)

+
D1
[

M
il
>
<
g
>
QU
z

~~

S

~

+ i i Z Qpqjapyd* (log(=d))".

j=k a+p+y=I

~
I
~
Il
—_
b}
I
<
+

Here, the coefficients Qi, 4, Qpgjap and 4 epy are defined as follows,

0 0
SIDING R

ptq+j=k

(< O GG+ Dbt +551.0) + 0+ Dby + Ui 1, 0g) 2 ¢ %

+ (P + D) Ppst +¥pr1, 1, b [(G + Dt + ¥ ju11]) (;)2,

and

0 0 0 ; 0 0
Qo = (2L 9 T2 4 (S0 ) L 1 (EEy p S2

0b;
g”’” BNG + D851 4055111+ 4 Do+ (U Do 1, 6) 5

‘/’jl

+|(

+H(p+Ddpr1 +¥pa, 1»¢q> (— LG+ D+ U+ D ]

0
2 qu>[(;+1)¢,+]+w,+11]+<(p+1)¢p+]+w,,+11,wa>ax <

(((P +1D)dpi1 +Wpi1, 1,8 [+ D jarg + U+ D 1]
+{(p+ 1)¢p+1 + l//p+1,1v¢’q,l>[(j + 1)¢j+1 + ¢j+1,1]

(P + D psrs+ (4 DYpir 161, 6 [(G + D jr +ja11]) (%)2,

and the expression of Q4 ep and Q.4 j o3, are omitted for the sake of brevity.
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16 J. Niu

Sum for i from 1 to m and multiply p in (2.27) to find

p(u,Vu)VuzZ Z ((¢p. Vo)V,

k=0 p+q+j=k
+{(p+ Dpat +Upi1,1. 8 + Dyt + ¥y 1)d*(d + 1)
DD (V090 + (Vo 00V 1 + (Vg )V

I=1 k=m p+qtj=k
+{((p+Ddpr1 +¥pr1,1, ) [+ D jrs + (L4 D e 141 ]

+{((p+ Dpr1 +¥pr1,1: 8.0 [+ Dji1 +ji11]

(P + Dipar g+ (L+ DY pri i, ) [ + Dyt + 11D d* (d + 1) (log(=d))’

+ii Z ( Z Apgjap + Z Apgjapy)d*(d +1)(log(-d))',

I1=1 k=1 p+q+j=k a+B=l a+B+y=l

where A4 jap and Apg japy are omitted for the sake of brevity.
Define Hy [u] and Hy ;[u] such that

o{u, Vu)Vu =: ZHk k4 Z ZHkl 1d* (log(-d))".
=0 =1 k=1

Consider 1 — p? = —d(d +2). By multiplying both sides of the equation p{u, Vu)Vu
by 4(1 — p?), we get

4(1 - p¥) plu, Vu)Vu = —4d(d + 2) p{u, Vu)Vu

=- 4(5: Hy_2[u]
=
- S(Z Hy—y [u]d® +
=1
= ZFk[u]dk +Z

Mz

Zﬂk 21[uld* (log(~d))")
k=

1 k=3

> He-1aluld* (log(=d)")

1 k=2

l

Ma

l

Fieluld* (log(-d))',

Ms

=l I=1 k=2
where
Frlu] = —4Hy2[u] — 8Hy - [u] (2.28)
and
Filu] = —4Hg—2,1[u] — 8Hy—11[u]. (2.29)
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 17
According to the expression of (2.23) and (2.26), we deduce

au ou >

Bx’ >“‘Zxkdk+zz Z Xpqjd*(log(-d))!

I=1 k=m p+q+j=k

D1 D Xpgjapd (log(-a))! (2.30)

p+q+j=k a+p=l

Z qujaﬁydk (log(—d))l,

+
s
DMz T

e

=1 k=1 p+g+j=k a+B+y=Il
where
a¢p a¢q (9(]5‘,, xi
Z <8xl’W '+<W’(q+1)¢q+l+'J/q+l,l>¢j;
PHq+j=k
(P + Dbt +Upri 1, (g4 Dgan +wq+1,1>¢j(%)2,
and
0 0 0
Xpas = (G oo+ ot 00, ) (G (D 4 i
SO (g Dgans + (L Dl )5+ (+ D + U1 ey ) &

+ (((P + D@prt +¥pr11, (@ + DPgar + g1, 1)W1

+{((p+Dops1 +¥psi1, (g + Dpgar i + (I + 1)lﬁq+1,l+1)¢j)(%)2,

and X, jop and X, jopy are omitted for the sake of brevity.
Summing i from 1 to m and multiplying p in (2.30), we find that

p{Vu, Vu)u

=X D (V8098000 + (P + Dt +Upir 1, (4 + Dgar +Uga 1)8))

k=0 p+q+j=k

xd (d+ 1)+ > 3T (Ve Vo)W1 + (V6 p, Vibg 19,

I=1 k=1 p+q+j=k
+{(P+Dps1 +¥pi1,1, (g + Dbyt + g1, 0¥
+{(p+ Dps1 +Wpri1s (g + Dgerg + L+ Dgar 3109 ) d* (d + 1) (log(~d))’

+ii Z (Z Epajap + Z Epgjapy)d*(d +1)(log(-d))',

1=2 k=1 p+q+j=k a+B=I a+p+y=l

where 2,4 j0p and Ep4 o, are omitted for the sake of brevity.
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18 J. Niu

Define Wy [u] and Wy ;[u] such that

D Wiiluld* (log(-d))".

k=1

M

o{Vu, Vu)u =: Z Wi [u]d® +
k=0

~
1l
—_

Then by multiplying both sides of the equation p(Vu, Vu)u by —2(1 — p?), we
conclude that

—2(1 = p®)p(Vu, Vuyu = 2d(d + 2) p(Vu, Vu)u

—2(Zwk 2[ula* +ZZWk 2u[uld* (log(~d))")

=1 k=3

+4<Zwk_1[ “4 37 Wi luldt (log(~d)))
k=1

1 k=2
::ZEk +Z
=1

Mg

Ex[u]d* (log(~d))".

M%

k=1 =
where
E[u] =2Wy_o[u] +4Wy_[u] (2.31)
and
Exi[u] = 2Wi—p 1 [u] + 4Wi_y i [u]. (2.32)

Lemma 2.6 With notations above, one has
2(1 = p*)p(2(u, Vou)Vou — (Vou, Vou)u)
- Z(Fk (] + Exc[ul)d* + Z Z(Fk [u] + Ex s [u])d* (log(~d))'.

