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Optimal Boundary Regularity of Proper
Harmonic Maps between Asymptotically
Hyperbolic Spaces
Jingru Niu

Abstract. This paper studies the optimal boundary regularity of harmonic maps between a
class of asymptotically hyperbolic spaces. To be precise, given any smooth boundary map with
nowhere vanishing energy density, this paper provides an asymptotic expansion formula for
harmonic maps under the assumption of 𝐶1 up to the boundary.

1 Introduction

Let 𝑀 denote the interior of a compact smooth manifold with boundary 𝑀 , and let 𝑔
be a nondegenerate smooth metric on 𝑀 . Let 𝑟 ∈ 𝐶∞ (𝑀) with 𝑟 ≥ 0 on 𝑀 , 𝑟−1 (0) =
𝜕𝑀 . Consider the metric 𝑔 on 𝑀 given by 𝑔 = 𝑟−2𝑔. Then we call 𝑔 a conformally
compact metric and (𝑀, 𝑔) a conformally compact manifold. In addition, if (𝑀, 𝑔)
satisfies |𝑑𝑟 |𝑔 = 1 on 𝜕𝑀 , it can be shown in [24] that this condition is equivalent
to the sectional curvature uniformly tends to −1 as we approach the boundary 𝜕𝑀 .
When this additional condition holds, we say that the conformally compact manifold
(𝑀, 𝑔) is asymptotically hyperbolic.

Suppose that 𝑀 and 𝑁 are Riemannian manifolds of dimensions 𝑚 and 𝑛

respectively, and their Riemannian metrics are d𝑠2
𝑀

=
𝑚∑

𝑖, 𝑗=1
𝑔𝑖 𝑗d𝑥𝑖d𝑥 𝑗 and d𝑠2

𝑁
=

𝑛∑
𝛼,𝛽=1

ℎ𝑝𝑞d𝑢𝑝d𝑢𝑞 , respectively. Then the energy density function of a 𝐶1 map 𝑢 :

𝑀 → 𝑁 is defined by

𝑒 (𝑢) = 1
2
𝑔𝑖 𝑗

𝜕𝑢𝑝

𝜕𝑥𝑖
𝜕𝑢𝑞

𝜕𝑥 𝑗
ℎ𝑝𝑞 ,

and the total energy of 𝑢 is given by

𝐸 (𝑢) =
∫
𝑀𝑚

𝑒(𝑢)d𝑥.

The harmonic map equation from 𝑀 into 𝑁 , which is the Euler Lagrange equation
for critical points of the total energy functional, can be written as

𝜏(𝑢)𝑠 = Δ𝑀𝑢𝑠 + 𝑔𝑖 𝑗Γ𝑠
𝑝𝑞

𝜕𝑢𝑝

𝜕𝑥 𝑗

𝜕𝑢𝑞

𝜕𝑥𝑖
= 0, 𝑠 = 1, · · · , 𝑛,
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2 J. Niu

where Γ𝑠
𝑝𝑞 are the Christoffel symbols of 𝑁 .

The model example for asymptotically hyperbolic manifolds is Poincaré model
for hyperbolic space H𝑚 given by the unit ball 𝐵𝑚 with metric d𝑠2

H𝑚 = 4
(1−𝜌2 )2 d𝑠2

0.

Here, 𝜌 denotes the Euclidean distance measured from the origin, and d𝑠2
0 stands

for the standard Euclidean metric. Under this equivalence relation, a map from the
(𝑚 − 1)-dimensional sphere S𝑚−1 to the (𝑛 − 1)-dimensional sphere S𝑛−1 can be
interpreted as a map from the boundary at infinity ofH𝑚 to the boundary at infinity of
H𝑛. Schoen [27] proposed a conjecture: For every quasiconformal mapping 𝑓 : S1 →
S1, there exists a unique harmonic and quasiconformal extension H( 𝑓 ) : H2 → H2.
Li and Wang [21] extended this conjecture to the case where 𝑚 = 𝑛 ≥ 2.

The results of uniqueness, existence, and regularity properties for the Dirich-
let problem at infinity for proper harmonic maps between hyperbolic spaces was
obtained by Li and Tam [18, 19, 20] when the harmonic map is 𝐶1 up to bound-
ary. In their work [20], they investigated the boundary regularity of these harmonic
maps and posed some thought-provoking questions. Specifically, they wondered if
the singularities of these harmonic maps could be understood by showing that near
the boundary, the harmonic map must have an expansion similar to those in the com-
plex Monge - Ampère equation [12] and the Bergman Laplacian [10]. Donnelly [4, 5]
generalized a portion of their findings to any rank one symmetric spaces. When the
boundary map is a quasiconformal map, Li, Tam and Wang [20, 21] established the
uniqueness and Lemm and Markovic [23, 22, 13] proved existence using heat flow
theorem in [28]. Benoist and Hulin [2] completed the proof of the Schoen-Li-Wang
conjecture when both the domain manifold and the target manifold are symmetric
spaces of rank one. The complex case was studied by Donanelly [6] and Li and Ni
[15] and Li and Simon [16], etc.. When boundary map is smooth and has nowhere
vanishing energy density, Chen, Li and Luo provide an asymptotic expansion for-
mula for the harmonic map between balls in Berman metrics in [3], so they obtained
the optimal regularity of harmonic maps in the case of complex spaces.

There also have been several relevant works on harmonic maps between asymptot-
ically hyperbolic spaces. Leung [14] employed the heat flow method to demonstrate
the existence of harmonic maps between asymptotically hyperbolic conformally
compact manifolds. Regarding boundary regularity, Economakis proved that any
𝐶1,1 local harmonic map whose boundary map is smooth and has nowhere vanishing
energy density admits a polyhomogeneous expansion at the boundary in [8]. Econo-
makis adopted an approach that is purely microlocal, as can be seen in the references
[25, 26, 12]. Donnelly [7] proved existence and uniqueness for asymptotic Dirchlet
problems for harmonic maps from Hadamard manifolds to complete simply con-
nected manifolds with nonpositive sectional curvature. Kim and Lee [11] proved the
existence of nonconstant bounded harmonic maps on a Cartan-Hadamard manifold
of pinched negative curvature by solving the asymptotic Dirichlet problem. Aku-
tagawa and Matsumoto [1] generalized the result of Li and Tam [19], they proved
an existence theorem for harmonic maps with 𝐶1 boundary conditions between
asymptotically hyperbolic manifolds. For other studies on harmonic maps between
asymptotically hyperbolic spaces, see [9, 24].
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 3

Compared with the above works, this article has two advantages. First, it improves
the boundary regularity in Li and Tam [20] and achieves the optimal boundary
regularity. Second, it reduces the assumption of [8] for harmonic maps between
asymptotically hyperbolic spaces to 𝐶1 up to the boundary, and obtains an expan-
sion of harmonic maps between a class asymptotically hyperbolic spaces. Moreover,
in the Poincaré disk model, this expansion is global. In the case where both 𝑀 and
𝑁 are hyperbolic spaces, according to the asymptotic expansion obtained in this arti-
cle, it is easy to see that the coefficient of the first power of the logarithm, which
has an impact on the regularity, can be completely determined by the boundary map.
Moreover, the specific expression of this coefficient can be calculated.

Let H𝑚 and H𝑛 be hyperbolic spaces of dimensions 𝑚 and 𝑛, respectively. The
hyperbolic space H𝑚 is identified with 𝐵𝑚 = {𝑥 ∈ R𝑚 | |𝑥 | < 1} with the Poincaré
metric given by

𝑔H𝑚 =
4(𝑑𝑥1 ⊗ 𝑑𝑥1 + · · · + 𝑑𝑥𝑚 ⊗ 𝑑𝑥𝑚)

(1 − 𝜌2)2 ,

where 𝜌2 =
𝑚∑
𝑖=1

(𝑥𝑖)2. Under this identification, the idea boundary of H𝑚 can be

viewed as S𝑚−1. Similarly we identify H𝑛 with the unit ball 𝐵𝑛 in R𝑛 with Poincaré
metric given by

𝑔H𝑛 =
4(𝑑𝑢1 ⊗ 𝑑𝑢1 + · · · + 𝑑𝑢𝑛 ⊗ 𝑑𝑢𝑛)

(1 − |𝑢 |2)2 .

Also, the idea boundary of H𝑛 is identified with S𝑛−1. In terms of these coordinates,
the tension field of a map 𝑢 : H𝑚 → H𝑛 is given by

𝜏0 (𝑢) 𝑝 =
(1 − 𝜌2)2

4
Δ0𝑢

𝑝 +
𝑚∑︁
𝑖=1

(𝑚 − 2) (1 − 𝜌2)
2

𝑥𝑖
𝜕𝑢𝑝

𝜕𝑥𝑖

+ (1 − 𝜌2)2

2(1 − |𝑢 |2)
(2⟨𝑢,∇0𝑢⟩∇0𝑢

𝑝 − ⟨∇0𝑢,∇0𝑢⟩𝑢𝑝), 𝑝 = 1, · · · , 𝑛,
(1.1)

where ⟨𝑢,∇0𝑢⟩ =
𝑛∑

𝑞=1
⟨𝑢𝑞 ,∇0𝑢

𝑞⟩ and ⟨∇0𝑢,∇0𝑢⟩ =
𝑛∑

𝑞=1
⟨∇0𝑢

𝑞 ,∇0𝑢
𝑞⟩. The notation

Δ0 denotes the euclidean Laplacian and ∇0 denotes the euclidean gradient. ⟨·, ·⟩
represents the inner product of two 𝑛-dimensional vectors.

We assume that 𝑀 is a class of asymptotically hyperbolic spaces. In the Poincaré
disk model 𝐵𝑚 = {𝑥 ∈ R𝑚 | |𝑥 | < 1}, it has a metric

𝑔𝑀 =
4(𝑑𝑥1 ⊗ 𝑑𝑥1 + · · · + 𝑑𝑥𝑚 ⊗ 𝑑𝑥𝑚)

(1 − 𝜌2)2 + ℎ𝑀 (𝑥), (1.2)

where 𝜌 = |𝑥 |. The term ℎ𝑀 (𝑥) is a symmetric 2-tensor, which serves as the
perturbation term. It has the expansion

ℎ𝑀 =

𝑚∑︁
𝑖, 𝑗

ℎ𝑖 𝑗𝑑𝑥
𝑖 ⊗ 𝑑𝑥 𝑗 .
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4 J. Niu

When expressed as a function of the variables (𝜌, 𝜃), ℎ𝑖 𝑗 ∈ 𝐶∞ (𝐵𝑚) adheres to a
decay condition. Precisely, for any non-negative integer 𝑠, 𝑘 , the following relation
holds:

|∇𝑘
𝜌∇𝑠

𝜃ℎ𝑖 𝑗 | = 𝑂 ((1 − |𝜌 |2)𝑎−𝑘), 𝜌 → 1− , 𝑎 > −1.

Similarly, we assume that 𝑁 is an asymptotically hyperbolic space and we identify
𝑁 with the unit ball 𝐵𝑛 in R𝑛 with Poincaré metric given by

𝑔𝑁 =
4(𝑑𝑢1 ⊗ 𝑑𝑢1 + · · · + 𝑑𝑢𝑛 ⊗ 𝑑𝑢𝑛)

(1 − |𝑢 |2)2 + ℎ𝑁 (𝑥), (1.3)

where ℎ𝑁 (𝑥) is a symmetric 2-tensor (i.e., the perturbation term) and has the
expansion

ℎ𝑁 =

𝑛∑︁
𝑖, 𝑗

ℎ𝑖 𝑗𝑑𝑢
𝑖 ⊗ 𝑑𝑢 𝑗 .

When expressed as a function of the variables (𝜌, 𝜃), ℎ𝑖 𝑗 ∈ 𝐶∞ (𝐵𝑚) satisfies the
decay condition: for any non-negative integer 𝑠, 𝑘 ,

|∇𝑘
𝜌∇𝑠

𝜃ℎ𝑖 𝑗 | = 𝑂 ((1 − |𝑢 |2)𝑏−𝑘), 𝜌 → 1− , 𝑏 > −1.

In terms of these coordinates, the tension field of a map 𝑢 : 𝑀 → 𝑁 is given by

𝜏(𝑢) 𝑝 =

𝑚∑︁
𝑖, 𝑗=1

( (1 − 𝜌2)2

4
𝛿𝑖 𝑗 +𝑂 ((1 − 𝜌2)4+𝑎)) 𝜕2𝑢𝑝

𝜕𝑥𝑖𝜕𝑥 𝑗

+
𝑚∑︁
𝑖=1

(𝑚 − 2)
2

((1 − 𝜌2) +𝑂 ((1 − 𝜌2)3+𝑎)𝑥𝑖 𝜕𝑢
𝑝

𝜕𝑥𝑖

+ (1 − 𝜌2)2 +𝑂 ((1 − 𝜌2)4+𝑎)
2

( 1
1 − |𝑢 |2

+𝑂 ((1 − |𝑢 |2)𝑏+1))

× (2⟨𝑢,∇0𝑢⟩∇0𝑢
𝑝 − ⟨∇0𝑢,∇0𝑢⟩𝑢𝑝), 𝑝 = 1, · · · , 𝑛.

(1.4)

Let 𝜙0 : S𝑚−1 → S𝑛−1. The Dirichlet boundary value problem for a proper
harmonic map is given by

𝜏(𝑢) = 0 in 𝐵𝑚

𝑢 = 𝜙0 on 𝜕𝐵𝑚.
(1.5)

The main purpose of this paper is to study optimal boundary regularity for proper
harmonic maps between asymptotically hyperbolic spaces similar to those in [17].
The main theorem is

Theorem 1.1 Let 𝑀 and 𝑁 be asymptotically hyperbolic spaces with metrics (1.2)
and (1.3) respectively in the Poincaré disk model. Let 𝑢 be a harmonic map from
𝑀 to 𝑁 so that 𝑢 ∈ 𝐶1 as a map from 𝐵𝑚 to 𝐵𝑛. Suppose that the boundary map
𝜙0 of 𝑢, when restricted to S𝑚−1, is in 𝐶∞ (S𝑚−1, S𝑛−1), and has nowhere-vanishing
energy density with respect to the stanard metrics. Then 𝑢 ∈ 𝐶𝑚,𝛼 (𝐵𝑚, 𝐵𝑛) for all
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 5

0 < 𝛼 < 1. Moreover, the solution 𝑢 of (1.5) has the following asymptotic expansion:

𝑢(𝑥) ∼ 𝜙0 +
∞∑︁
𝑘=1

𝜙𝑘 (𝑥)𝑑𝑘 +
∞∑︁

𝑘=𝑚+1

[ 𝑘−1
𝑚

]∑︁
𝑙=1

𝜓𝑘,𝑙 (𝑥)𝑑𝑘 (log(−𝑑))𝑙 , (1.6)

where 𝜙𝑘 and 𝜓𝑘,𝑙 ∈ 𝐶∞ (𝐵𝑚; 𝐵𝑛), 𝑑 (𝑥) = |𝑥 | − 1.

Remark 1.2 Here (1.6) is understood in the sense that, for every 𝑚0 ≥ 𝑚 + 1 and

with 𝑤𝑚0 = 𝜙0 +
𝑚0∑
𝑘=1

𝜙𝑘 (𝑥)𝑑𝑘 +
𝑚0∑
𝑘=1

[ 𝑘−1
𝑚

]∑
𝑙=𝑚+1

𝜓𝑘,𝑙 (𝑥)𝑑𝑘 (log(−𝑑))𝑙 , we have |∇ 𝑗
𝜌∇𝑠

𝜃
(𝑢 −

𝑤𝑚0 ) | = 𝑂 (𝑑𝑚0+1− 𝑗−𝜀), for any 𝜀 > 0 and non-negative integers 𝑠, 𝑗 .

Remark 1.3 |𝜙0 |2 = 1 on S𝑚−1. Differentiating with respect to 𝜃 𝑗 ∈ S𝑚−1, we can
get ⟨𝜙0, 𝜕𝜃 𝑗

𝜙0⟩ = 0 on S𝑚−1, 𝑗 = 1, · · · , 𝑚 − 1.

The main challenge is that since harmonic map is a systems of semi-linear
equations, the comparison principle is not applicable in some cases. To address this,
we use the method of Fourier series expansion for functions on the Poincaré ball
model to prove that taking the derivative in the tangential direction has little effect on
the boundary regularity, see Lemma 3.2. For the mixed terms of different components
in the system of equations, we regard it as a whole for estimate.

The organization of this paper is as follows. In Sect. 2, we construct a good

approximate sollution 𝑤. This approximate solution has the form 𝑤 = 𝜙0+
𝑚∑
𝑘=1

𝜙𝑘 (𝜌−

1)𝑘 + 𝜓𝑚+1,1 (𝜌 − 1)𝑚+1 log(1 − 𝜌), where 𝜙𝑘 (𝜃), 𝜓𝑚+1,1 (𝜃) ∈ 𝐶∞ (S𝑚−1;S𝑛−1) and
𝜏(𝑤) = 𝑂 ((1− 𝜌)𝑚+2 log(1− 𝜌)). In Sect. 3, we extend methods and conclusions of
[19] to the harmonic maps between asymptotically hyperbolic spaces . Moreover, by
using the method of Fourier series expansion, we prove that taking derivatives in the
tangential direction has little effect on the boundary regularity. In Sect. 4, we prove
Theorem 1.1 by using the method of solving ordinary differential equations.

2 The coefficient functions 𝜙0, · · · , 𝜙𝑚, 𝜓𝑚+1,1

In this section, we mainly prove Theorem 2.1. The coefficients 𝜙0, · · · , 𝜙𝑚, 𝜓𝑚+1,1
are completely determined by 𝜙0. Based on the expressions of 𝜏0 and 𝜏 in (1.1) and
(1.4), we can make a modification to 𝜙0, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in Theorem 2.8. As a result,
we obtain 𝜙1, 𝜙2, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in 𝐶∞ (S𝑚−1, S𝑛−1) and the vector function 𝑤 =

𝜙0 +
𝑚∑
𝑘=1

𝜙𝑘𝑑
𝑘 +𝜓𝑚+1,1𝑑

𝑚+1 log(−𝑑), 𝑑 = 𝜌−1 such that |𝜏(𝑤) | = 𝑂 (𝑑𝑚+2 log(−𝑑)).
In fact, according to the proof of Theorem 2.1, for any 𝑚0 ≥ 0, we can obtain
𝑤𝑚0 such that |𝜏(𝑤𝑚0 ) | = 𝑂 (𝑑𝑚0+1 log(−𝑑)). However, 𝜙𝑚+1 cannot be completely
determined by 𝜙0. We temporarily set the value of 𝜙𝑚+1 to zero, and Lemma 4.2 will
make the correction.
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6 J. Niu

Theorem 2.1 Let 𝜙0 ∈ 𝐶∞ (S𝑚−1, S𝑛−1) be a boundary map with nowhere-
vanishing energy density. There exist vector functions 𝜙1, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in
𝐶∞ (S𝑚−1, S𝑛−1) such that the vector function

𝑤 =

𝑚∑︁
𝑘=0

𝜙𝑘𝑑
𝑘 + 𝜓𝑚+1,1𝑑

𝑚+1 log(−𝑑), 𝑑 = 𝜌 − 1.

satisfies

(1) |𝜏0 (𝑤) | = 𝑂 (𝑑𝑚+2 log(−𝑑)),

(2)⟨𝜙1, 𝜙1⟩ =
⟨∇𝜙0,∇𝜙0⟩

𝑚 − 1
, ⟨𝜙0, 𝜙1⟩ =

√︂
⟨∇𝜙0,∇𝜙0⟩

𝑚 − 1
,

(3)𝜙1 =

√︂
⟨∇𝜙0,∇𝜙0⟩

𝑚 − 1
𝜙0,

(4) 1
𝐶

≤ 1 − |𝑤 |2
1 − 𝜌

≤ 𝐶 for some constant 𝐶 > 0,

where 𝜙𝑘 (𝜃) = 𝜙𝑘 (𝑠𝜃), 𝜓𝑚+1,1 (𝜃) = 𝜓𝑚+1,1 (𝑠𝜃), for any 𝑠 ∈ (0, 1), 𝜃 ∈ S𝑚−1, 𝑘 =

1, · · · , 𝑚.

Since 𝑒(𝜙0) > 0 on S𝑛−1, we have 1−|𝑤 |2
1−𝜌 = 2⟨𝜙0, 𝜙1⟩ > 0 by (3). Let 𝑢 ∈

𝐶2 (𝐵𝑚, 𝐵𝑛). Then 𝜏0 (𝑢) = 0 if and only if

𝜌(1 − |𝑢 |2) (1 − 𝜌2)Δ0𝑢 +
𝑚∑︁
𝑖=1

2(𝑚 − 2) (1 − |𝑢 |2)𝜌𝑥𝑖 𝜕𝑢
𝜕𝑥𝑖

+ 2(1 − 𝜌2)𝜌(2⟨𝑢,∇0𝑢⟩∇0𝑢 − ⟨∇0𝑢,∇0𝑢⟩𝑢) = 0.

(2.1)

Lemma 2.2 Let 𝑇 =
𝑚∑
𝑖=1

𝑥𝑖 𝜕
𝜕𝑥𝑖

. If 𝜙 ∈ 𝐶2 (𝐵𝑚\{0}) with 𝜙(𝑥) = 𝜙(𝑠𝑥),∀𝑠 ∈ (0, 1),
then 𝑇𝜙(𝑥) = 0,∀𝑥 ∈ 𝐵𝑚.

Proof 𝜙(𝑥) = 𝜙(𝑠𝑥),∀𝑠 ∈ (0, 1). Then for any 𝑥 ∈ B𝑚,

𝑇𝜙(𝑥) = 𝑇 (𝜙(𝑠𝑥)) =
𝑚∑︁
𝑖=1

𝑥𝑖
𝜕

𝜕𝑥𝑖
𝜙(𝑠𝑥) =

𝑚∑︁
𝑖=1

𝑠𝑥𝑖
𝜕𝜙

𝜕𝑥𝑖
(𝑠𝑥) → 0, as 𝑠 → 0.

■

Next, We will calculate Equation (2.1) in two parts.
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Optimal Boundary Regularity of Proper Harmonic Maps between AHS 7

2.1 Computation of 𝜌(1 − |𝑢 |2) (1 − 𝜌2)Δ0𝑢 +
𝑚∑
𝑖=1

2(𝑚 − 2) (1 − |𝑢 |2)𝜌𝑥𝑖 𝜕𝑢
𝜕𝑥𝑖

Let 𝑑 := 𝜌 − 1, 𝑇 :=
𝑚∑
𝑖=1

𝑥𝑖 𝜕
𝜕𝑥𝑖

. Let 𝜙𝑘 (𝑥) = 𝜙𝑘 (𝑠𝑥) be smooth functions except the

origin and

𝜙(𝑥) =
∞∑︁
𝑘=0

𝜙𝑘𝑑 (𝑥)𝑘 . (2.2)

For 𝑘 ≥ 0 with 𝜙−1 = 𝜙−2 = 0, define

𝐷𝑘 [𝜙] = − [Δ0𝜙𝑘−3 + 3Δ0𝜙𝑘−2 + 2Δ0𝜙𝑘−1 + (𝑘 − 1) (𝑘 + 𝑚 − 3)𝜙𝑘−1

+ 𝑘 (3𝑘 + 2𝑚 − 5)𝜙𝑘 + 2𝑘 (𝑘 + 1)𝜙𝑘+1] + 2(𝑚 − 2) [(𝑘 − 1)𝜙𝑘−1

+ 2𝑘𝜙𝑘 + (𝑘 + 1)𝜙𝑘+1] .
(2.3)

Lemma 2.3 Let 𝜙 ∈ 𝐶∞ (𝐵𝑚, 𝐵𝑛) with the asymptotic expansion (2.2) near 𝜕𝐵𝑚.
Then

𝜌(1 − 𝜌2)Δ0𝜙 +
𝑚∑︁
𝑖=1

2(𝑚 − 2)𝜌𝑥𝑖 𝜕𝜙
𝜕𝑥𝑖

=

∞∑︁
𝑘=0

𝐷𝑘 [𝜙]𝑑𝑘 . (2.4)

Proof Notice that for any non-negative integer k and for each 𝑖 ranging from 1 to
𝑚, it holds that

𝜕 (𝜙𝑘𝑑
𝑘)

𝜕𝑥𝑖
=

𝜕𝜙𝑘

𝜕𝑥𝑖
𝑑𝑘 + 𝑘𝜙𝑘𝑑

𝑘−1 𝑥
𝑖

𝜌
,

𝜕2 (𝜙𝑘𝑑
𝑘)

𝜕 (𝑥𝑖)2 =
𝜕2𝜙𝑘

𝜕 (𝑥𝑖)2 𝑑
𝑘 + 2𝑘

𝜕𝜙𝑘

𝜕𝑥𝑖
𝑑𝑘−1 𝑥

𝑖

𝜌

+ 𝑘 (𝑘 − 1)𝜙𝑘𝑑
𝑘−2 ( 𝑥

𝑖

𝜌
)2 + 𝑘𝜙𝑘𝑑

𝑘−1 ( 1
𝜌
− (𝑥𝑖)2

𝜌3 ).

(2.5)

Recall the definitions 𝜌 = 𝑑 + 1, 1 − 𝜌2 = −𝑑 (𝑑 + 2). Summing the second equation
in (2.5) over 𝑖 from 1 to 𝑚 and then multiplying the result by 𝜌(1 − 𝜌2), we can
calculate Δ0 (𝜙𝑘𝑑

𝑘) multiplied by (1 − 𝜌2)𝜌. According to Lemma 2.2, we have

(1 − 𝜌2)𝜌Δ0 (𝜙𝑘𝑑
𝑘)

= − [Δ0𝜙𝑘𝑑
𝑘+1 (𝑑 + 1) (𝑑 + 2) + 𝑘 (𝑘 − 1)𝜙𝑘𝑑

𝑘−1 (𝑑 + 1) (𝑑 + 2)
+ 𝑘 (𝑚 − 1)𝜙𝑘𝑑

𝑘 (𝑑 + 2)]
= − [Δ0𝜙𝑘𝑑

𝑘+3 + 3Δ0𝜙𝑘𝑑
𝑘+2 + (2Δ0𝜙𝑘 + 𝑘 (𝑘 − 1)𝜙𝑘 + 𝑘 (𝑚 − 1)𝜙𝑘)𝑑𝑘+1

+ (3𝑘 (𝑘 − 1)𝜙𝑘 + 2𝑘 (𝑚 − 1)𝜙𝑘)𝑑𝑘 + 2𝑘 (𝑘 − 1)𝜙𝑘𝑑
𝑘−1] .
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Next, by summing the above expression over 𝑘 from 0 to ∞, we get

(1 − 𝜌2)𝜌Δ0𝜙

= − [
∞∑︁
𝑘=3

Δ0𝜙𝑘−3𝑑
𝑘 + 3

∞∑︁
𝑘=2

Δ0𝜙𝑘−2𝑑
𝑘

+
∞∑︁
𝑘=1

(2Δ0𝜙𝑘−1 + (𝑘 − 1) (𝑘 − 2)𝜙𝑘−1 + (𝑘 − 1) (𝑚 − 1)𝜙𝑘−1)𝑑𝑘

+
∞∑︁
𝑘=0

(3𝑘 (𝑘 − 1)𝜙𝑘 + 2𝑘 (𝑚 − 1)𝜙𝑘)𝑑𝑘 + 2
∞∑︁
𝑘=0

𝑘 (𝑘 + 1)𝜙𝑘+1𝑑
𝑘]

= −
∞∑︁
𝑘=0

[Δ0𝜙𝑘−3 + 3Δ0𝜙𝑘−2 + 2Δ0𝜙𝑘−1 + (𝑘 − 1) (𝑘 + 𝑚 − 3)𝜙𝑘−1

+ 𝑘 (3𝑘 + 2𝑚 − 5)𝜙𝑘 + 2𝑘 (𝑘 + 1)𝜙𝑘+1]𝑑𝑘

=:
∞∑︁
𝑘=0

𝐷1
𝑘 [𝜙]𝑑

𝑘 .

(2.6)

We multiply the first equation of (2.5) by 2(𝑚 − 2)𝜌𝑥𝑖 and then sum over 𝑖 from
1 to 𝑚. By applying Lemma 2.2, we can derive

𝑚∑︁
𝑖=1

2(𝑚 − 2)𝜌𝑥𝑖 𝜕 (𝜙𝑘𝑑
𝑘)

𝜕𝑥𝑖
=

𝑚∑︁
𝑖=1

2(𝑚 − 2)𝜌𝑥𝑖 ( 𝜕𝜙𝑘

𝜕𝑥𝑖
𝑑𝑘 + 𝑘𝜙𝑘𝑑

𝑘−1 𝑥
𝑖

𝜌
)

=2(𝑚 − 2)𝑘𝜙𝑘𝑑
𝑘−1 (𝑑 + 1)2

=2(𝑚 − 2) [𝑘𝜙𝑘𝑑
𝑘+1 + 2𝑘𝜙𝑘𝑑

𝑘 + 𝑘𝜙𝑘𝑑
𝑘−1] .

(2.7)

We sum the equation (2.7) over 𝑘 from 0 to ∞. This summation yields
𝑚∑︁
𝑖=1

2(𝑚 − 2)𝜌𝑥𝑖 𝜕𝜙
𝜕𝑥𝑖

=

∞∑︁
𝑘=0

2(𝑚 − 2) [𝑘𝜙𝑘𝑑
𝑘+1 + 2𝑘𝜙𝑘𝑑

𝑘 + 𝑘𝜙𝑘𝑑
𝑘−1]

=

∞∑︁
𝑘=0

2(𝑚 − 2) [(𝑘 − 1)𝜙𝑘−1𝑑
𝑘 + 2𝑘𝜙𝑘𝑑

𝑘 + (𝑘 + 1)𝜙𝑘+1𝑑
𝑘]

=:
∞∑︁
𝑘=0

𝐷2
𝑘 [𝜙]𝑑

𝑘 .