=1 k=2
2.3 Proof of Theorem 2.1

Theorem 2.7 With notations above, one has
p(1 = [ul*)[(1 = p*)Ag +2(m —2)T]u
+2(1 = p*)p(2{u, Vou)Vou — (Vou, Vouyu)

= > (Belul + Fy[u] + Ex [u])a*

+ 30 > (Bialul + Figlul + Ex i[u])d* (log(~d))',

1=1 k=1

where By and By are given by (2.24) and (2.25), Fi and Fy; are given by (2.28)
and (2.29), Ey and Ey; are given by (2.31) and (2.32).

From the definition of By ;, Fi; , and Ex; , one has

Bri=Fry=Er;=0fork <ml+1.
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 19
Theorem 2.7 implies that if 79(«) = 0, then

By [u] + Ex[u] + Fi[u] =0,k > 1,
Bi[ul + Egg[u] + Feglu]l =0,1> 1,k > ml + 1.
We will solve ¢4 and ¢ ; through the above system of equations.

Let’s analyze the coefficients By for different values of k. When &
coefficient B [u] is given by

1, the

Bi[u] = -A[¢]Do[u], (2.33)

where A [¢] = 2{d0, ¢1), Dolu] = Do[¢] = 2(m — 2)¢p;. When 2 < k < m, the
coefficient By [u] can be expressed as

k k-1
Bilul == ) Ag[@1Di—glul = —AiDo = )| Ag[¢1Diglu].  (2.34)
q=1 g=1

Since 1 < k—¢g < m -1, we have Dy_q4[u] = Dy_4[¢]. Recall that A, ,[¢] =
(p,dg)y and Ax[@]l = 2 Apq4le]. When 1 < k < m — 1, according to (2.3), we

p+q=k
have
Dilp] == [Aopr—3 + 3A0dk—2 +2M0¢k—1] + (k = 1)(m — k — 1)1
+k(2m =3k =3)pr +2(k+1)(m =2 — k)drs (2.35)

=2(k + 1)(m =2 = k)rs1 + Db, dk-1, Px—2, br-3]

where D[ ¢, dx-1, dk—2, di—3] is determined by ¢, dx—1, di—2, di—3.
Let us examine the coefficients Fj for different values of k. When k = 1, the
coefficient F| [u] is given by

Fi[u] = =8Ho[u], Ho[u] = {¢o, Vo) Vo + (¢, #1)d1 = (b0, p1)d1  (2.36)
and for 2 < k < m, the coefficient Fy [u] is defined by
Filu] =—4Hy_»[u] — 8Hy_1[u]
= — 8k(do, $r)p1 — 8k (0. d1)i + Flo.- -+ » bi1],

where f[(/)o, -+, Pr—1] depends on ¢, - - - , Pr—1.
Let us focus on the coefficients Ey and analyze their expressions for different
values of k. When k = 1, the coefficient £ [u] is given by

Eq[u] = 4Wo[u], Wolu] = (Vo, Vdo)do + (&1, 1) o (2.38)

and for 2 < k < m, the coefficient E[u] is defined through a combination of
Wi—2[u] and Wiy [u],

(2.37)

Ex[u] = 2Wi_o[u] +4Wi_1[u] = 8k(d, ¢1)do + E[¢o. -+ ,dx—1],  (2.39)

where E[(ﬁo, -+, ¢r—1] depends on ¢g, - - - , Px—1.
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23.1 B [u] + E; [u] + F [u] =0
According to (2.33), (2.36) and (2.38), By + E| + F; = 0 yields

—m{¢o, p1)P1 + (Vdo, Vdo)do + (1, ¢1)¢0 = 0, (2.40)
where we have used |¢o|> = 1 and (¢, 0,i¢) = 0. Then multiplying (2.40) by ¢
and ¢; respectively, we get

—mA7 o+ A11 + (Véo, Vo) =0,
(1 =m)A10A11 + Vo, Vo)A, = 0.
Choosing A; > 0, we can get
_ (Vo Vo)

2
Al,l = Al,O = ﬁ (241)

So we can solve ¢ from (2.40) that

b1 = (Véo, Vo) po + (b1, d1)¢0 _ /(V¢0,V¢o>¢o' (2.42)
m{po, 1) m—1

In particularly, ¢ and ¢, are linearly dependent.

2.3.2 Bilu]l + Ex[u] + Fx[u] =0 when k=2,--- ,m
According to (2.34), (2.35), (2.37) and (2.39), By [u] +Ey [u]+Fi[u] = 0 implies that

0=-Ar[¢]Do[p] — A1Di-1[¢] — 8kAi 091 — 8kA 0k + 8kAk, 140
+H[¢o, -, b1l
=— (Ak0+Ao,k)Do — A12k(m — k — 1)¢x
— 8kAx0¢1 — 8kA1 ok + 8k Ay 190+ Hldo, - , pr—1]
=—4[(m —2) +2k]Ar o001 —2k(m — k + 1)A1 i
+8kAr1¢0+H[¢o. - . dr-1].

where H[¢o, - - - ,¢r_1] depends on ¢, - - - , dx_i. Then we multiply (2.43) by ¢
and consider ¢; = A o¢p to find

<ﬁ[¢09 Tt ¢k—1]7 ¢0>
=4[(m - 2) + Zk]Ak,oAl,o + 4k(m —k+ l)Al’oAk’o - 8kAk,1

(2.43)

and
_ <ﬁ[¢0’ a¢k—1]7¢0>
A0S on — 2+ km — 24 £) @4

N - .
0 < k < N D24d0m=2) - (m + 1)k + m — 2 > 0. This ensures that the

2
denominator of (2.44) is greater than O when k =2, --- ,m.
Then
—4(m —2)Ag oA +H[po, -, b
i = (m = 2)Ax,0A1,000 [¢0 P l],k 2. (2.45)

4k(m—k +1)ALo
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 21

When k = m + 1, the coefficient of ¢, in Equation (2.43) is equal to zero. So we
cannot get @,,41.-

2.3.3 Bm+l,1[u] +Em+l,1[”] +Fm+l,l[u] =0.
We first calculate several expressions of Byy1.1[u], Em+1,1[1] and Fy 1 [u]. For
By+1,1[u], we have

B, [u] == A1[¢]D 1 [u] — Dolu] Amai,1[u]
=8(m + 1){d0, p1)Wm+1,1 — 4(m = 2){0, Ym+1,1) 1.
Next, we calculate
Fm+1,l [u] = 4Hm—1,l [u] - 8I{m,l [u]
== 8(m+ 1)({¢0, 1 )¥ms1,1 + (D0, Yms1,1)P1).