(2.8)

By adding the equation (2.6) and (2.8), we obtain

(1 − 𝜌2)𝜌Δ0𝜙 +
𝑚∑︁
𝑖=1

2(𝑚 − 2)𝜌𝑥𝑖
𝜕𝜙

𝜕𝑥𝑖

=

∞∑︁
𝑘=0

(𝐷1
𝑘 [𝜙] + 𝐷2

𝑘 [𝜙])𝑑
𝑘 =

∞∑︁
𝑘=0

𝐷𝑘 [𝜙]𝑑𝑘 .
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■

Next, we will use the following notations:

𝜓𝑙 (𝑥) =
∞∑︁
𝑘=1

𝜓𝑘,𝑙𝑑
𝑘 with 𝜓𝑘,𝑙 = 0 when 𝑘 < 𝑙𝑚 + 1

and

𝑢(𝑥) = 𝜙(𝑥) +
∞∑︁
𝑙=1

𝜓𝑙 (𝑥) (log(−𝑑))𝑙 .

First, we have the operator 𝐷𝑘 [𝑢] given by

𝐷𝑘 [𝑢] =𝐷𝑘 [𝜙] − 2𝜉𝑘,1 [𝜓1] + 𝜂𝑘,1 [𝜓1] − (𝑚 − 1)𝜁𝑘,1 [𝜓1] − 2𝜂𝑘,2 [𝜓2]
+ 2(𝑚 − 2) (𝜓𝑘−1,1 + 2𝜓𝑘,1 + 𝜓𝑘+1,1)

(2.9)

and the operator 𝐷𝑘,𝑙 [𝑢] defined as

𝐷𝑘,𝑙 [𝑢] =𝐷𝑘 [𝜓𝑙] − 2(𝑙 + 1)𝜉𝑘,𝑙+1 [𝜓𝑙+1] + (𝑙 + 1)𝜂𝑘,𝑙+1 [𝜓𝑙+1]
− (𝑙 + 1) (𝑚 − 1)𝜁𝑘,𝑙+1 [𝜓𝑙+1] − (𝑙 + 1) (𝑙 + 2)𝜂𝑘,𝑙+2 [𝜓𝑙+2]
+ 2(𝑚 − 2) (𝑙 + 1) (𝜓𝑘−1,𝑙+1 + 2𝜓𝑘,𝑙+1 + 𝜓𝑘+1,𝑙+1),

(2.10)

where 𝐷𝑘 [𝜙] is defined by (2.3) and we have the following definitions for the terms
involving 𝜉𝑘,𝑙 [𝜓𝑙], 𝜂𝑘,𝑙 [𝜓𝑙], and 𝜁𝑘,𝑙 [𝜓𝑙],

𝜉𝑘,𝑙 [𝜓𝑙] = (𝑘 − 1)𝜓𝑘−1,𝑙 + 3𝑘𝜓𝑘,𝑙 + 2(𝑘 + 1)𝜓𝑘+1,𝑙 , (2.11)

𝜂𝑘,𝑙 [𝜓𝑙] = 𝜓𝑘−1,𝑙 + 3𝜓𝑘,𝑙 + 2𝜓𝑘+1,𝑙 , (2.12)

𝜁𝑘,𝑙 [𝜓𝑙] = 𝜓𝑘−1,𝑙 + 2𝜓𝑘,𝑙 . (2.13)

For the function (log(−𝑑))𝑙 , notice the following partial derivative relationships

𝜕

𝜕𝑥𝑖
(log(−𝑑))𝑙 =𝑙 (log(−𝑑))𝑙−1 𝑥𝑖

𝑑𝜌
,

𝜕2 (log(−𝑑))𝑙
𝜕 (𝑥𝑖)2 =𝑙 (𝑙 − 1) (log(−𝑑))𝑙−2 1

𝑑2
(𝑥𝑖)2

𝜌2

− 𝑙 (log(−𝑑))𝑙−1 1
𝑑2

(𝑥𝑖)2

𝜌2 + 𝑙 (log(−𝑑))𝑙−1 1
𝑑
( 1
𝜌
− (𝑥𝑖)2

𝜌3 ).

(2.14)

Additionally, we have the following summation and Laplacian relationships
𝑚∑︁
𝑖=1

𝑥𝑖
𝜕 (log(−𝑑))𝑙

𝜕𝑥𝑖
= 𝑙

𝑑 + 1
𝑑

(log(−𝑑))𝑙−1,

Δ0 (log(−𝑑))𝑙

=𝑙 (𝑙 − 1)𝑑−2 (log(−𝑑))𝑙−2 − 𝑙𝑑−2 (log(−𝑑))𝑙−1 + 𝑙 (𝑚 − 1)𝑑−1𝜌−1 (log(−𝑑))𝑙−1.

Let 𝑣𝑙 = 𝜓𝑙 (log(−𝑑))𝑙 . Recall the definitions 𝜌 = 𝑑 + 1, 1 − 𝜌2 = −𝑑 (𝑑 + 2).
According to the second equation in (2.14), we can calculate (1 − 𝜌2)𝜌Δ0𝑣𝑙 ,
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(1 − 𝜌2)𝜌Δ0𝑣𝑙

=(1 − 𝜌2)𝜌[Δ0𝜓𝑙 (log(−𝑑))𝑙 +
𝑚∑︁
𝑖=1

2
𝜕𝜓𝑙

𝜕𝑥𝑖
𝜕 (log(−𝑑))𝑙

𝜕𝑥𝑖
+ 𝜓𝑙Δ0 (log(−𝑑))𝑙]

= − [Δ0𝜓𝑙𝑑 (𝑑 + 1) (𝑑 + 2) (log(−𝑑))𝑙 +
𝑚∑︁
𝑖=1

2(𝑑 + 2) 𝜕𝜓𝑙

𝜕𝑥𝑖
𝑥𝑖 𝑙 (log(−𝑑))𝑙−1

+ 𝑙 (𝑙 − 1)𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙 (log(−𝑑))𝑙−2 − 𝑙𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙 (log(−𝑑))𝑙−1

+ 𝑙 (𝑚 − 1) (𝑑 + 2)𝜓𝑙 (log(−𝑑))𝑙−1]
= − [Δ0𝜓𝑙𝑑 (𝑑 + 1) (𝑑 + 2) (log(−𝑑))𝑙

+ (2(𝑑 + 2)𝑙𝑇𝜓𝑙 − 𝑙𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙 + 𝑙 (𝑚 − 1) (𝑑 + 2)𝜓𝑙) (log(−𝑑))𝑙−1

+ 𝑙 (𝑙 − 1)𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙 (log(−𝑑))𝑙−2],

where 𝑇 =
𝑚∑
𝑖=1

𝑥𝑖 𝜕
𝜕𝑥𝑖

. Finally, for the infinite sum
∞∑
𝑙=1

𝑣𝑙 , we have

(1 − 𝜌2)𝜌Δ0 (
∞∑︁
𝑙=1

𝑣𝑙)

= − [
∞∑︁
𝑙=1

Δ0𝜓𝑙𝑑 (𝑑 + 1) (𝑑 + 2) (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

(2(𝑑 + 2) (𝑙 + 1)𝑇𝜓𝑙+1 − (𝑙 + 1)𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙+1

+ (𝑙 + 1) (𝑚 − 1) (𝑑 + 2)𝜓𝑙+1) (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

(𝑙 + 2) (𝑙 + 1)𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙+2 (log(−𝑑))𝑙 + 2(𝑑 + 2)𝑇𝜓1

− 𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓1 + (𝑚 − 1) (𝑑 + 2)𝜓1 + 2𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓2] .

(2.15)

Similar to the computation of (2.6), we have

−
∞∑︁
𝑙=1

Δ0𝜓𝑙𝑑 (𝑑 + 1) (𝑑 + 2) = 𝜌(1 − 𝜌2)Δ0𝜓𝑙 =

∞∑︁
𝑘=1

𝐷1
𝑘 [𝜓𝑙]𝑑𝑘 . (2.16)

By Lemma 2.2, 𝑇𝜓𝑘,𝑙 = 0. Notice that 𝜓𝑘,𝑙 = 0 when 𝑘 < 𝑚𝑙 + 1. We can computer
the term 2(𝑑 + 2) (𝑙 + 1)𝑇𝜓𝑙+1,

2(𝑑 + 2) (𝑙 + 1)𝑇𝜓𝑙+1 =2(𝑑 + 2) (𝑙 + 1)
∞∑︁
𝑘=1

𝜓𝑘,𝑙+1𝑇𝑑
𝑘

=2(𝑑 + 2) (𝑙 + 1)
∞∑︁
𝑘=1

𝜓𝑘,𝑙+1𝑘 (𝑑𝑘 + 𝑑𝑘−1)
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After arranging according to the powers of d, we can obtain

2(𝑑 + 2) (𝑙 + 1)𝑇𝜓𝑙+1

=2(𝑙 + 1)
∞∑︁
𝑘=1

𝑘𝜓𝑘,𝑙+1 (𝑑𝑘+1 + 3𝑑𝑘 + 2𝑑𝑘−1)

=2(𝑙 + 1)
∞∑︁
𝑘=1

[(𝑘 − 1)𝜓𝑘−1,𝑙+1 + 3𝑘𝜓𝑘,𝑙+1 + 2(𝑘 + 1)𝜓𝑘+1,𝑙+1]𝑑𝑘

=2(𝑙 + 1)
∞∑︁
𝑘=1

𝜉𝑘,𝑙+1 [𝜓𝑙+1]𝑑𝑘 ,

(2.17)

where 𝜉𝑘,𝑙+1 [𝜓𝑙+1] is defined in (2.11). Next, we can perform a calculation on the
terms (𝑙 + 1)𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙+1, (𝑙 + 1) (𝑚 − 1) (𝑑 + 2)𝜓𝑙+1 similar to that on
2(𝑑 + 2) (𝑙 + 1)𝑇𝜓𝑙+1 to obtain

(𝑙 + 1)𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙+1

=(𝑙 + 1) (𝑑2 + 3𝑑 + 2)
∞∑︁
𝑘=1

𝜓𝑘,𝑙+1𝑑
𝑘−1

=(𝑙 + 1)
∞∑︁
𝑘=1

(𝜓𝑘−1,𝑙+1 + 3𝜓𝑘,𝑙+1 + 2𝜓𝑘+1,𝑙+1)𝑑𝑘

=(𝑙 + 1)
∞∑︁
𝑘=1

𝜂𝑘,𝑙+1 [𝜓𝑙+1]𝑑𝑘 ,

(2.18)

where 𝜂𝑘,𝑙+1 [𝜓𝑙+1] is defined in (2.12) and

(𝑙 + 1) (𝑚 − 1) (𝑑 + 2)𝜓𝑙+1 =(𝑙 + 1) (𝑚 − 1) (𝑑 + 2)
∞∑︁
𝑘=1

𝜓𝑘,𝑙+1𝑑
𝑘

=(𝑙 + 1) (𝑚 − 1)
∞∑︁
𝑘=1

(𝜓𝑘−1,𝑙+1 + 2𝜓𝑘,𝑙+1)𝑑𝑘

=(𝑙 + 1) (𝑚 − 1)
∞∑︁
𝑘=1

𝜁𝑘,𝑙+1 [𝜓𝑙+1]𝑑𝑘 ,

(2.19)

where 𝜁𝑘,𝑙+1 [𝜓𝑙+1] is defined in (2.13). And finally

(𝑙 + 2) (𝑙 + 1)𝑑−1 (𝑑 + 1) (𝑑 + 2)𝜓𝑙+2

=(𝑙 + 1) (𝑙 + 2)
∞∑︁
𝑘=1

(𝜓𝑘−1,𝑙+2 + 3𝜓𝑘,𝑙+2 + 2𝜓𝑘+1,𝑙+2)𝑑𝑘

=(𝑙 + 1) (𝑙 + 2)
∞∑︁
𝑘=1

𝜂𝑘,𝑙+2 [𝜓𝑙+2]𝑑𝑘 .

(2.20)

Therefore substituting (2.16)-(2.20) into (2.15), we have
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(1 − 𝜌2)𝜌Δ0 (
∞∑︁
𝑙=1

𝑣𝑙)

=

∞∑︁
𝑙=1

∞∑︁
𝑘=1

(𝐷1
𝑘 [𝜓𝑙] − 2(𝑙 + 1)𝜉𝑘,𝑙+1 [𝜓𝑙+1] + (𝑙 + 1)𝜂𝑘,𝑙+1 [𝜓𝑙+1]

− (𝑙 + 1) (𝑚 − 1)𝜁𝑘,𝑙+1 [𝜓𝑙+1] − (𝑙 + 1) (𝑙 + 2)𝜂𝑘,𝑙+2 [𝜓𝑙+2])𝑑𝑘 (log(−𝑑))𝑙

+
∞∑︁
𝑘=1

(−2𝜉𝑘,1 [𝜓1] + 𝜂𝑘,1 [𝜓1] − (𝑚 − 1)𝜁𝑘,1 [𝜓1] − 2𝜂𝑘,2 [𝜓2])𝑑𝑘 .

(2.21)

For the second part

2(𝑚 − 2)𝜌
𝑚∑︁
𝑖=1

𝑥𝑖
𝜕𝑣𝑙

𝜕𝑥𝑖
= 2(𝑚 − 2)𝜌[

𝑚∑︁
𝑖=1

𝑥𝑖
𝜕𝜓𝑙

𝜕𝑥𝑖
(log(−𝑑))𝑙 + 𝜓𝑙𝑥

𝑖 𝜕 (log(−𝑑))𝑙
𝜕𝑥𝑖

]

=

∞∑︁
𝑘=1

𝐷2
𝑘 [𝜓𝑙]𝑑𝑘 (log(−𝑑))𝑙 + 2(𝑚 − 2)𝑙𝜓𝑙 (𝑑 + 2 + 1

𝑑
) (log(−𝑑))𝑙−1.