Meanwhile, the calculation result of E,41,1[#] is

Epii1[u] =2W_ 11 [u] +4W,,, 1 [u] = 4(m + 1){$1, ¥ ms1,1) Po.

Based on these expressions above, we obtained from Bj+1,1[u] + Epmsr.1[u] +
Fm+1,1 [#] = O that

=3m{po, Yms1,1)¢1 + (M + 1){d1, Yms1,1)$0 = 0.

Starting from this equation, through further rearrangement and simplification, we
derive

(1 = 2m){¢o, ¥m+1,1) = 0.
Since 1 — 2m # 0, it can be further determined that
(90, ¥m+1,1) = 0. (2.46)
It is important to note that ¢o and i,,+1,1 are functions that map from the m — 1

dimensional sphere S~ to the n — 1 dimensional sphere $"~!.

234 Bilul+Ex[u] + Frlu] =0whenm +1 < k <2m+1
First, we calculate the expressions for By [u], Fy[u], and Ey[u]. For By [u],

Bilu]l = —A1[¢]1Di-1[u] = Dol¢lAlp] + Bioi[dp¥p1 i p <kl (247)

Here, the term Ek,l [¢p.¥p,1 1 p < k] is a function that relies on ¢,y 1 for all
p <k.Whenm < k < 2m,

Dy[u] =Dy [¢] = 2&x 1 [¥1] + e [¥n] = (m = D) i [v1] = 2ni 2 [¢2]
+2(m = 2)(Yr-1,1 + 2¥k,1 +¥is1,1)
== 2k(k + 1)grs1 +2(m = 2)(k + ) prr1 — 4(k + g1,
+ 21,1 +2(m = 2Wrka1 1+ Dp,¥p1 t p < k]
=2(k+1)(m =2 = k)¢rr1 — 22k —m + 3)Yg41,1

+5[¢p,¢p’1 1 p <kl

(2.48)
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Similarly, 5[¢p,¢pp,1 : p < k] is also a function that depends on ¢, ¥, 1,p < k.
Substituting (2.48) into (2.47), we can get

Bi[u] == A1[@¢]Dy-1[u] = Dolu] Ak[¢] + Bi-1[¢p,¥p,1 = p < k]
=—4k(m -k —1DA100k +42k —m+1)A1 0¥ 1
—4(m —2) A o1 +Blgp.wp1: p < k]
For Fy [u], by calculating based on (2.28), we obtain
Fylu] =—4H2[u] = 8Hj—1[u]
== 8(Ckdk +Yi,1, $0) b1 + (o, ¢1) (ki +Yi,1) + Fldp,thp,1 : p < k]

=—8k{do, pr)P1 — 8k{do, 1) bk — 8{d0, Yk, 1)P1 — 8(d0, P1)¥k .1
+Flp,¥p1:p <Kkl

For E [u], by calculating based on (2.31), we obtain
Ey[u] =2Wi_[u] +4Wi_1[u]
=8k (¢ 1)b0 + 8(Wi.1.¢1)b0 + E[¢p.hp1 : p < k]
Therefore, By [u] + Fi[u] + Ex[u] = 0 yields
0 =By [u] + Fi[u] + E[u]
=—4k(m—k+1)A100r +4(2k —m — 1)A1 0¥x.1 (2.49)
—4(m = 2)Ag,091 + Pi—1[¢p. ¥p,1 1 p < k]

When k = m + 1, we multiply equation (2.49) by ¢¢ and recall (41,1, o) =0
to discover

0=4(m+ DAL,0¥me1,1 —4(m = 2)Apr1,01 + Pi—1[dp,¥p1 : p < k]
This implies that when m > 2,

<(I)m[¢0’ ) ¢m]’ ¢0>

A =
m+1,0 4(m—2)A1,0
So
lﬁ — <‘Dm[¢0a"' ’¢m],¢0>¢0_¢m[¢09"' ,¢m]
el 4(m +1){o, 1)
We have obtained ¢1, - -+ , @, Yme1.1 in CP(S™1, $"~1) which is only related to
¢o. Let

m
W= dd(@)* + Y1 1d™ og(—d).d =p - 1.
k=0

Then, according to the above discussion, w satisfies the conclusion of Theorem 2.1.

Theorem 2.8 Let ¢9 € C®(S™!,8" 1) be a boundary map with _nowhere-
vanishing energy density. There exist vector functions ¢ = ¢1, Pa, s G Woin 1
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in C®(S™1, 8" 1) such that the vector function

W= g0+ ) Gd()F + Uy 1" log(=d),d = p — 1.

k=1
satisfies
(Dt (W) = 0(d™?log(-d)) as p — 17;
Voo,V Vo,V
@10y =TT (g 4 = ([0 T,
m— m—
Voo,V
(3)¢1 = \/ Mfﬁo;
m—1
- [w]?
(4 )— < - < C for some constant C > 0.
where ¢, (0) = 1 (50), ¥ i1 1(0) = Y1 (56), for any s € (0,1),0 € S" !k =
1,---.m.

Proof Assume
u(x) = go+ Y (0)d* + > "y 1 (x)d* (log(-d))'. (2.50)
k=1 I=1 k=1
Similar to Proposition 2.7, we have

1—Jul?
1-p2

P 7(u)

(o)

D (Bialul + Frlul + Exi[u])d* (log(~d))".
1 k=1

Mg

ZE 1+ Frlu] + Ex[u])d* +
k=1

~
]

Since a, b > —1, we see that
Bi[u] = Bi[u], Fi[u] = Fi[u],E\[u] = Eq[u].

So Bi[u] + Fi[u] + E{[u] = 0 yields ¢, = ¢;. Hence we have proved (2), (3) and
(4) in Theorem 2.8.
For k > 2, we have
Frlu] = Felul + fi(x)Fe1[ul, Ex[u] = Ex[u] + fo(x)Eg—1 [ul,

where fi(x), f2(x) = O((1 — p2)!*min{@-b}) and they depend on h;; and h;;.

For Ek [u], Bxlu]l = Brlu]l + f3(x)Bi_1[u], where Bjp_;[u] depends on
$0, ¢, ¥ 1. P < k. Therefore when 2 < k < m, similarly to (2.43) and (2.45),
By [u] + Fi[u] + Ex[u] = 0 implies that

0 =—4[(m —2) +2k](¢y. poyp1 — 2k(m — k + 1) A1

- ke B0 " 2.51)
+8k{ ¢y, p1)po + H[ o, b1, . dp_1],
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24 J. Niu
where H[¢o, ¢, -, di_,] depends on ¢g, ¢y, -+, ;_;. Then

<I:I[¢0’ 5]’ e ’5k71]7 ¢0> ] (252)
4A10(m =2 +km — k2 + k)

<$k’ ¢0> =

and

7, = —4(m = 2)(Pr, po)A1,000 + Hlpo, 1.+, br_i]

k=2, ,m.
* Ak(m -k + Ao "

When k = m + 1, the coefficient of ¢, in equation (2.51) is equal to zero. So we
cannot get ¢,

Since a > -1 and b > -1, we have EmH,l[u] = Bm+1,1[u],Em+1,1[u] =
E+1.1[u] and Fm+]’] [¢] = Fie1.1[u]. This implies that

(0, Y mar,1) = 0. (2.53)
When m+1 < k < 2m+1, similar to (2.49), By [u] + Fy [u] + Ex[u] = 0 implies that
0=—4k(m—k+1)A 00, +4Q2k —m—1)A1 0¥,

_ _ _ (2.54)
—4(m = 2){by, do)p1 + Pi—1[¢0, b ¥, 1 1 < p <k].
When k = m + 1, we obtain
0 =4(m + 1) A10Y py1 1 — 4(m = 2)(1- B0) 1 2.55)

+®_1[¢0. ¢, 0, 11 < p <kl
Since (), +1.1» $0) = 0, multiplying (2.55) by ¢ , we can deduce that when m > 2,

<6m[¢0’ 51’ e ’5m]’ ¢0>
4(m - Z)A]’O

<$m+1’ ¢0> =

SO ¥/,,,1.1 can be solved by (2.55),

Z _ <6m[¢07$l""7$m]’¢0>¢0_6m[¢0’$l""’am]
Ll 4(m +1)(¢o. $1)

We have obtained ¢, - - - ,Emﬁmﬂ,l in C*(s™~1,$"~1) which is related to ¢,
/’l[j and Z,‘j. Let

m
W= g0+ Y Gpd () + Py A" og(~d),d = p - 1.
k=1

Then, according to the above discussion, w satisfies the conclusion of Theorem 2.8.
]

3 C™(Va € (0,1)) Regularity Near the Boundary

In the following, we will generalize the proof of C"~1:®(Va € (0, 1)) regularity
of harmonic maps between hyperbolic spaces in [19] to harmonic maps between
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 25

asymptotically hyperbolic spaces. The difference is that we will use w constructed
by Theorem 2.8 as the initial value of the heat flow.

By Theorem 5.2 of [18], there exists a solution u(x, t) for the parabolic equation
of harmonic maps with initial data w

Oru(x,t) =71(u)(x,t), (x,1) € M x (0, +c0)
u(x,0) =w(x) x e M x{t =0},

such that tlim u(x,t) = us(x) for some harmonic map u. with bounded energy
density from M to N. Moreover,

lim d(ue (x),W(x)) =0, 3.1)
where d is the distance function of N. Expressing e = (ul,- -+, u), in terms of
rectangular coordinates, let us denote |uw|> = Y, (1%)?. Then by equation (3.1) and

p=1
condition (4) of Theorem 2.8 for w, we easily see that there is a constant C > 0 such
that
1 1 — |Uoo|
—= < <C. 3.2
c = (3.2)

Lemma 3.1 Let

62
Oxiox/

m a2
tw = 3 (s 000 - o2y

ij=1

o (m -2 . 0
) 22 g0 - e 2

For0 < s < m—1, there is a constant § € (0, 1) such that (1-p)* is a superharmonic
Sfunction of M at B; \ Bs.

—p2)2 m _ 2y
Proof Notice that Agm = £ CAp+ 3 2)2(1 £ )x‘%,then
i=1

AM(l —p)S = A]H['"(l _p)s + 0((1 _p)s+2+a)'
According to Lemma 3.1 of [19],

m-—1
ol

AM(I —p)s — %(1 +p)(] _p)s+l(_1 _ )+0((1 _p)s+2+a)'

Hence there is a constant é € (0, 1) such that

Ay (1 =p)* <0in By \ Bs.
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26 J. Niu

Similar to the proof of Lemma 3.2 and Lemma 3.3 of [19], we have

A (3, 7(2)) = O((1 = )" og( =)
and
() = ()| = O((1 = )" og( 7).

From now on, since there is no ambiguity, we can simply denote s, by u.
Lemma 3.2 Assume the function v(p, 8) on the B™ satisfies v = 0 at the boundary
and for any & > 0, v is C"™~ 1172 up to the boundary. Also, for any & > 0, j > 0,

Vv =0((1=p)" /%) asp — 1.
Then for any s, j > 0, we have
|V2Vjv| =0((1-p)" %) asp — 1.

Proof Let & > 0 be fixed and define k := m — &. Consequently, we have [v| =
O0((1 = p)*). Suppose |Vv| = O((1 - p)¥). By Lemma 4.1 of [19], it follows that

sup{k : |Vv| = 0((1 = p)*)} =k — 1. (3.3)
Letd =1 — p. Assume that |dgv| = O((1 — p)”) and define
s =sup{r: [9gv|=0((1-p)")}. (3.4)

By the definition of supremum, s — § < r < 5,V6 > 0.

We aim to prove s > k—¢ for all § > 0. We will proceed by contradiction. Assume
s < k — &g for some dy > 0, then it follows that r < k — dg.

Consider the case when m = 2, v has a Fourier series expansion

y = % + Z aj COS(IG) + bl Sin(le)’
I=1

where the Fourier coefficients are given by

1 Vs
al:—/ v(p,0)coslhd, 1 =0,1,2,--
nJ-

1 T
b = ;/ v(p.6) sin (66,1 = 1,2, -

Given the decay properties of v, we have
a;=0((1-p)"),1=0,1,2,- -
br=0((1-p)).1=1.2,+

Differentiating v with respect to 6, we obtain

v .
YT ; —lay sin(16) + 1b; cos(10).
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Since [dgv| = O((1 — p)”), combining with (3.4) and s < k — &0, there must exist
some a; or b; (w1thout loss of generality, assume it is a;) such that la; = O((1-p)")
and la; # O((1 — p)¥). This implies that / satisfies [ = O((1 — p)"~¥). Therefore, v
includes a term of the form a; sin(4(p)(1—p)"~%6), where h € L®(B)NC*(B\{0}).
And then g—; =0((1-p)"~"). However r — 1 < k — 8y — 1, which contradicts (3.3).