Summing 𝑙 from 1 to ∞, we get

2(𝑚 − 2)𝜌
𝑚∑︁
𝑖=1

𝑥𝑖
𝜕

𝜕𝑥𝑖
(
∞∑︁
𝑙=1

𝑣𝑙)

=

∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐷2
𝑘 [𝜓𝑙]𝑑𝑘 (log(−𝑑))𝑙 +

∞∑︁
𝑙=1

2(𝑚 − 2)𝑙𝜓𝑙 (𝑑 + 2 + 1
𝑑
) (log(−𝑑))𝑙−1

=

∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐷2
𝑘 [𝜓𝑙]𝑑𝑘 (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

2(𝑚 − 2) (𝑙 + 1)𝜓𝑙+1 (𝑑 + 2 + 1
𝑑
) (log(−𝑑))𝑙 + 2(𝑚 − 2)𝜓1 (𝑑 + 2 + 1

𝑑
)

=

∞∑︁
𝑙=1

∞∑︁
𝑘=1

(𝐷2
𝑘 [𝜓𝑙] + 2(𝑚 − 2) (𝑙 + 1) (𝜓𝑘−1,𝑙+1 + 2𝜓𝑘,𝑙+1 + 𝜓𝑘+1,𝑙+1))

× 𝑑𝑘 (log(−𝑑))𝑙 + 2(𝑚 − 2)
∞∑︁
𝑘=1

(𝜓𝑘−1,1 + 2𝜓𝑘,1 + 𝜓𝑘+1,1)𝑑𝑘 .

(2.22)
Therefore the summation of equations (2.21), (2.22) and (2.4) yields

((1 − 𝜌2)𝜌Δ0 + 2(𝑚 − 2)𝜌𝑇) (𝜙 +
∞∑︁
𝑙=1

𝜓𝑙 (𝑥) (log(−𝑑))𝑙)

=

∞∑︁
𝑘=0

𝐷𝑘 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐷𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 ,

where 𝐷𝑘 [𝑢] and 𝐷𝑘,𝑙 [𝑢] are defined in (2.9) and (2.10).

2025/09/03 22:42

https://doi.org/10.4153/S0008414X25101545 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101545


Optimal Boundary Regularity of Proper Harmonic Maps between AHS 13

As a summary, we have proved the following lemma.

Lemma 2.4 Let 𝜓𝑘,𝑙 = 0 when 𝑘 < 𝑚𝑙 + 1 and let

𝑢(𝑥) =
∞∑︁
𝑘=0

𝜙𝑘 (𝑥)𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝜓𝑘,𝑙 (𝑥)𝑑𝑘 (log(−𝑑))𝑙 . (2.23)

Then
((1 − 𝜌2)𝜌Δ0 + 2(𝑚 − 2)𝜌𝑇)𝑢(𝑥)

=

∞∑︁
𝑘=0

𝐷𝑘 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐷𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 ,

where 𝐷𝑘 [𝑢] and 𝐷𝑘,𝑙 [𝑢] are defined in (2.9) and (2.10).

Define

𝐴𝑝,𝑞 [𝜙] := ⟨𝜙𝑝 , 𝜙𝑞⟩, 𝐴𝑘 [𝜙] :=
∑︁

𝑝+𝑞=𝑘
𝐴𝑝,𝑞 [𝜙],

𝐴𝑘,𝑙 [𝑢] :=
∑︁

𝛼+𝛽=𝑘
(⟨𝜙𝛼, 𝜓𝛽,𝑙⟩ + ⟨𝜙𝛽 , 𝜓𝛼,𝑙⟩) +

∑︁
𝑠+𝑡=𝑙

∑︁
𝛼+𝛽=𝑘

⟨𝜓𝛼,𝑠 , 𝜓𝛽,𝑡 ⟩,

𝐵𝑘 [𝑢] := −
∑︁

𝛼+𝛽=𝑘
𝐴𝛼 [𝜙]𝐷𝛽 [𝑢], (2.24)

and
𝐵𝑘,𝑙 [𝑢] := −

∑︁
𝛼+𝛽=𝑘

(𝐴𝛼 [𝜙]𝐷𝛽,𝑙 [𝑢] + 𝐴𝛼,𝑙𝐷𝛽 [𝑢])

−
∑︁
𝑠+𝑡=𝑙

∑︁
𝛼+𝛽=𝑘

𝐴𝛼,𝑠 [𝑢]𝐷𝛽,𝑡 [𝑢] .
(2.25)

Theorem 2.5 Let 𝑢 be defined in (2.23) with |𝜙0 | = 1, then

(1 − |𝑢 |2) ((1 − 𝜌2)𝜌Δ0 + 2(𝑚 − 2)𝜌𝑇)𝑢(𝑥)

=

∞∑︁
𝑘=0

𝐵𝑘 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐵𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 .

Proof According to the expression of 𝑢, we have

1 − |𝑢 |2 =1 −
∞∑︁
𝑘=0

∑︁
𝛼+𝛽=𝑘

⟨𝜙𝛼, 𝜙𝛽⟩𝑑𝑘

−
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝛼+𝛽=𝑘

(⟨𝜙𝛼, 𝜓𝛽,𝑙⟩ + ⟨𝜙𝛽 , 𝜓𝛼,𝑙⟩)𝑑𝑘 (log(−𝑑))𝑙

−
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝛼+𝛽=𝑘

∑︁
𝑠+𝑡=𝑙

⟨𝜓𝛼,𝑠, 𝜓𝛽,𝑡 ⟩𝑑𝑘 (log(−𝑑))𝑙
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Since ⟨𝜙0, 𝜙0⟩ = 1, we can get

1 − |𝑢 |2 = −
∞∑︁
𝑘=1

𝐴𝑘 [𝜙]𝑑𝑘 −
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐴𝑙,𝑘 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 .

By Lemma 2.4, substituting the expression for 1 − |𝑢 |2 obtained above, we get

− (1 − |𝑢 |2) ((1 − 𝜌2)𝜌Δ0 + 2(𝑚 − 2)𝜌𝑇)𝑢(𝑥)

=

∞∑︁
𝑘=1

∑︁
𝛼+𝛽=𝑘

𝐴𝛼 [𝜙]𝐷𝛽 [𝑢]𝑑𝑘

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝛼+𝛽=𝑘

(𝐴𝛼 [𝜙]𝐷𝛽,𝑙 [𝑢] + 𝐴𝛼,𝑙𝐷𝛽 [𝑢])𝑑𝑘 (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝛼+𝛽=𝑘

∑︁
𝑠+𝑡=𝑙

𝐴𝛼,𝑠 [𝑢]𝐷𝛽,𝑡 [𝑢]𝑑𝑘 (log(−𝑑))𝑙

= −
∞∑︁
𝑘=1

𝐵𝑘 [𝑢]𝑑𝑘 −
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐵𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 .

The proof of the proposition is complete. ■

2.2 Computation of 2(1 − 𝜌2)𝜌(2⟨𝑢,∇0𝑢⟩∇0𝑢 − ⟨∇0𝑢,∇0𝑢⟩𝑢)

Given that 𝑢(𝑥) =
∞∑
𝑘=0

𝜙𝑘 (𝑥)𝑑𝑘 +
∞∑
𝑙=1

∞∑
𝑘=1

𝜓𝑘,𝑙 (𝑥)𝑑𝑘 (log(−𝑑))𝑙 , we can proceed to

calculate its partial derivative with respect to 𝑥𝑖 ,

𝜕𝑢

𝜕𝑥𝑖
=

∞∑︁
𝑘=0

( 𝜕𝜙𝑘

𝜕𝑥𝑖
𝑑𝑘 + 𝑘𝜙𝑘𝑑

𝑘−1 𝑥𝑖
𝜌
) +

∞∑︁
𝑙=1

∞∑︁
𝑘=1

[
𝜕𝜓𝑘,𝑙

𝜕𝑥𝑖
𝑑𝑘 (log(−𝑑))𝑙

+ 𝑘𝜓𝑘,𝑙𝑑
𝑘−1 𝑥𝑖

𝜌
(log(−𝑑))𝑙 + 𝑙𝜓𝑘,𝑙𝑑

𝑘−1 𝑥𝑖
𝜌
(log(−𝑑))𝑙−1]

=

∞∑︁
𝑘=0

( 𝜕𝜙𝑘

𝜕𝑥𝑖
𝑑𝑘 + [(𝑘 + 1)𝜙𝑘+1 + 𝜓𝑘+1,1]𝑑𝑘 𝑥𝑖

𝜌

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝜕𝜓𝑘,𝑙

𝜕𝑥𝑖
𝑑𝑘 (log(−𝑑))𝑙

+ [(𝑘 + 1)𝜓𝑘+1,𝑙 + (𝑙 + 1)𝜓𝑘+1,𝑙+1]𝑑𝑘 𝑥𝑖

𝜌
(log(−𝑑))𝑙

(2.26)

2025/09/03 22:42

https://doi.org/10.4153/S0008414X25101545 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101545


Optimal Boundary Regularity of Proper Harmonic Maps between AHS 15

Recall that the definition of ⟨·, ·⟩, we can compute

⟨𝑢, 𝜕𝑢
𝜕𝑥𝑖

⟩ 𝜕𝑢
𝜕𝑥𝑖

=

∞∑︁
𝑘=0

Ω𝑘𝑑
𝑘 +

∞∑︁
𝑙=1

∞∑︁
𝑘=𝑚

∑︁
𝑝+𝑞+ 𝑗=𝑘

Ω𝑝𝑞 𝑗𝑑
𝑘 (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝑝+𝑞+ 𝑗=𝑘

∑︁
𝛼+𝛽=𝑙

Ω𝑝𝑞 𝑗𝛼𝛽𝑑
𝑘 (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝑝+𝑞+ 𝑗=𝑘

∑︁
𝛼+𝛽+𝛾=𝑙

Ω𝑝𝑞 𝑗𝛼𝛽𝛾𝑑
𝑘 (log(−𝑑))𝑙 .

(2.27)

Here, the coefficients Ω𝑘 , Ω𝑝𝑞 𝑗 , Ω𝑝𝑞 𝑗𝛼𝛽 and Ω𝑝𝑞 𝑗𝛼𝛽𝛾 are defined as follows,

Ω𝑘 =
∑︁

𝑝+𝑞+ 𝑗=𝑘
⟨
𝜕𝜙𝑝

𝜕𝑥𝑖
, 𝜙𝑞⟩

𝜕𝜙 𝑗

𝜕𝑥𝑖

+
(
⟨
𝜕𝜙𝑝

𝜕𝑥𝑖
, 𝜙𝑞⟩((( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1)) + ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜙𝑞⟩

𝜕𝜙 𝑗

𝜕𝑥𝑖

)
𝑥𝑖

𝜌

+
(
⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜙𝑞⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1]

)
( 𝑥𝑖
𝜌
)2,

and

Ω𝑝𝑞 𝑗 = (⟨
𝜕𝜓𝑝,𝑙

𝜕𝑥𝑖
, 𝜙𝑞⟩

𝜕𝜙 𝑗

𝜕𝑥𝑖
+ ⟨

𝜕𝜙𝑝

𝜕𝑥𝑖
, 𝜙𝑞⟩

𝜕𝜓 𝑗 ,𝑙

𝜕𝑥𝑖
+ ⟨

𝜕𝜙𝑝

𝜕𝑥𝑖
, 𝜓𝑞,𝑙⟩

𝜕𝜙 𝑗

𝜕𝑥𝑖
)

+
(
⟨
𝜕𝜓𝑝,𝑙

𝜕𝑥𝑖
, 𝜙𝑞⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1] + ⟨(𝑝 + 1)𝜓𝑝+1,𝑙 + (𝑙 + 1)𝜓𝑝+1,𝑙+1, 𝜙𝑞⟩

𝜕𝜙 𝑗

𝜕𝑥𝑖

+⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜙𝑞⟩
𝜕𝜓 𝑗 ,𝑙

𝜕𝑥𝑖
+ ⟨

𝜕𝜙𝑝

𝜕𝑥𝑖
, 𝜙𝑞⟩[( 𝑗 + 1)𝜓 𝑗+1,𝑙 + (𝑙 + 1)𝜓 𝑗+1,𝑙+1]

+⟨
𝜕𝜙𝑝

𝜕𝑥𝑖
, 𝜓𝑞,𝑙⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1] + ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜓𝑞,𝑙⟩

𝜕𝜙 𝑗

𝜕𝑥𝑖

)
𝑥𝑖

𝜌

+
(
⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜙𝑞⟩[( 𝑗 + 1)𝜓 𝑗+1,𝑙 + (𝑙 + 1)𝜓 𝑗+1,𝑙+1]

+⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜓𝑞,𝑙⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1]

+⟨(𝑝 + 1)𝜓𝑝+1,𝑙 + (𝑙 + 1)𝜓𝑝+1,𝑙+1, 𝜙𝑞⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1]
)
( 𝑥𝑖
𝜌
)2,

and the expression of Ω𝑝𝑞 𝑗𝛼𝛽 and Ω𝑝𝑞 𝑗𝛼𝛽𝛾 are omitted for the sake of brevity.
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Sum for 𝑖 from 1 to 𝑚 and multiply 𝜌 in (2.27) to find

𝜌⟨𝑢,∇𝑢⟩∇𝑢 =

∞∑︁
𝑘=0

∑︁
𝑝+𝑞+ 𝑗=𝑘

(⟨𝜙𝑝 ,∇𝜙𝑞⟩∇𝜙 𝑗

+ ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜙𝑞⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1])𝑑𝑘 (𝑑 + 1)

+
∞∑︁
𝑙=1

∞∑︁
𝑘=𝑚

∑︁
𝑝+𝑞+ 𝑗=𝑘

(⟨∇𝜓𝑝,𝑙 , 𝜙𝑞⟩∇𝜙 𝑗 + ⟨∇𝜙𝑝 , 𝜙𝑞⟩∇𝜙 𝑗 ,𝑙 + ⟨∇𝜙𝑝 , 𝜓𝑞,𝑙⟩∇𝜙 𝑗

+ ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜙𝑞⟩[( 𝑗 + 1)𝜓 𝑗+1,𝑙 + (𝑙 + 1)𝜓 𝑗+1,𝑙+1]
+ ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, 𝜓𝑞,𝑙⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1]
+ ⟨(𝑝 + 1)𝜓𝑝+1,𝑙 + (𝑙 + 1)𝜓𝑝+1,𝑙+1, 𝜙𝑞⟩[( 𝑗 + 1)𝜙 𝑗+1 + 𝜓 𝑗+1,1])𝑑𝑘 (𝑑 + 1) (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝑝+𝑞+ 𝑗=𝑘

(
∑︁
𝛼+𝛽=𝑙

Λ𝑝𝑞 𝑗𝛼𝛽 +
∑︁

𝛼+𝛽+𝛾=𝑙
Λ𝑝𝑞 𝑗𝛼𝛽𝛾)𝑑𝑘 (𝑑 + 1) (log(−𝑑))𝑙 ,

where Λ𝑝𝑞 𝑗𝛼𝛽 and Λ𝑝𝑞 𝑗𝛼𝛽𝛾 are omitted for the sake of brevity.
Define 𝐻𝑘 [𝑢] and 𝐻𝑘,𝑙 [𝑢] such that

𝜌⟨𝑢,∇𝑢⟩∇𝑢 =:
∞∑︁
𝑘=0

𝐻𝑘 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝐻𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 .