Whenm > 3,v =v(p, oL, .., 9’"‘1). Fix 62,---,0™ 1 and regard v as a function
of p and 9. Then we can prove, similar to the case of m = 2, that 6"1 satisfies

| v 5071 = 0((1 - p)*=9) for any & > 0. Similarly, the partial derivative of v with

respect to 6%, ---, 0™ ! also has the same conclusion. L
Forany s > 0,g := (1—p)*v = O((1 —p)™*~%) and g € C"*+~L1=2(Bm\ {0}).
So we can use the method of Fourier expansion to prove [V§g| = O((1 — p)"*~%),

that is [Vyv| = O((1 — p)"~%).
[

Lemma 3.3 Letw be given by Theorem 2.8. Then we have for any € > 0, j > 0 that
V) (u(x) =) = O((1 = p)" %) as p — 1, (3.5)

and for any s, j > 0, we have
V5§V (u(x) = W) = 0((1 = p)" I~ %) asp — 1. (3.6)
Proof Letv :=u—w anddefined =1 - p. According to Lemma 3.3 and Theorem

4.2 of [19], we can assert that for any & > 0 and integers j satisfying 0 < j <
m — Lv| = O(d™ ®) and |V}v| = O(d™/~¢). In our current analysis instead

of estimating Agv as was done in [19], we need to focus on estimating Z (6ij +
i,j=1

0((1-p?)*a)) 2 o 6x7 It is the second derivative part of Ay and thus it is an elliptic

operator. Let ¢o, d1, -+ » Py x//mﬂ L in C®(S™=1,8"=1) and W be given by Theorem
2.8. According to Theorem 2.8,

0(d"™?log(-d)) = 7(w)

o ((1-p%)°
L

0w
0;j +O((1 - ,02)4+a))m

Z = 2)«1 — o) +0((1 - Ay 2 @3.7)
P oxt
1-

2)2 + 0((1 _p2)4+a)
2 (= w2

x (2(W, Vow)Vow — (Vow, Vo) w).

+O((1 = [w)™

Let u be a harmonic map from M to N so that u € C! as a map from B" 0B
Then

7(u) = 0. (3.8)
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Note that we have the following expression for w
mn —_— —_—
W= o+ ) Gd (D) + Uy 1d™ log(=d). (3.9)
k=1

For any ¢ > 0, since u = w + (u — w), we get
U=w+-w)=do+d¢i1d+0(d>?%). (3.10)
Given that |¢o|> = 1, we can derive
ul* = 1= 2(go, ¢1)d + O(d*~?)

and
1— |ul?

= 20, 41) +0(d'7).

Thus, we have
(1-p* _ (1+p)*(1-p)
2(1 = |ul?) ~ 4{¢o, ¢1) +O(d'~)
Additionally, consider the expression
1= 2\2 1= 2\4+a 1
( 1Y ) +O(( 1Y ) )( +O((1—|M|2)b+1)
2 1 - |ul?
(1-p*)?
=————(1+0(1-p)).
2(1_|M|2)( (1-p))
By subtracting (3.7) from (3.8), we obtain

0(d"*?log(~d)) = 7(u) — (W)
ZAMV
(1-p°)?
20 P (1+0(1-p))
X [(2¢u, Vou)Vou — (Vou, Vou)u) — (2{w, Vow)Vow — (Vow, Vow)w)]
(1-p%?  (1-p)?
TSP RETTETTAA
X (2¢w, Vow)Vow — (Vow, Vow)w).
The calculation of (2<u, V()Lt)V()u - <V()bt, V()bt)bt) - (2<W, V()W)V()W— <VOW, V()W)W)
in a certain expansion process yields
0(d"™?* log(-d))
=A v+ﬂ(1+0(1 — o) [2({u, Vou) Vv + ((v, Vou)
M 20— ulP) p » Vou) Vo » Vo
+ <W, V()V))V()W) - ((Vov, Vou)u + <VOW, V()V)u + <VOW, V()W)V)] (3.14)
(1-p*  (1=p°?
Haamwn ey O
X (2(w, Vow)Vow — (Vow, Vow)w),

(3.11)

(3.12)

(3.13)
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m _ 22 m _
where Ay, = ;1(“ 20515 +0((1 = p2)*a)) -2 Jr_z1 2 ((1-pY)+0((1-
i,j= i=

p2)3+a)xi%' For any [ > 0, given that |[Vov| = O((1 — p)™~*~1), we can deduce

m
that 'gl(a,-j +0((1 = p2)2) =2 ((1 - p)'v) = O((1 = p)™~72) and must
i,j=

be C"*+=3:1=2 yp to the boundary. Together with the fact that (1 — p)lv = 0 at the
boundary, this implies that (1 — p)'v is C"*~1:1=¢ up to the boundary. In particular,
[V™+=1((1 = p)tv)| = O((1 = p)'~%). Therefore we have

Vo'~ Ivl = 0((1 = p)'=*7),

and subsequently,
[VIv| = 0(d™7=%),Ve > 0,/ > 0.

Finally, by applying Lemma 3.2, we can obtain (3.6).
||

Theorem 3.4 Let M and N be asymptotically hyperbolic spaces with metrics (1.2)
and (1.3) respectively in the Poincaré disk model. Let u be a harmonic map from
M to N so that u € C' as a map from B™ to B". Suppose that the boundary map
b0 of u, when restricted to ™!, is in C®(S™~1,$" ), and has nowhere-vanishing
energy density with respect to the stanard metrics. Then u € C"™=-@(B™, B") for all
O<ea<l.