Consider 1− 𝜌2 = −𝑑 (𝑑 + 2). By multiplying both sides of the equation 𝜌⟨𝑢,∇𝑢⟩∇𝑢
by 4(1 − 𝜌2), we get

4(1 − 𝜌2)𝜌⟨𝑢,∇𝑢⟩∇𝑢 = −4𝑑 (𝑑 + 2)𝜌⟨𝑢,∇𝑢⟩∇𝑢

= − 4(
∞∑︁
𝑘=2

𝐻𝑘−2 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=3

𝐻𝑘−2,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙)

− 8(
∞∑︁
𝑘=1

𝐻𝑘−1 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=2

𝐻𝑘−1,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙)

= :
∞∑︁
𝑘=1

𝐹𝑘 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=2

𝐹𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 ,

where

𝐹𝑘 [𝑢] = −4𝐻𝑘−2 [𝑢] − 8𝐻𝑘−1 [𝑢] (2.28)

and

𝐹𝑘,𝑙 [𝑢] = −4𝐻𝑘−2,𝑙 [𝑢] − 8𝐻𝑘−1,𝑙 [𝑢] . (2.29)
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According to the expression of (2.23) and (2.26), we deduce

⟨ 𝜕𝑢
𝜕𝑥𝑖

,
𝜕𝑢

𝜕𝑥𝑖
⟩𝑢 =

∞∑︁
𝑘=0

𝑋𝑘𝑑
𝑘 +

∞∑︁
𝑙=1

∞∑︁
𝑘=𝑚

∑︁
𝑝+𝑞+ 𝑗=𝑘

𝑋𝑝𝑞 𝑗𝑑
𝑘 (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝑝+𝑞+ 𝑗=𝑘

∑︁
𝛼+𝛽=𝑙

𝑋𝑝𝑞 𝑗𝛼𝛽𝑑
𝑘 (log(−𝑑))𝑙

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝑝+𝑞+ 𝑗=𝑘

∑︁
𝛼+𝛽+𝛾=𝑙

𝑋𝑝𝑞 𝑗𝛼𝛽𝛾𝑑
𝑘 (log(−𝑑))𝑙 ,

(2.30)

where

𝑋𝑘 =
∑︁

𝑝+𝑞+ 𝑗=𝑘
⟨
𝜕𝜙𝑝

𝜕𝑥𝑖
,
𝜕𝜙𝑞

𝜕𝑥𝑖
⟩𝜙 𝑗 + ⟨

𝜕𝜙𝑝

𝜕𝑥𝑖
, (𝑞 + 1)𝜙𝑞+1 + 𝜓𝑞+1,1⟩𝜙 𝑗

𝑥𝑖

𝜌

+ ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, (𝑞 + 1)𝜙𝑞+1 + 𝜓𝑞+1,1⟩𝜙 𝑗 (
𝑥𝑖

𝜌
)2,

and

𝑋𝑝𝑞 𝑗 =

(
⟨
𝜕𝜙𝑝

𝜕𝑥𝑖
,
𝜕𝜙𝑞

𝜕𝑥𝑖
⟩𝜓 𝑗 ,𝑙 + ⟨

𝜕𝜙𝑝

𝜕𝑥𝑖
,
𝜕𝜓𝑞,𝑙

𝜕𝑥𝑖
⟩𝜙 𝑗

)
+

(
⟨
𝜕𝜙𝑝

𝜕𝑥𝑖
, (𝑞 + 1)𝜙𝑞+1 + 𝜓𝑞+1,1⟩𝜓 𝑗 ,𝑙

+⟨
𝜕𝜙𝑝

𝜕𝑥𝑖
, (𝑞 + 1)𝜓𝑞+1,𝑙 + (𝑙 + 1)𝜓𝑞+1,𝑙+1⟩𝜙 𝑗 + ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1,

𝜕𝜓𝑞,𝑙

𝜕𝑥𝑖
⟩𝜙 𝑗

)
𝑥𝑖

𝜌

+ (⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, (𝑞 + 1)𝜙𝑞+1 + 𝜓𝑞+1,1⟩𝜓 𝑗 ,𝑙

+ ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, (𝑞 + 1)𝜓𝑞+1,𝑙 + (𝑙 + 1)𝜓𝑞+1,𝑙+1⟩𝜙 𝑗 ) (
𝑥𝑖

𝜌
)2,

and 𝑋𝑝𝑞 𝑗𝛼𝛽 and 𝑋𝑝𝑞 𝑗𝛼𝛽𝛾 are omitted for the sake of brevity.
Summing 𝑖 from 1 to 𝑚 and multiplying 𝜌 in (2.30), we find that

𝜌⟨∇𝑢,∇𝑢⟩𝑢

=

∞∑︁
𝑘=0

∑︁
𝑝+𝑞+ 𝑗=𝑘

(⟨∇𝜙𝑝 ,∇𝜙𝑞⟩𝜙 𝑗 + ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, (𝑞 + 1)𝜙𝑞+1 + 𝜓𝑞+1,1⟩𝜙 𝑗 )

× 𝑑𝑘 (𝑑 + 1) +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

∑︁
𝑝+𝑞+ 𝑗=𝑘

(⟨∇𝜙𝑝 ,∇𝜙𝑞⟩𝜓 𝑗 ,𝑙 + ⟨∇𝜙𝑝 ,∇𝜓𝑞,𝑙⟩𝜙 𝑗

+ ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, (𝑞 + 1)𝜙𝑞+1 + 𝜓𝑞+1,1⟩𝜓 𝑗 ,𝑙

+ ⟨(𝑝 + 1)𝜙𝑝+1 + 𝜓𝑝+1,1, (𝑞 + 1)𝜓𝑞+1,𝑙 + (𝑙 + 1)𝜓𝑞+1,𝑙+1⟩𝜙 𝑗 )𝑑𝑘 (𝑑 + 1) (log(−𝑑))𝑙

+
∞∑︁
𝑙=2

∞∑︁
𝑘=1

∑︁
𝑝+𝑞+ 𝑗=𝑘

(
∑︁
𝛼+𝛽=𝑙

Ξ𝑝𝑞 𝑗𝛼𝛽 +
∑︁

𝛼+𝛽+𝛾=𝑙
Ξ𝑝𝑞 𝑗𝛼𝛽𝛾)𝑑𝑘 (𝑑 + 1) (log(−𝑑))𝑙 ,

where Ξ𝑝𝑞 𝑗𝛼𝛽 and Ξ𝑝𝑞 𝑗𝛼𝛽𝛾 are omitted for the sake of brevity.
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Define 𝑊𝑘 [𝑢] and 𝑊𝑘,𝑙 [𝑢] such that

𝜌⟨∇𝑢,∇𝑢⟩𝑢 =:
∞∑︁
𝑘=0

𝑊𝑘 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝑊𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 .

Then by multiplying both sides of the equation 𝜌⟨∇𝑢,∇𝑢⟩𝑢 by −2(1 − 𝜌2), we
conclude that

− 2(1 − 𝜌2)𝜌⟨∇𝑢,∇𝑢⟩𝑢 = 2𝑑 (𝑑 + 2)𝜌⟨∇𝑢,∇𝑢⟩𝑢

=2(
∞∑︁
𝑘=2

𝑊𝑘−2 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=3

𝑊𝑘−2,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙)

+ 4(
∞∑︁
𝑘=1

𝑊𝑘−1 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=2

𝑊𝑘−1,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙)

= :
∞∑︁
𝑘=1

𝐸𝑘 [𝑢]𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=2

𝐸𝑘,𝑙 [𝑢]𝑑𝑘 (log(−𝑑))𝑙 .

where
𝐸𝑘 [𝑢] = 2𝑊𝑘−2 [𝑢] + 4𝑊𝑘−1 [𝑢] (2.31)

and
𝐸𝑘,𝑙 [𝑢] = 2𝑊𝑘−2,𝑙 [𝑢] + 4𝑊𝑘−1,𝑙 [𝑢] . (2.32)

Lemma 2.6 With notations above, one has

2(1 − 𝜌2)𝜌(2⟨𝑢,∇0𝑢⟩∇0𝑢 − ⟨∇0𝑢,∇0𝑢⟩𝑢)

=

∞∑︁
𝑘=1

(𝐹𝑘 [𝑢] + 𝐸𝑘 [𝑢])𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=2

(𝐹𝑘,𝑙 [𝑢] + 𝐸𝑘,𝑙 [𝑢])𝑑𝑘 (log(−𝑑))𝑙 .

2.3 Proof of Theorem 2.1

Theorem 2.7 With notations above, one has

𝜌(1 − |𝑢 |2) [(1 − 𝜌2)Δ0 + 2(𝑚 − 2)𝑇]𝑢
+ 2(1 − 𝜌2)𝜌(2⟨𝑢,∇0𝑢⟩∇0𝑢 − ⟨∇0𝑢,∇0𝑢⟩𝑢)

=

∞∑︁
𝑘=1

(𝐵𝑘 [𝑢] + 𝐹𝑘 [𝑢] + 𝐸𝑘 [𝑢])𝑑𝑘

+
∞∑︁
𝑙=1

∞∑︁
𝑘=1

(𝐵𝑘,𝑙 [𝑢] + 𝐹𝑘,𝑙 [𝑢] + 𝐸𝑘,𝑙 [𝑢])𝑑𝑘 (log(−𝑑))𝑙 ,

where 𝐵𝑘 and 𝐵𝑘,𝑙 are given by (2.24) and (2.25), 𝐹𝑘 and 𝐹𝑘,𝑙 are given by (2.28)
and (2.29), 𝐸𝑘 and 𝐸𝑘,𝑙 are given by (2.31) and (2.32).

From the definition of 𝐵𝑘,𝑙 , 𝐹𝑘,𝑙 , and 𝐸𝑘,𝑙 , one has

𝐵𝑘,𝑙 = 𝐹𝑘,𝑙 = 𝐸𝑘,𝑙 = 0 for 𝑘 < 𝑚𝑙 + 1.
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Theorem 2.7 implies that if 𝜏0 (𝑢) = 0, then{
𝐵𝑘 [𝑢] + 𝐸𝑘 [𝑢] + 𝐹𝑘 [𝑢] = 0, 𝑘 ≥ 1,

𝐵𝑘,𝑙 [𝑢] + 𝐸𝑘,𝑙 [𝑢] + 𝐹𝑘,𝑙 [𝑢] = 0, 𝑙 ≥ 1, 𝑘 ≥ 𝑚𝑙 + 1.

We will solve 𝜙𝑘 and 𝜓𝑘,𝑙 through the above system of equations.
Let’s analyze the coefficients 𝐵𝑘 for different values of 𝑘 . When 𝑘 = 1, the

coefficient 𝐵1 [𝑢] is given by

𝐵1 [𝑢] = −𝐴1 [𝜙]𝐷0 [𝑢], (2.33)

where 𝐴1 [𝜙] = 2⟨𝜙0, 𝜙1⟩, 𝐷0 [𝑢] = 𝐷0 [𝜙] = 2(𝑚 − 2)𝜙1. When 2 ≤ 𝑘 ≤ 𝑚, the
coefficient 𝐵𝑘 [𝑢] can be expressed as

𝐵𝑘 [𝑢] = −
𝑘∑︁

𝑞=1
𝐴𝑞 [𝜙]𝐷𝑘−𝑞 [𝑢] = −𝐴𝑘𝐷0 −

𝑘−1∑︁
𝑞=1

𝐴𝑞 [𝜙]𝐷𝑘−𝑞 [𝑢] . (2.34)

Since 1 ≤ 𝑘 − 𝑞 ≤ 𝑚 − 1, we have 𝐷𝑘−𝑞 [𝑢] = 𝐷𝑘−𝑞 [𝜙]. Recall that 𝐴𝑝,𝑞 [𝜙] =

⟨𝜙𝑝 , 𝜙𝑞⟩ and 𝐴𝑘 [𝜙] =
∑

𝑝+𝑞=𝑘
𝐴𝑝,𝑞 [𝜙]. When 1 ≤ 𝑘 ≤ 𝑚 − 1, according to (2.3), we

have

𝐷𝑘 [𝜙] = − [Δ0𝜙𝑘−3 + 3Δ0𝜙𝑘−2 + 2Δ0𝜙𝑘−1] + (𝑘 − 1) (𝑚 − 𝑘 − 1)𝜙𝑘−1

+ 𝑘 (2𝑚 − 3𝑘 − 3)𝜙𝑘 + 2(𝑘 + 1) (𝑚 − 2 − 𝑘)𝜙𝑘+1

=:2(𝑘 + 1) (𝑚 − 2 − 𝑘)𝜙𝑘+1 + 𝐷 [𝜙𝑘 , 𝜙𝑘−1, 𝜙𝑘−2, 𝜙𝑘−3],
(2.35)

where 𝐷 [𝜙𝑘 , 𝜙𝑘−1, 𝜙𝑘−2, 𝜙𝑘−3] is determined by 𝜙𝑘 , 𝜙𝑘−1, 𝜙𝑘−2, 𝜙𝑘−3.
Let us examine the coefficients 𝐹𝑘 for different values of 𝑘 . When 𝑘 = 1, the

coefficient 𝐹1 [𝑢] is given by

𝐹1 [𝑢] = −8𝐻0 [𝑢], 𝐻0 [𝑢] = ⟨𝜙0,∇𝜙0⟩∇𝜙0 + ⟨𝜙0, 𝜙1⟩𝜙1 = ⟨𝜙0, 𝜙1⟩𝜙1 (2.36)

and for 2 ≤ 𝑘 ≤ 𝑚, the coefficient 𝐹𝑘 [𝑢] is defined by

𝐹𝑘 [𝑢] = − 4𝐻𝑘−2 [𝑢] − 8𝐻𝑘−1 [𝑢]
= − 8𝑘 ⟨𝜙0, 𝜙𝑘⟩𝜙1 − 8𝑘 ⟨𝜙0, 𝜙1⟩𝜙𝑘 + 𝐹 [𝜙0, · · · , 𝜙𝑘−1],

(2.37)

where 𝐹 [𝜙0, · · · , 𝜙𝑘−1] depends on 𝜙0, · · · , 𝜙𝑘−1.
Let us focus on the coefficients 𝐸𝑘 and analyze their expressions for different

values of 𝑘 . When 𝑘 = 1, the coefficient 𝐸1 [𝑢] is given by

𝐸1 [𝑢] = 4𝑊0 [𝑢],𝑊0 [𝑢] = ⟨∇𝜙0,∇𝜙0⟩𝜙0 + ⟨𝜙1, 𝜙1⟩𝜙0 (2.38)

and for 2 ≤ 𝑘 ≤ 𝑚, the coefficient 𝐸𝑘 [𝑢] is defined through a combination of
𝑊𝑘−2 [𝑢] and 𝑊𝑘−1 [𝑢],

𝐸𝑘 [𝑢] = 2𝑊𝑘−2 [𝑢] + 4𝑊𝑘−1 [𝑢] = 8𝑘 ⟨𝜙𝑘 , 𝜙1⟩𝜙0 + 𝐸 [𝜙0, · · · , 𝜙𝑘−1], (2.39)

where 𝐸 [𝜙0, · · · , 𝜙𝑘−1] depends on 𝜙0, · · · , 𝜙𝑘−1.
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2.3.1 𝐵1 [𝑢] + 𝐸1 [𝑢] + 𝐹1 [𝑢] = 0
According to (2.33), (2.36) and (2.38), 𝐵1 + 𝐸1 + 𝐹1 = 0 yields

−𝑚⟨𝜙0, 𝜙1⟩𝜙1 + ⟨∇𝜙0,∇𝜙0⟩𝜙0 + ⟨𝜙1, 𝜙1⟩𝜙0 = 0, (2.40)

where we have used |𝜙0 |2 = 1 and ⟨𝜙0, 𝜕𝑥𝑖𝜙0⟩ = 0. Then multiplying (2.40) by 𝜙0
and 𝜙1 respectively, we get{

−𝑚𝐴2
1,0 + 𝐴1,1 + ⟨∇𝜙0,∇𝜙0⟩ = 0,

(1 − 𝑚)𝐴1,0𝐴1,1 + ⟨∇𝜙0,∇𝜙0⟩𝐴1,0 = 0.