Proof Notice thatu —w = 0 on dB™. According to Lemma 3.3 and Theorem 4.2 of
[19], u —w € C™ L@ (Bm Bn) and thenu € C"™~-¥(Bm Bn)forall0 <a <1. m

4 Optimal Regularity Near the Boundary
41 Equationsofv=u-w

First, note the following expression for w,

m
W= g0+ Y ed()" + 14" log(=d). (.1)
k=1
Differentiating W with respect to x’(i = 1, - - - , m), we obtain
ow ¢y x!
s = - Od,'zl,"', . 4.2
ox! 3x‘+¢1p+ (d).i " 42

It follows that for any £ > 0,
u=w+ (u—-w) = ¢o+¢id+0(d>?),

ou dw O(u-w) 0d¢o xt l—er - 4.3)

—_— =t = —+ —+0d 8, =1,"', .

oxt oxt oxt oxt ¢ P ( ) "
Taking into account equation (4.3) and the fact that |¢0|2 = 1, we can deduce
that the inner product (¢, %) =0foralli =1,---,m. Taking into account (3) of
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Theorem 2.8, we see that (¢, %) =Q0foralli=1,---,m and then
< x! 1 0
2{u, Vou)Vy =2 ,o1—)Y+0(d ~%)—. .
(. You) Vo ;«% @) +0(d'") 75 (44)
We can apply (3.11) and (4.4) to deduce

— 02)2 — m i
UL N R Lo Tl ) D600 7) 0N G

(1= ul?) 2(go, ¢1) +0(d'~?)
_(+p)(1-p? 2oy N i O
I '+ o )21 e
&0
_ 2 2-& -
=[(1-p*) +0(d )];xax,
(4.5)
Define linear operator
L:=A +(1—p2)Zm:x"i
oA ~i oxt!
= (4.6)

CU-p)? B m(-pY) 8
B R

The right side of the equation (3.14) can be written in two parts. The first part is

(1-p%)? _ _
MV m(l +0(1 = p))[2(u, Vou)Vov + ({v, Vou) + (w, Vov)) Vow)
— ((VUV, V()u)u + <V()W, V()V}M + <VOW, V0W>v)]

(1-p2)?
2(1 = |ul?)
+0(d?)|V3v| + 0(d*#)|Vov| + O(d)|v].

=Lv + —————[2{(w, Vov)Vow — ((Vov, Vou)u + (Vow, Vov)u)]

In the m-dimensional spherical coordinates (p, 8',62,--- ,6™"1), the expression

for the gradient operator V is

0 1% 1 0
Vo=——e€,+— —— —— ey |,
"Top " p ;‘( k=L'sin 67 06 6)

where e, is the radial unit vector and e « are the angular unit vectors correspondin,
7 4 0 g . p g
to the coordinates 6. Hf;]] sin 6/ denotes the product of sin#’ from j = 1to k — 1,

with the convention that H?.:] siné; = 1. Then (4.1), (4.2) and (4.3) imply

4.7)

2(w, Vov)Vow — ({(Vov, Voudu + (Vow, Vov)u).
=2($0, Dpv)p1 — 2(pv, $1)Po + O(d'~#)|3,v| + O(1)|V V]
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Since (3) of Theorem 2.8, {¢o, 9pv)d1 = (0pV, ¢1)¢o. And then

Apv + ﬂ(l +0(1- 2
MY T D) P)[2({u, Vou)Vov + ({v, Vou)
+{(w, Vov))Vow) — ((Vov, Vou)u + (Vow, Voviu + (Vow, Vow)v)]
=Lv +O0(d*)|Viv| + O(d* %) |Vov| + O(d)(]v| + [Vgv|).
The second part of (3.14) is
1= 052)2 1= 02)2
(2((1 _%) } 2(<1 —TW)IZ))(I Hot=p)
X (2(w, Vow)Vow — (Vow, Vow)w) (4.9)
_(2-m)(1+p)?
4

(4.8)

(v, do)go +0(d" ).
In fact, we can calculate
(1-p*  (1=p* _ (1=p)u+w)y
20— [uP) 2(1-[wP) 201 - [uP)(1 - [wP)
(=0,
(L= [ul)(1 - [w]?)

Since (¢, ¢o) = 1, (o, %) =0,foranyi=1,---,m.(2.41), (4.1) and (4.2) imply
that

+0(d""®)v.

27, Vo) Voio — (Voiw, Voin)iw
=2(¢0, #1)¢1 — (Vodo. Vodo)po — (b1, d1)po + O(d)
=(2 - m)A] 4o+ 0(d),

2 _ (Vé0,Veo)
where A1 0= T

B

-1
We conclude fTom (3.14), (4.8) and (4.9) that

_ 2
- DY gobo

=0(d*)|V3v| + 0(d* %) |Vov| + O(d)(|v| + [V gv|) + O(d"™* log(~d)).

Lv

Notice that Ut‘p)z -1= (p+3)ip_1) . Then v satisfies

Lv — (m = 2){v, ¢o)¢o

1o g_ 5 4.10)
=0(d”)|Vgv| + 0(d=?)|Vov| + O(d)(|v| + [V gv]) + O(d™* log(—d)).
4.2 Estimate of (u —w,¢o) andu —w

When m > 3, we need to deal with (m — 2){v, ¢¢) 0.
Lemma 4.1 Let u be a harmonic map from M to N so that u € C' as a map

from B™ to B". Suppose that the boundary map ¢y of u, when restricted to S™~",
is in C*(S™~1,8""1), and has nowhere-vanishing energy density with respect to the
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stanard metrics. Let ¢o, ¢y, - ,am,lmﬂ’l in C®(S™1, 8" and w be given by

Theorem 2.8. Then (u — W, ¢o) = O((1 = p)™*20) and u —w = O((1 — p)"™),

(m+1)+\/(m+1)2+4(m 2)
2

where & — 1. In addition, for any e > 0, j > 0,

VI (=, ¢o)| = O((1 = p)™ =7 =2) as p — 17, 4.11)
and for any s, j > 0, we have

V5V (u =, go)| = O((1 = p)™+070=) a5 p — 17, (4.12)

Proof Setv :=u —w. Multiplying (4.10) by ¢¢, we have

L{v, ¢o) = (m = 2)(v. ¢o)

4.13
=0(d*)|V3v| + 0(d* %) |Vov| + O(d)(|v| + |V gv]) + O(d™? log(~d)). (+-13)

Define v = (v, ¢o). By Proposition 3.3, for any £ > 0 and non-negative integers
J» s, we have |V§}Vjv0| =0((1-p)ym=i=#).
In the m-dimensional spherical coordinates (p, o' 62, ... ,6””‘1), the expression
for the gradient operator V) is (4.7) and the expression for the Laplace operator Ay is
2
om0 IAS,,,I, (4.14)
92" p op

where Agm-1 is the Laplace operator on the (m — 1)-dimensional sphere.
Hence, by (4.13), along the direction p, v := (v, ¢p) satisfies the ODEs

(1_P2)252V0+m(1_ p?) dvg

2 dm+1 —2¢& 4.15
Ry 5P, ap = (m =2)vo =0( ) (4.15)
Define r := ]—p We compute
% 6v06r_ 2 %__(1+r)2%
ap orop  (1+p2or 2 or’
8%vg _ 6(5—;)2 _a +7)* 02y .\ (1+7r)* dvo
dp> or 0dp 4 or? 2 or’
Based on the above calculations, we can derive
92 0
2200 20 (= 2)vg =2 = O (129, (4.16)
or? or

Letz = Inr and then r = ¢'. We proceed to compute the derivatives of vy with respect
to r in terms of ¢
6\10 6VO ot _t vy
ar oror © o
Py I(D2) ot _ 0 0%

or? ot or or? ot

4.17)
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Substituting (4.17) into (4.16), we obtain the following second-order linear ordinary

differential equation
521)0
or?

It has two characteristic roots

(m+1)=y(m+1)2+4(m-2) (m+1)++(m+1)2+4(m-2)
M= s M2 = .
2 2
We have an explicit formula for v,

vo = C1(0)e!'" + C2(0)e" + Go(n),

—(m+l)%—(m—2)v0=n. (4.18)

where

Go(n) =

t t
[e“zt/ e MTp(1,0)dr - e’“’/ e MTn(r,0)dt], 1 € (—00,1).
1 -

M2 — M1 oo
Note that r = e’.

vo = Ci(O)r' + C2(0)r'? + Go(n)

with
1 r r
Go(n) = [rH2 / s~ (s, 0)ds — M / sTIHIn(s, 0)ds].
M2 — M1 el 0
From (4.16), there exists a positive number C > 0 such that |5(s, 8)| < Cs™+1722,
Therefore

|Go(m)| < Cr™172¢ 4 Cri2.
Since we have known v = O(r™~ %), C; =0. So
vo = C2(0)r*? + Go(n). (4.19)

In view of Go(17) = O(r"™*!172¢), we have vo = O(r"*!72),
Owing to (4.10) and (4.19), v satisfies equation

Lv=—"2 Agv+
1% 4 oV

(1_p2)2 S m(l_pz) iav _ m+l1-2¢&
Z 2 Oxt =0 ):

i=1
By Proposition 3.3, v satisfies the ODEs

(L-p2 v m(l=p?) ov

+ -0 dm+1728 ) 4.20
2 o2 7 Pap ( ) (4.20)
Notice that r = 11%/’;, v satisfies
0*v ov
2 = +1-2¢
r m—mrg —.U—O(rm 8)' (421)
Lett = Inr and then r = ¢'. We compute
‘9_2"_(,,,1“)@_— (4.22)
ar? ar " '
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It has two characteristic roots

1 =0, y=m+1.
We have an explicit formula for v,

v=C1(0)ef! + Ca(0)e2 + Go(n)

where

_ 1 _ ro_ — r_ -
Go(n) = —— [6”2’/ e "2 (r,0)dr - e"]’/ e Mi5(1,0)dr], 1) € (—o0,1).
Ha = Hy 7 —co

Notice that r = ¢*,
v =Ci(O)r + C2(0)r"> + Go(n),
with

_ 1 _ o
Got) = —— 17 [ s mqis.pas =[5 TG 0]
Moy — M ell 0

From (4.16), there exists a positive number C > 0 such that |77(s, 8)| < Cs™*'~22,
Therefore

|Go(n)| < Cr™1728 4 Cr,
Since we have known v = O(r™¢), C; = 0. So
v = (C20)r™2 + Go(1) (4.23)

In view of Go(17) = O(r™*'-2¢), we have v = O (r"™+1-2%), '
Repeating the process above, we can get (v,¢g) = O(rminlmm+2-3s}y -
\/ _
O(r*?), (un = (mt D)+ (m;1)2+4(m 2)) and v = O (™).
According to (4.13), vo = (v, ¢g) satisfies the conditions of Lemma 4.1 of [19] if
the general elliptic operator is substituted for Ag. Similar to the proof of Proposition

3.3(Replace m in Prop 3.3 with m + 1 + &¢.), for any &£ > 0 and non-negative integers
J. s, we have [V3Vivg| = O((1 — p)m+i+eo=i=e),

4.3 The coefficient function ¢,,,, and the rest of the proof

The next step in the proof of Theorem 1.1 is to find W,,,.; = w + Em L1d™! where w
is given by Theorem 2.8 such that u — W,,.;1 = o(d™*!).

We have already proved u — w = O(d™*!) in Lemma 4.1, but since we have
reached the conclusion by solving ordinary differential equations, the coefficient

Z;,:Vl is not yet certain. Therefore, the following lemma proves this coefficient by

the convergence method.
Define

u—w
dm+l

c(p,0) = (p.0) (4.24)
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Lemma 4.2 Let u be a harmonic map from M to N so that u € C' as a map
from B™ to B". Suppose that the boundary map ¢o of u, when restricted to S™,
is in C*(§™~1,8""1), and has nowhere-vanishing energy density with respect to the
stanard metrics. Let ¢o, ¢;, - ,am,JmHJ in C*(S™1, 8" 1) and w be given by
Theorem 2.8. Let ¢ be defined by (4.24). Then there exists ¢,,,; € C*(S™™ ;8"
such that ¢ converges to ¢,,,, in C7(S"~1;8" 1) forall j > 0as p — 1, and for
any s > 0,

V3 (c = b)) <C(1=p)' 7%, (4.25)

where € can take any real number in (0, 1).

Proof Setv :=u — w. By Proposition 3.3 and Lemma 4.1, we know for any £ > 0
and non-negative integers j, s, [V/ V5| = O((1 - p)™*!=/=#).

Define function ¢ := Vv and ¢¢ := V§ (v, ¢o). Differentiating (4.13) with respect
to 0 s times, we know

Lgo = (m = 2)go = O((1 - p)"™**7%). (4.26)
_ vV - -
Setr = 11+_,§ and pup = (mt1)+ (m;l)2+4(m 2 So for any fixed 6 € S™~!, we have

R d¢0(Ho,
297000, r) _ 9¢o(bo.1) (= )0y = O(+™2),

or? or
Introducing &y(r) := %, we have
9? 0
pH2+2 (9520 +Qup — m)rﬂzﬂ%
r r
9?0 Ao _
:r2—ar¢; - mra—(pr — o (pa —m — gy = O(r™?7%),

(rH2(1) + (2 = m = 2P, (1) = 0(727%),

where we have used that u» is a solution of ,u% —(m+1Du;—(m-2)=0.
Set yg = r”2+2§(')(r) and notice that up < m + 2. Then y, satisfies the following
ODE and

ry;)(l’) +(p—m=2)yg =1 = O(rm+3—£)
has solution
,
yo(r) = rm+27”2(‘/‘ ﬂO(R)R,Uz*m%dR +0),
o
where ro € (0,r). Since yo = O(r#*1=¢), C = 0 and yo = O(r"*3~#). Therefore

f(/)(r) = O(r™*1=#2=) ‘which gives &y(r) = O (r™*?7#2=%) and @y = O (r"*27%).
Differentiating (4.10) with respect to 6 s times, we have