Choosing 𝐴1 > 0, we can get

𝐴1,1 = 𝐴2
1,0 =

⟨∇𝜙0,∇𝜙0⟩
𝑚 − 1

. (2.41)

So we can solve 𝜙1 from (2.40) that

𝜙1 =
⟨∇𝜙0,∇𝜙0⟩𝜙0 + ⟨𝜙1, 𝜙1⟩𝜙0

𝑚⟨𝜙0, 𝜙1⟩
=

√︂
⟨∇𝜙0,∇𝜙0⟩

𝑚 − 1
𝜙0. (2.42)

In particularly, 𝜙0 and 𝜙1 are linearly dependent.

2.3.2 𝐵𝑘 [𝑢] + 𝐸𝑘 [𝑢] + 𝐹𝑘 [𝑢] = 0 when 𝑘 = 2, · · · , 𝑚
According to (2.34), (2.35), (2.37) and (2.39), 𝐵𝑘 [𝑢]+𝐸𝑘 [𝑢]+𝐹𝑘 [𝑢] = 0 implies that

0 = − 𝐴𝑘 [𝜙]𝐷0 [𝜙] − 𝐴1𝐷𝑘−1 [𝜙] − 8𝑘𝐴𝑘,0𝜙1 − 8𝑘𝐴1,0𝜙𝑘 + 8𝑘𝐴𝑘,1𝜙0

+ 𝐻 [𝜙0, · · · , 𝜙𝑘−1]
= − (𝐴𝑘,0 + 𝐴0,𝑘)𝐷0 − 𝐴12𝑘 (𝑚 − 𝑘 − 1)𝜙𝑘

− 8𝑘𝐴𝑘,0𝜙1 − 8𝑘𝐴1,0𝜙𝑘 + 8𝑘𝐴𝑘,1𝜙0 + 𝐻 [𝜙0, · · · , 𝜙𝑘−1]
= − 4[(𝑚 − 2) + 2𝑘]𝐴𝑘,0𝜙1 − 2𝑘 (𝑚 − 𝑘 + 1)𝐴1𝜙𝑘

+ 8𝑘𝐴𝑘,1𝜙0 + 𝐻 [𝜙0, · · · , 𝜙𝑘−1],

(2.43)

where 𝐻 [𝜙0, · · · , 𝜙𝑘−1] depends on 𝜙0, · · · , 𝜙𝑘−1. Then we multiply (2.43) by 𝜙0
and consider 𝜙1 = 𝐴1,0𝜙0 to find

⟨𝐻 [𝜙0, · · · , 𝜙𝑘−1], 𝜙0⟩
=4[(𝑚 − 2) + 2𝑘]𝐴𝑘,0𝐴1,0 + 4𝑘 (𝑚 − 𝑘 + 1)𝐴1,0𝐴𝑘,0 − 8𝑘𝐴𝑘,1

and

𝐴𝑘,0 =
⟨𝐻 [𝜙0, · · · , 𝜙𝑘−1], 𝜙0⟩

4𝐴1,0 (𝑚 − 2 + 𝑘𝑚 − 𝑘2 + 𝑘)
. (2.44)

If 0 < 𝑘 <
𝑚+1+

√
(𝑚+1)2+4(𝑚−2)

2 , −𝑘2 + (𝑚 + 1)𝑘 + 𝑚 − 2 > 0. This ensures that the
denominator of (2.44) is greater than 0 when 𝑘 = 2, · · · , 𝑚.

Then

𝜙𝑘 =
−4(𝑚 − 2)𝐴𝑘,0𝐴1,0𝜙0 + 𝐻 [𝜙0, · · · , 𝜙𝑘−1]

4𝑘 (𝑚 − 𝑘 + 1)𝐴1,0
, 𝑘 = 2, · · · , 𝑚. (2.45)
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When 𝑘 = 𝑚 + 1, the coefficient of 𝜙𝑘 in Equation (2.43) is equal to zero. So we
cannot get 𝜙𝑚+1.

2.3.3 𝐵𝑚+1,1 [𝑢] + 𝐸𝑚+1,1 [𝑢] + 𝐹𝑚+1,1 [𝑢] = 0.
We first calculate several expressions of 𝐵𝑚+1,1 [𝑢], 𝐸𝑚+1,1 [𝑢] and 𝐹𝑚+1,1 [𝑢]. For
𝐵𝑚+1,1 [𝑢], we have

𝐵𝑚+1,1 [𝑢] = − 𝐴1 [𝜙]𝐷𝑚,1 [𝑢] − 𝐷0 [𝑢]𝐴𝑚+1,1 [𝑢]
=8(𝑚 + 1)⟨𝜙0, 𝜙1⟩𝜓𝑚+1,1 − 4(𝑚 − 2)⟨𝜙0, 𝜓𝑚+1,1⟩𝜙1.

Next, we calculate

𝐹𝑚+1,1 [𝑢] = − 4𝐻𝑚−1,1 [𝑢] − 8𝐻𝑚,1 [𝑢]
= − 8(𝑚 + 1) (⟨𝜙0, 𝜙1⟩𝜓𝑚+1,1 + ⟨𝜙0, 𝜓𝑚+1,1⟩𝜙1).

Meanwhile, the calculation result of 𝐸𝑚+1,1 [𝑢] is

𝐸𝑚+1,1 [𝑢] = 2𝑊𝑚−1,1 [𝑢] + 4𝑊𝑚,1 [𝑢] = 4(𝑚 + 1)⟨𝜙1, 𝜓𝑚+1,1⟩𝜙0.

Based on these expressions above, we obtained from 𝐵𝑚+1,1 [𝑢] + 𝐸𝑚+1,1 [𝑢] +
𝐹𝑚+1,1 [𝑢] = 0 that

−3𝑚⟨𝜙0, 𝜓𝑚+1,1⟩𝜙1 + (𝑚 + 1)⟨𝜙1, 𝜓𝑚+1,1⟩𝜙0 = 0.

Starting from this equation, through further rearrangement and simplification, we
derive

(1 − 2𝑚)⟨𝜙0, 𝜓𝑚+1,1⟩ = 0.

Since 1 − 2𝑚 ≠ 0, it can be further determined that

⟨𝜙0, 𝜓𝑚+1,1⟩ = 0. (2.46)

It is important to note that 𝜙0 and 𝜓𝑚+1,1 are functions that map from the 𝑚 − 1
dimensional sphere S𝑚−1 to the 𝑛 − 1 dimensional sphere S𝑛−1.

2.3.4 𝐵𝑘 [𝑢] + 𝐸𝑘 [𝑢] + 𝐹𝑘 [𝑢] = 0 when 𝑚 + 1 ≤ 𝑘 < 2𝑚 + 1
First, we calculate the expressions for 𝐵𝑘 [𝑢], 𝐹𝑘 [𝑢], and 𝐸𝑘 [𝑢]. For 𝐵𝑘 [𝑢],

𝐵𝑘 [𝑢] = −𝐴1 [𝜙]𝐷𝑘−1 [𝑢] − 𝐷0 [𝜙]𝐴𝑘 [𝜙] + 𝐵𝑘−1 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] . (2.47)

Here, the term 𝐵𝑘−1 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] is a function that relies on 𝜙𝑝 , 𝜓𝑝,1 for all
𝑝 < 𝑘 . When 𝑚 ≤ 𝑘 ≤ 2𝑚,

𝐷𝑘 [𝑢] =𝐷𝑘 [𝜙] − 2𝜉𝑘,1 [𝜓1] + 𝜂𝑘,1 [𝜓1] − (𝑚 − 1)𝜁𝑘,1 [𝜓1] − 2𝜂𝑘,2 [𝜓2]
+ 2(𝑚 − 2) (𝜓𝑘−1,1 + 2𝜓𝑘,1 + 𝜓𝑘+1,1)

= − 2𝑘 (𝑘 + 1)𝜙𝑘+1 + 2(𝑚 − 2) (𝑘 + 1)𝜙𝑘+1 − 4(𝑘 + 1)𝜓𝑘+1,1

+ 2𝜓𝑘+1,1 + 2(𝑚 − 2)𝜓𝑘+1,1 + 𝐷 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘]
=2(𝑘 + 1) (𝑚 − 2 − 𝑘)𝜙𝑘+1 − 2(2𝑘 − 𝑚 + 3)𝜓𝑘+1,1

+ 𝐷 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] .

(2.48)
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Similarly, 𝐷 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] is also a function that depends on 𝜙𝑝 , 𝜓𝑝,1, 𝑝 < 𝑘 .
Substituting (2.48) into (2.47), we can get

𝐵𝑘 [𝑢] = − 𝐴1 [𝜙]𝐷𝑘−1 [𝑢] − 𝐷0 [𝑢]𝐴𝑘 [𝜙] + 𝐵𝑘−1 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘]
= − 4𝑘 (𝑚 − 𝑘 − 1)𝐴1,0𝜙𝑘 + 4(2𝑘 − 𝑚 + 1)𝐴1,0𝜓𝑘,1

− 4(𝑚 − 2)𝐴𝑘,0𝜙1 + 𝐵[𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] .

For 𝐹𝑘 [𝑢], by calculating based on (2.28), we obtain

𝐹𝑘 [𝑢] = − 4𝐻𝑘−2 [𝑢] − 8𝐻𝑘−1 [𝑢]
= − 8(⟨𝑘𝜙𝑘 + 𝜓𝑘,1, 𝜙0⟩𝜙1 + ⟨𝜙0, 𝜙1⟩(𝑘𝜙𝑘 + 𝜓𝑘,1)) + 𝐹 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘]
= − 8𝑘 ⟨𝜙0, 𝜙𝑘⟩𝜙1 − 8𝑘 ⟨𝜙0, 𝜙1⟩𝜙𝑘 − 8⟨𝜙0, 𝜓𝑘,1⟩𝜙1 − 8⟨𝜙0, 𝜙1⟩𝜓𝑘,1

+ 𝐹 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] .

For 𝐸𝑘 [𝑢], by calculating based on (2.31), we obtain

𝐸𝑘 [𝑢] =2𝑊𝑘−2 [𝑢] + 4𝑊𝑘−1 [𝑢]
=8𝑘 ⟨𝜙𝑘 , 𝜙1⟩𝜙0 + 8⟨𝜓𝑘,1, 𝜙1⟩𝜙0 + 𝐸 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] .

Therefore, 𝐵𝑘 [𝑢] + 𝐹𝑘 [𝑢] + 𝐸𝑘 [𝑢] = 0 yields

0 =𝐵𝑘 [𝑢] + 𝐹𝑘 [𝑢] + 𝐸𝑘 [𝑢]
= − 4𝑘 (𝑚 − 𝑘 + 1)𝐴1,0𝜙𝑘 + 4(2𝑘 − 𝑚 − 1)𝐴1,0𝜓𝑘,1

− 4(𝑚 − 2)𝐴𝑘,0𝜙1 +Φ𝑘−1 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] .
(2.49)

When 𝑘 = 𝑚 + 1, we multiply equation (2.49) by 𝜙0 and recall ⟨𝜓𝑚+1,1, 𝜙0⟩ = 0
to discover

0 = 4(𝑚 + 1)𝐴1,0𝜓𝑚+1,1 − 4(𝑚 − 2)𝐴𝑚+1,0𝜙1 +Φ𝑘−1 [𝜙𝑝 , 𝜓𝑝,1 : 𝑝 < 𝑘] .

This implies that when 𝑚 > 2,

𝐴𝑚+1,0 =
⟨Φ𝑚 [𝜙0, · · · , 𝜙𝑚], 𝜙0⟩

4(𝑚 − 2)𝐴1,0

So

𝜓𝑚+1,1 =
⟨Φ𝑚 [𝜙0, · · · , 𝜙𝑚], 𝜙0⟩𝜙0 −Φ𝑚 [𝜙0, · · · , 𝜙𝑚]

4(𝑚 + 1)⟨𝜙0, 𝜙1⟩
We have obtained 𝜙1, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in 𝐶∞ (S𝑚−1, S𝑛−1) which is only related to

𝜙0. Let

𝑤 =

𝑚∑︁
𝑘=0

𝜙𝑘𝑑 (𝑥)𝑘 + 𝜓𝑚+1,1𝑑
𝑚+1 log(−𝑑), 𝑑 = 𝜌 − 1.

Then, according to the above discussion, 𝑤 satisfies the conclusion of Theorem 2.1.

Theorem 2.8 Let 𝜙0 ∈ 𝐶∞ (S𝑚−1, S𝑛−1) be a boundary map with nowhere-
vanishing energy density. There exist vector functions 𝜙1 = 𝜙1, 𝜙2, · · · , 𝜙𝑚, 𝜓𝑚+1,1
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in 𝐶∞ (S𝑚−1, S𝑛−1) such that the vector function

𝑤 = 𝜙0 +
𝑚∑︁
𝑘=1

𝜙𝑘𝑑 (𝑥)𝑘 + 𝜓𝑚+1,1𝑑
𝑚+1 log(−𝑑), 𝑑 = 𝜌 − 1.

satisfies

(1) |𝜏(𝑤) | = 𝑂 (𝑑𝑚+2 log(−𝑑)) as 𝜌 → 1−;

(2)⟨𝜙1, 𝜙1⟩ =
⟨∇𝜙0,∇𝜙0⟩

𝑚 − 1
, ⟨𝜙0, 𝜙1⟩ =

√︂
⟨∇𝜙0,∇𝜙0⟩

𝑚 − 1
;

(3)𝜙1 =

√︂
⟨∇𝜙0,∇𝜙0⟩

𝑚 − 1
𝜙0;

(4) 1
𝐶

≤ 1 − |𝑤 |2
1 − 𝜌

≤ 𝐶 for some constant 𝐶 > 0.

where 𝜙𝑘 (𝜃) = 𝜙𝑘 (𝑠𝜃), 𝜓𝑚+1,1 (𝜃) = 𝜓𝑚+1,1 (𝑠𝜃), for any 𝑠 ∈ (0, 1), 𝜃 ∈ S𝑚−1, 𝑘 =

1, · · · , 𝑚.