(1_ 2)2 mml_ 2)1'(9 m+2—g
L= U ngp sy, ML 28 _ (1 - pymey.

i=1

2025/09/03  22:42

https://doi.org/10.4153/S0008414X25101545 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101545

36 J. Niu

Similar to the estimate of ¢(, we can get

2
2(9 (,0(90,1') mra‘P(QOvV) - 0(rm+2_‘5).

or? or
Introducing £(r) := “’(f;;l” , we have
32§ ¢ 9? [ (o J")
+3 +2 2 _ +2—
r™ 62+( m+2)r'™ 5 =" g2 mrE—O(rm ),

("3 (1) = 1 (1) = O,
Set y = r™*3¢'(r), then
ry/(r) _ y == O(rm+3—8)
has solution

r —_—~
y(r) = r(/ R727(R)dR + C).
0
Since y = O(r"*27%), C = 0 and y = O (r"™*3~#). Therefore & (r) = O(r~¥), which

gives
VSv(6o,r)  VSv(60,7) ) -
9r’"+1 - 9;m+1 |=le(r) —£(F)| < Clr'™e =779
and
v(6o, p) v(6y, P) 1_ L
\r - <C|(1- £_(1- a
| 6((l_p)m+1 (1_ﬁ)m+1)| |( p) ( p) I

Letting p — 1, the conclusion follows.
]

Proof of Theorem 1.1. Let ¢, - - - , @, ¥ 1.1 and W be given by Theorem 2.8 and
¢,,41 be given by Lemma 4.2. Set v := u—w. According to Lemma 4.1, we know v =
O(r™*'). By Theorem 4.2 of [19], u € C*(B™; B") n C"™ (BT, BY),Va € (0, 1).

Let

Winet =W+ ¢, d™
By (4.25), for any s > 0, we have

V5 (tt = Wine1)| = O(d"™*%),Ve > 0.

Furthermore, by Theorem 4.2 of [19], for any non-negative integers j and s, it holds
that

VIV, (tt = Wna1)] = O(d"™*777%), Ve > 0.
m() 1
Let Wi, = ¢o + 2 Fiwadt+ 3 S U, (0d (log(~d))!. We assume, by

k=m+1 =1
induction, that the followmg inequality has been established for m = my > m+1 and

for all non-negative integers j and s,

VIV, (= Wiy | = O(d™0H 7%, 4.27)

2025/09/03 22:42

https://doi.org/10.4153/S0008414X25101545 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101545

Optimal Boundary Regularity of Proper Harmonic Maps between AHS 37

In Theorem 2.8, solving the equation Em()_H [u] + fmoﬂ[u] + EmO+1 [u] = 0
is equivalent to finding ¢,, ., that satisfies this relationship. Similarly, the set of

equations Emo+1,l[u] +fm0+1,l[u] +Em0+1,l[u] =0forl=1,---, [mfn_l] is used to
determine the coefficients Emo +1.;- We then define the function
mo+1 mo [msnil ]
Fmgsl = g0+ Y G (0d + >0 > g (x)d* (log(-d))".
k=1 k=m+1 =1
We have
T(Wmg+1) = 0(d™* log(~d)). (4.28)

Based on equation (4.27), we can establish an estimate for the difference between
u and W,,+1. For any non-negative integers j and s, we have

IV V5 (1t = Wings1)|

[20]

=YV (1= Wy = G180 = D Wi 1 (0)d™ (log(=d)))] (429
=1

=0(dm°+l_j_£).

Set Vg1 1= U — Wyyy41 and v(r)n +1 = (U = Wige1, $o). Similar to the process used
to derive equation (4.10), and by leveraging the result in (4.28), we can obtain

Lvm0+1 - (m - 2) <Vm0+17 ¢0>¢0
=0(d*)|V3vmgs1| + O(d* %) [VoVmer1] (4.30)
+O(d)([Vimgs1| + [VoVmgs1 ) + O (@™ log(~d)),

where linear operator L is defined in (4.6).
Multiplying both sides of equation (4.30) by the function ¢, we get

L<vmo+l 0 ¢0> - (m - 2)<Vm()+l ) ¢0>
=0(d’)|Vgvmys1] + O(d*™ %) | VoV 1| (4.31)
+O0(d)(|Vimgs1] + [VoVmgs1]) + O(d™** log(=d)).

Define ¢my+1 = Vi (4 — Wyyy41). Differentiating (4.31) with respect to 6, we know
0

g1 = vy (U = Wing+1, o) satisfies
L909n0+1 - (m - 2)90(r)n0+1
=0(d*)|Vi@mys1] + O(d* ) Vo1 (4.32)
+ O(d)(l‘PmoH | + |V(-)90m0+1 |) + O(dm0+2 log(_d))
As in the proof of Lemma 4.1, we know that ‘1"0mo+1 = 0((1 = p)™*2=#). So we can
conclude that
Lpmer1 = O((1 = p)™or2#), (4.33)
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Finally, by using equation (4.29), we can derive

(1 - ,02)2 62‘Pmo+l S m(l - 92) aﬁpm()” +2—
" = 0(d™*e),
TR Zl el ) (4.34)
Define r := ]1;—5, we can get
a2§0m 1 3‘pm 1 _
P T = = 0™, @.35)
‘meH(eO’r)

Next, we introduce a new function &p+1(r) = . By substituting

ymtl

Gmp+l = rm+1§m0+1 (r) into the previous equation, we obtain

62 m (9 m (92 my a m
Fme3 g ;*‘1 + (m+2)rm+2 fa otl _ 72 g 20+1 —mr 908 otl _ O(rm0+2—.9),
r r r r
(P ()~ ()

0 (rm0+2— 8) .
Set yimg+1 = rm+3§;no+1 (r), then

rym0+1 (r) = Yo+l = Mgl = O(rm()+3—s)

has solution
Ymg+1(r) =71( / R2n(R)dR + C).
0

Therefore Y1 = O (r™*37¢) and &,,y41 = O (r™~"*1=¢) which gives @41 =
0] (rm0+2— a) .

We may then argue as Theorem 4.2 of [19] to obtain For any non-negative inte-
gers j and s, |V V) (4 = Winge1)| = O(d™*2777%) Ve € (0, 1).

Acknowledgements Special thanks are extended to Professor Jingang Xiong for
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study.
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