Proof Assume

𝑢(𝑥) = 𝜙0 +
∞∑︁
𝑘=1

𝜙𝑘 (𝑥)𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

𝜓𝑘,𝑙 (𝑥)𝑑𝑘 (log(−𝑑))𝑙 . (2.50)

Similar to Proposition 2.7, we have

𝜌
1 − |𝑢 |2
1 − 𝜌2 𝜏(𝑢)

=

∞∑︁
𝑘=1

(𝐵𝑘 [𝑢] + 𝐹𝑘 [𝑢] + 𝐸 𝑘 [𝑢])𝑑𝑘 +
∞∑︁
𝑙=1

∞∑︁
𝑘=1

(𝐵𝑘,𝑙 [𝑢] + 𝐹𝑘,𝑙 [𝑢] + 𝐸 𝑘,𝑙 [𝑢])𝑑𝑘 (log(−𝑑))𝑙 .

Since 𝑎, 𝑏 > −1, we see that

𝐵1 [𝑢] = 𝐵1 [𝑢], 𝐹1 [𝑢] = 𝐹1 [𝑢], 𝐸1 [𝑢] = 𝐸1 [𝑢] .

So 𝐵1 [𝑢] + 𝐹1 [𝑢] + 𝐸1 [𝑢] = 0 yields 𝜙1 = 𝜙1. Hence we have proved (2), (3) and
(4) in Theorem 2.8.

For 𝑘 ≥ 2, we have

𝐹𝑘 [𝑢] = 𝐹𝑘 [𝑢] + 𝑓1 (𝑥)𝐹𝑘−1 [𝑢], 𝐸 𝑘 [𝑢] = 𝐸𝑘 [𝑢] + 𝑓2 (𝑥)𝐸𝑘−1 [𝑢],

where 𝑓1 (𝑥), 𝑓2 (𝑥) = 𝑂 ((1 − 𝜌2)1+min{𝑎,𝑏}) and they depend on ℎ𝑖 𝑗 and ℎ𝑖 𝑗 .
For 𝐵𝑘 [𝑢], 𝐵𝑘 [𝑢] = 𝐵𝑘 [𝑢] + 𝑓3 (𝑥)𝐵̂𝑘−1 [𝑢], where 𝐵̂𝑘−1 [𝑢] depends on

𝜙0, 𝜙𝑝 , 𝜓𝑝,1, 𝑝 < 𝑘 . Therefore when 2 ≤ 𝑘 ≤ 𝑚, similarly to (2.43) and (2.45),
𝐵𝑘 [𝑢] + 𝐹𝑘 [𝑢] + 𝐸 𝑘 [𝑢] = 0 implies that

0 = − 4[(𝑚 − 2) + 2𝑘]⟨𝜙𝑘 , 𝜙0⟩𝜙1 − 2𝑘 (𝑚 − 𝑘 + 1)𝐴1𝜙𝑘

+ 8𝑘 ⟨𝜙𝑘 , 𝜙1⟩𝜙0 + 𝐻̂ [𝜙0, 𝜙1, · · · , 𝜙𝑘−1],
(2.51)
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where 𝐻̂ [𝜙0, 𝜙1, · · · , 𝜙𝑘−1] depends on 𝜙0, 𝜙1, · · · , 𝜙𝑘−1. Then

⟨𝜙𝑘 , 𝜙0⟩ =
⟨𝐻̂ [𝜙0, 𝜙1, · · · , 𝜙𝑘−1], 𝜙0⟩

4𝐴1,0 (𝑚 − 2 + 𝑘𝑚 − 𝑘2 + 𝑘)
. (2.52)

and

𝜙𝑘 =
−4(𝑚 − 2)⟨𝜙𝑘 , 𝜙0⟩𝐴1,0𝜙0 + 𝐻̂ [𝜙0, 𝜙1, · · · , 𝜙𝑘−1]

4𝑘 (𝑚 − 𝑘 + 1)𝐴1,0
, 𝑘 = 2, · · · , 𝑚.

When 𝑘 = 𝑚 + 1, the coefficient of 𝜙𝑘 in equation (2.51) is equal to zero. So we
cannot get 𝜙𝑚+1.

Since 𝑎 > −1 and 𝑏 > −1, we have 𝐵𝑚+1,1 [𝑢] = 𝐵𝑚+1,1 [𝑢], 𝐸𝑚+1,1 [𝑢] =

𝐸𝑚+1,1 [𝑢] and 𝐹𝑚+1,1 [𝑢] = 𝐹𝑚+1,1 [𝑢]. This implies that

⟨𝜙0, 𝜓𝑚+1,1⟩ = 0. (2.53)

When 𝑚 +1 ≤ 𝑘 < 2𝑚 +1, similar to (2.49), 𝐵𝑘 [𝑢] +𝐹𝑘 [𝑢] +𝐸 𝑘 [𝑢] = 0 implies that

0 = − 4𝑘 (𝑚 − 𝑘 + 1)𝐴1,0𝜙𝑘 + 4(2𝑘 − 𝑚 − 1)𝐴1,0𝜓𝑘,1

− 4(𝑚 − 2)⟨𝜙𝑘 , 𝜙0⟩𝜙1 +Φ𝑘−1 [𝜙0, 𝜙𝑝 , 𝜓𝑝,1 : 1 ≤ 𝑝 < 𝑘] .
(2.54)

When 𝑘 = 𝑚 + 1, we obtain

0 =4(𝑚 + 1)𝐴1,0𝜓𝑚+1,1 − 4(𝑚 − 2)⟨𝜙𝑚+1, 𝜙0⟩𝜙1

+Φ𝑘−1 [𝜙0, 𝜙𝑝 , 𝜓𝑝,1 : 1 ≤ 𝑝 < 𝑘] .
(2.55)

Since ⟨𝜓𝑚+1,1, 𝜙0⟩ = 0, multiplying (2.55) by 𝜙0 , we can deduce that when 𝑚 > 2,

⟨𝜙𝑚+1, 𝜙0⟩ =
⟨Φ𝑚 [𝜙0, 𝜙1, · · · , 𝜙𝑚], 𝜙0⟩

4(𝑚 − 2)𝐴1,0

So 𝜓𝑚+1,1 can be solved by (2.55),

𝜓𝑚+1,1 =
⟨Φ𝑚 [𝜙0, 𝜙1, · · · , 𝜙𝑚], 𝜙0⟩𝜙0 −Φ𝑚 [𝜙0, 𝜙1, · · · , 𝜙𝑚]

4(𝑚 + 1)⟨𝜙0, 𝜙1⟩

We have obtained 𝜙1, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in 𝐶∞ (S𝑚−1, S𝑛−1) which is related to 𝜙0,
ℎ𝑖 𝑗 and ℎ𝑖 𝑗 . Let

𝑤 = 𝜙0 +
𝑚∑︁
𝑘=1

𝜙𝑘𝑑 (𝑥)𝑘 + 𝜓𝑚+1,1𝑑
𝑚+1 log(−𝑑), 𝑑 = 𝜌 − 1.

Then, according to the above discussion, 𝑤 satisfies the conclusion of Theorem 2.8.
■

3 𝐶𝑚−1,𝛼 (∀𝛼 ∈ (0, 1)) Regularity Near the Boundary

In the following, we will generalize the proof of 𝐶𝑚−1,𝛼 (∀𝛼 ∈ (0, 1)) regularity
of harmonic maps between hyperbolic spaces in [19] to harmonic maps between
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asymptotically hyperbolic spaces. The difference is that we will use 𝑤 constructed
by Theorem 2.8 as the initial value of the heat flow.

By Theorem 5.2 of [18], there exists a solution 𝑢(𝑥, 𝑡) for the parabolic equation
of harmonic maps with initial data 𝑤

𝜕𝑡𝑢(𝑥, 𝑡) = 𝜏(𝑢) (𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑀 × (0, +∞)
𝑢(𝑥, 0) = 𝑤(𝑥) 𝑥 ∈ 𝑀 × {𝑡 = 0},

such that lim
𝑡→∞

𝑢(𝑥, 𝑡) = 𝑢∞ (𝑥) for some harmonic map 𝑢∞ with bounded energy
density from 𝑀 to 𝑁 . Moreover,

lim
𝑥→∞

𝑑 (𝑢∞ (𝑥), 𝑤(𝑥)) = 0, (3.1)

where 𝑑 is the distance function of 𝑁 . Expressing 𝑢∞ = (𝑢1
∞, · · · , 𝑢𝑛∞), in terms of

rectangular coordinates, let us denote |𝑢∞ |2 =
𝑛∑

𝑝=1
(𝑢𝑝

∞)2. Then by equation (3.1) and

condition (4) of Theorem 2.8 for 𝑤, we easily see that there is a constant 𝐶 > 0 such
that

1
𝐶

≤ 1 − |𝑢∞ |
1 − 𝜌

≤ 𝐶. (3.2)

Lemma 3.1 Let

Δ𝑀 =

𝑚∑︁
𝑖, 𝑗=1

( (1 − 𝜌2)2

4
𝛿𝑖 𝑗 +𝑂 ((1 − 𝜌2)4+𝑎)) 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

+
𝑚∑︁
𝑖=1

(𝑚 − 2)
2

((1 − 𝜌2) +𝑂 ((1 − 𝜌2)3+𝑎)𝑥𝑖 𝜕

𝜕𝑥𝑖
.

For 0 < 𝑠 ≤ 𝑚−1, there is a constant 𝛿 ∈ (0, 1) such that (1−𝜌)𝑠 is a superharmonic
function of 𝑀 at 𝐵1 \ 𝐵𝛿 .

Proof Notice that ΔH𝑚 =
(1−𝜌2 )2

4 Δ0 +
𝑚∑
𝑖=1

(𝑚−2) (1−𝜌2 )
2 𝑥𝑖 𝜕

𝜕𝑥𝑖
, then

Δ𝑀 (1 − 𝜌)𝑠 = ΔH𝑚 (1 − 𝜌)𝑠 +𝑂 ((1 − 𝜌)𝑠+2+𝑎).

According to Lemma 3.1 of [19],

Δ𝑀 (1 − 𝜌)𝑠 = 𝑠

4
(1 + 𝜌) (1 − 𝜌)𝑠+1 (−1 − 𝑚 − 1

𝜌
) +𝑂 ((1 − 𝜌)𝑠+2+𝑎).

Hence there is a constant 𝛿 ∈ (0, 1) such that

Δ𝑀 (1 − 𝜌)𝑠 ≤ 0 in 𝐵1 \ 𝐵𝛿 .

■

2025/09/03 22:42

https://doi.org/10.4153/S0008414X25101545 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101545


26 J. Niu

Similar to the proof of Lemma 3.2 and Lemma 3.3 of [19], we have

𝑑 (𝑢∞ (𝑥), 𝑤(𝑥)) = 𝑂 ((1 − 𝜌)𝑚−1 log( 1
1 − 𝜌

)).

and

|𝑢∞ (𝑥) − 𝑤(𝑥) | = 𝑂 ((1 − 𝜌)𝑚 log( 1
1 − 𝜌

)).

From now on, since there is no ambiguity, we can simply denote 𝑢∞ by 𝑢.

Lemma 3.2 Assume the function 𝑣(𝜌, 𝜃) on the 𝐵𝑚 satisfies 𝑣 = 0 at the boundary
and for any 𝜀 > 0, 𝑣 is 𝐶𝑚−1,1−𝜀 up to the boundary. Also, for any 𝜀 > 0, 𝑗 ≥ 0,

|∇ 𝑗𝑣 | = 𝑂 ((1 − 𝜌)𝑚− 𝑗−𝜀) as 𝜌 → 1.

Then for any 𝑠, 𝑗 ≥ 0 , we have

|∇𝑠
𝜃∇

𝑗𝑣 | = 𝑂 ((1 − 𝜌)𝑚− 𝑗−𝜀) as 𝜌 → 1.

Proof Let 𝜀 > 0 be fixed and define 𝑘 := 𝑚 − 𝜀. Consequently, we have |𝑣 | =
𝑂 ((1 − 𝜌)𝑘). Suppose |∇𝑣 | = 𝑂 ((1 − 𝜌)𝑘). By Lemma 4.1 of [19], it follows that

sup{𝑘 : |∇𝑣 | = 𝑂 ((1 − 𝜌)𝑘)} = 𝑘 − 1. (3.3)

Let 𝑑 = 1 − 𝜌. Assume that |𝜕𝜃𝑣 | = 𝑂 ((1 − 𝜌)𝑟 ) and define

𝑠 = sup{𝑟 : |𝜕𝜃𝑣 | = 𝑂 ((1 − 𝜌)𝑟 )}. (3.4)

By the definition of supremum, 𝑠 − 𝛿 < 𝑟 ≤ 𝑠,∀𝛿 > 0.
We aim to prove 𝑠 ≥ 𝑘−𝛿 for all 𝛿 > 0. We will proceed by contradiction. Assume

𝑠 < 𝑘 − 𝛿0 for some 𝛿0 > 0, then it follows that 𝑟 < 𝑘 − 𝛿0.
Consider the case when 𝑚 = 2, 𝑣 has a Fourier series expansion

𝑣 =
𝑎0
2

+
∞∑︁
𝑙=1

𝑎𝑙 cos(𝑙𝜃) + 𝑏𝑙 sin(𝑙𝜃),

where the Fourier coefficients are given by

𝑎𝑙 =
1
𝜋

∫ 𝜋

−𝜋

𝑣(𝜌, 𝜃) cos 𝑙𝜃d𝜃, 𝑙 = 0, 1, 2, · · ·

𝑏𝑙 =
1
𝜋

∫ 𝜋

−𝜋

𝑣(𝜌, 𝜃) sin 𝑙𝜃d𝜃, 𝑙 = 1, 2, · · ·

Given the decay properties of 𝑣, we have

𝑎𝑙 = 𝑂 ((1 − 𝜌)𝑘), 𝑙 = 0, 1, 2, · · ·
𝑏𝑙 = 𝑂 ((1 − 𝜌)𝑘), 𝑙 = 1, 2, · · ·

Differentiating 𝑣 with respect to 𝜃, we obtain

𝜕𝑣

𝜕𝜃
=

∞∑︁
𝑙=1

−𝑙𝑎𝑙 sin(𝑙𝜃) + 𝑙𝑏𝑙 cos(𝑙𝜃).
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Since |𝜕𝜃𝑣 | = 𝑂 ((1 − 𝜌)𝑟 ), combining with (3.4) and 𝑠 < 𝑘 − 𝛿0, there must exist
some 𝑎𝑙 or 𝑏𝑙 (without loss of generality, assume it is 𝑎𝑙) such that 𝑙𝑎𝑙 = 𝑂 ((1− 𝜌)𝑟 )
and 𝑙𝑎𝑙 ≠ 𝑂 ((1 − 𝜌)𝑘). This implies that 𝑙 satisfies 𝑙 = 𝑂 ((1 − 𝜌)𝑟−𝑘). Therefore, 𝑣
includes a term of the form 𝑎𝑙 sin(ℎ(𝜌) (1−𝜌)𝑟−𝑘𝜃), where ℎ ∈ 𝐿∞ (𝐵)∩𝐶∞ (𝐵\{0}).
And then 𝜕𝑣

𝜕𝜌
= 𝑂 ((1 − 𝜌)𝑟−1). However 𝑟 − 1 < 𝑘 − 𝛿0 − 1, which contradicts (3.3).

When 𝑚 ≥ 3, 𝑣 = 𝑣(𝜌, 𝜃1, · · · , 𝜃𝑚−1). Fix 𝜃2, · · · , 𝜃𝑚−1 and regard 𝑣 as a function
of 𝜌 and 𝜃1. Then we can prove, similar to the case of 𝑚 = 2, that 𝜕𝑣

𝜕𝜃1 satisfies
| 𝜕𝑣
𝜕𝜃1 | = 𝑂 ((1 − 𝜌)𝑘−𝛿) for any 𝛿 > 0. Similarly, the partial derivative of 𝑣 with

respect to 𝜃2, · · · , 𝜃𝑚−1 also has the same conclusion.
For any 𝑠 ≥ 0, 𝑔 := (1− 𝜌)𝑠𝑣 = 𝑂 ((1− 𝜌)𝑚+𝑠−𝜀) and 𝑔 ∈ 𝐶𝑚+𝑠−1,1−𝜀 (𝐵𝑚 \ {0}).

So we can use the method of Fourier expansion to prove |∇𝑠
𝜃
𝑔 | = 𝑂 ((1 − 𝜌)𝑚+𝑠−𝜀),

that is |∇𝑠
𝜃
𝑣 | = 𝑂 ((1 − 𝜌)𝑚−𝜀).

■

Lemma 3.3 Let 𝑤 be given by Theorem 2.8. Then we have for any 𝜀 > 0, 𝑗 ≥ 0 that

|∇ 𝑗

0 (𝑢(𝑥) − 𝑤(𝑥)) | = 𝑂 ((1 − 𝜌)𝑚− 𝑗−𝜀) as 𝜌 → 1, (3.5)

and for any 𝑠, 𝑗 ≥ 0 , we have

|∇𝑠
𝜃∇

𝑗

0 (𝑢(𝑥) − 𝑤(𝑥)) | = 𝑂 ((1 − 𝜌)𝑚− 𝑗−𝜀) as 𝜌 → 1. (3.6)

Proof Let 𝑣 := 𝑢 −𝑤 and define 𝑑 = 1− 𝜌. According to Lemma 3.3 and Theorem
4.2 of [19], we can assert that for any 𝜀 > 0 and integers 𝑗 satisfying 0 ≤ 𝑗 ≤
𝑚 − 1,|𝑣 | = 𝑂 (𝑑𝑚−𝜀) and |∇ 𝑗

0𝑣 | = 𝑂 (𝑑𝑚− 𝑗−𝜀). In our current analysis, instead

of estimating Δ0𝑣 as was done in [19], we need to focus on estimating
𝑚∑

𝑖, 𝑗=1
(𝛿𝑖 𝑗 +

𝑂 ((1− 𝜌2)2+𝑎)) 𝜕2𝑣
𝜕𝑥𝑖𝜕𝑥 𝑗 . It is the second derivative part of Δ𝑀 and thus it is an elliptic

operator. Let 𝜙0, 𝜙1, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in 𝐶∞ (S𝑚−1, S𝑛−1) and 𝑤 be given by Theorem
2.8. According to Theorem 2.8,

𝑂 (𝑑𝑚+2 log(−𝑑)) = 𝜏(𝑤)

=

𝑚∑︁
𝑖, 𝑗=1

( (1 − 𝜌2)2

4
𝛿𝑖 𝑗 +𝑂 ((1 − 𝜌2)4+𝑎)) 𝜕2𝑤

𝜕𝑥𝑖𝜕𝑥 𝑗

+
𝑚∑︁
𝑖=1

(𝑚 − 2)
2

((1 − 𝜌2) +𝑂 ((1 − 𝜌2)3+𝑎)𝑥𝑖 𝜕𝑤
𝜕𝑥𝑖

+ (1 − 𝜌2)2 +𝑂 ((1 − 𝜌2)4+𝑎)
2

( 1
1 − |𝑤 |2

+𝑂 ((1 − |𝑤 |2)𝑏+1)

× (2⟨𝑤,∇0𝑤⟩∇0𝑤 − ⟨∇0𝑤,∇0𝑤⟩𝑤).

(3.7)

Let 𝑢 be a harmonic map from 𝑀 to 𝑁 so that 𝑢 ∈ 𝐶1 as a map from 𝐵
𝑚

to 𝐵
𝑛
.

Then

𝜏(𝑢) = 0. (3.8)
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Note that we have the following expression for 𝑤

𝑤 = 𝜙0 +
𝑚∑︁
𝑘=1

𝜙𝑘𝑑 (𝑥)𝑘 + 𝜓𝑚+1,1𝑑
𝑚+1 log(−𝑑). (3.9)

For any 𝜀 > 0, since 𝑢 = 𝑤 + (𝑢 − 𝑤), we get

𝑢 = 𝑤 + (𝑢 − 𝑤) = 𝜙0 + 𝜙1𝑑 +𝑂 (𝑑2−𝜀). (3.10)

Given that |𝜙0 |2 = 1, we can derive

|𝑢 |2 − 1 = 2⟨𝜙0, 𝜙1⟩𝑑 +𝑂 (𝑑2−𝜀)

and
1 − |𝑢 |2
1 − 𝜌

= 2⟨𝜙0, 𝜙1⟩ +𝑂 (𝑑1−𝜀).

Thus, we have
(1 − 𝜌2)2

2(1 − |𝑢 |2)
=

(1 + 𝜌)2 (1 − 𝜌)
4⟨𝜙0, 𝜙1⟩ +𝑂 (𝑑1−𝜀)

. (3.11)

Additionally, consider the expression

(1 − 𝜌2)2 +𝑂 ((1 − 𝜌2)4+𝑎)
2

( 1
1 − |𝑢 |2

+𝑂 ((1 − |𝑢 |2)𝑏+1)

=
(1 − 𝜌2)2

2(1 − |𝑢 |2)
(1 +𝑂 (1 − 𝜌)).

(3.12)

By subtracting (3.7) from (3.8), we obtain

𝑂 (𝑑𝑚+2 log(−𝑑)) = 𝜏(𝑢) − 𝜏(𝑤)
=Δ𝑀𝑣

+ (1 − 𝜌2)2

2(1 − |𝑢 |2)
(1 +𝑂 (1 − 𝜌))

× [(2⟨𝑢,∇0𝑢⟩∇0𝑢 − ⟨∇0𝑢,∇0𝑢⟩𝑢) − (2⟨𝑤,∇0𝑤⟩∇0𝑤 − ⟨∇0𝑤,∇0𝑤⟩𝑤)]

+ ( (1 − 𝜌2)2

2(1 − |𝑢 |2)
− (1 − 𝜌2)2

2(1 − |𝑤 |2)
(1 +𝑂 (1 − 𝜌))

× (2⟨𝑤,∇0𝑤⟩∇0𝑤 − ⟨∇0𝑤,∇0𝑤⟩𝑤).

(3.13)

The calculation of (2⟨𝑢,∇0𝑢⟩∇0𝑢−⟨∇0𝑢,∇0𝑢⟩𝑢)− (2⟨𝑤,∇0𝑤⟩∇0𝑤−⟨∇0𝑤,∇0𝑤⟩𝑤)
in a certain expansion process yields

𝑂 (𝑑𝑚+2 log(−𝑑))

=Δ𝑀𝑣 + (1 − 𝜌2)2

2(1 − |𝑢 |2)
(1 +𝑂 (1 − 𝜌)) [2(⟨𝑢,∇0𝑢⟩∇0𝑣 + (⟨𝑣,∇0𝑢⟩

+ ⟨𝑤,∇0𝑣⟩)∇0𝑤) − (⟨∇0𝑣,∇0𝑢⟩𝑢 + ⟨∇0𝑤,∇0𝑣⟩𝑢 + ⟨∇0𝑤,∇0𝑤⟩𝑣)]

+ ( (1 − 𝜌2)2

2(1 − |𝑢 |2)
− (1 − 𝜌2)2

2(1 − |𝑤 |2)
) (1 +𝑂 (1 − 𝜌))

× (2⟨𝑤,∇0𝑤⟩∇0𝑤 − ⟨∇0𝑤,∇0𝑤⟩𝑤),

(3.14)
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where Δ𝑀 =
𝑚∑

𝑖, 𝑗=1
( (1−𝜌

2 )2

4 𝛿𝑖 𝑗 +𝑂 ((1− 𝜌2)4+𝑎)) 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗 +
𝑚∑
𝑖=1

(𝑚−2)
2 ((1− 𝜌2) +𝑂 ((1−

𝜌2)3+𝑎)𝑥𝑖 𝜕
𝜕𝑥𝑖

. For any 𝑙 > 0, given that |∇0𝑣 | = 𝑂 ((1 − 𝜌)𝑚−𝜀−1), we can deduce

that
𝑚∑

𝑖, 𝑗=1
(𝛿𝑖 𝑗 + 𝑂 ((1 − 𝜌2)2+𝑎)) 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗 ((1 − 𝜌)𝑙𝑣) = 𝑂 ((1 − 𝜌)𝑚+𝑙−𝜀−2) and must

be 𝐶𝑚+𝑙−3,1−𝜀 up to the boundary. Together with the fact that (1 − 𝜌)𝑙𝑣 = 0 at the
boundary, this implies that (1 − 𝜌)𝑙𝑣 is 𝐶𝑚+𝑙−1,1−𝜀 up to the boundary. In particular,
|∇𝑚+𝑙−1 ((1 − 𝜌)𝑙𝑣) | = 𝑂 ((1 − 𝜌)1−𝜀). Therefore we have

|∇𝑚+𝑙−1
0 𝑣 | = 𝑂 ((1 − 𝜌)1−𝜀−𝑙),

and subsequently,

|∇ 𝑗

0𝑣 | = 𝑂 (𝑑𝑚− 𝑗−𝜀),∀𝜀 > 0, 𝑗 ≥ 0.
Finally, by applying Lemma 3.2, we can obtain (3.6).

■

Theorem 3.4 Let 𝑀 and 𝑁 be asymptotically hyperbolic spaces with metrics (1.2)
and (1.3) respectively in the Poincaré disk model. Let 𝑢 be a harmonic map from
𝑀 to 𝑁 so that 𝑢 ∈ 𝐶1 as a map from 𝐵𝑚 to 𝐵𝑛. Suppose that the boundary map
𝜙0 of 𝑢, when restricted to S𝑚−1, is in 𝐶∞ (S𝑚−1, S𝑛−1), and has nowhere-vanishing
energy density with respect to the stanard metrics. Then 𝑢 ∈ 𝐶𝑚−1,𝛼 (𝐵𝑚, 𝐵𝑛) for all
0 < 𝛼 < 1.

Proof Notice that 𝑢−𝑤 = 0 on 𝜕𝐵𝑚. According to Lemma 3.3 and Theorem 4.2 of
[19], 𝑢 − 𝑤 ∈ 𝐶𝑚−1,𝛼 (𝐵𝑚, 𝐵𝑛) and then 𝑢 ∈ 𝐶𝑚−1,𝛼 (𝐵𝑚, 𝐵𝑛) for all 0 < 𝛼 < 1. ■

4 Optimal Regularity Near the Boundary

4.1 Equations of 𝑣 = 𝑢 − 𝑤

First, note the following expression for 𝑤,

𝑤 = 𝜙0 +
𝑚∑︁
𝑘=1

𝜙𝑘𝑑 (𝑥)𝑘 + 𝜓𝑚+1,1𝑑
𝑚+1 log(−𝑑). (4.1)

Differentiating 𝑤 with respect to 𝑥𝑖 (𝑖 = 1, · · · , 𝑚), we obtain

𝜕𝑤

𝜕𝑥𝑖
=

𝜕𝜙0

𝜕𝑥𝑖
+ 𝜙1

𝑥𝑖

𝜌
+𝑂 (𝑑), 𝑖 = 1, · · · , 𝑚. (4.2)

It follows that for any 𝜀 > 0,

𝑢 =𝑤 + (𝑢 − 𝑤) = 𝜙0 + 𝜙1𝑑 +𝑂 (𝑑2−𝜀),
𝜕𝑢

𝜕𝑥𝑖
=
𝜕𝑤

𝜕𝑥𝑖
+ 𝜕 (𝑢 − 𝑤)

𝜕𝑥𝑖
=

𝜕𝜙0

𝜕𝑥𝑖
+ 𝜙1

𝑥𝑖

𝜌
+𝑂 (𝑑1−𝜀), 𝑖 = 1, · · · , 𝑚.

(4.3)

Taking into account equation (4.3) and the fact that |𝜙0 |2 ≡ 1, we can deduce
that the inner product ⟨𝜙0,

𝜕𝜙0
𝜕𝑥𝑖

⟩ = 0 for all 𝑖 = 1, · · · , 𝑚. Taking into account (3) of
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Theorem 2.8, we see that ⟨𝜙1,
𝜕𝜙0
𝜕𝑥𝑖

⟩ = 0 for all 𝑖 = 1, · · · , 𝑚 and then

2⟨𝑢,∇0𝑢⟩∇0 = 2
𝑚∑︁
𝑖=1

(⟨𝜙0, 𝜙1
𝑥𝑖

𝜌
⟩ +𝑂 (𝑑1−𝜀)) 𝜕

𝜕𝑥𝑖
. (4.4)

We can apply (3.11) and (4.4) to deduce

(1 − 𝜌2)2

(1 − |𝑢 |2)
⟨𝑢,∇0𝑢⟩∇0 =

(1 + 𝜌)2 (1 − 𝜌)
2⟨𝜙0, 𝜙1⟩ +𝑂 (𝑑1−𝜀)

𝑚∑︁
𝑖=1

(⟨𝜙0, 𝜙1
𝑥𝑖

𝜌
⟩ +𝑂 (𝑑1−𝜀)) 𝜕

𝜕𝑥𝑖

=[ (1 + 𝜌) (1 − 𝜌2)
2𝜌

+𝑂 (𝑑2−𝜀)]
𝑚∑︁
𝑖=1

𝑥𝑖
𝜕

𝜕𝑥𝑖

=[(1 − 𝜌2) +𝑂 (𝑑2−𝜀)]
𝑚∑︁
𝑖=1

𝑥𝑖
𝜕

𝜕𝑥𝑖
.

(4.5)
Define linear operator

𝐿 : = ΔH + (1 − 𝜌2)
𝑚∑︁
𝑖=1

𝑥𝑖
𝜕

𝜕𝑥𝑖

=
(1 − 𝜌2)2

4
Δ0 +

𝑚∑︁
𝑖=1

𝑚(1 − 𝜌2)
2

𝑥𝑖
𝜕

𝜕𝑥𝑖
.

(4.6)

The right side of the equation (3.14) can be written in two parts. The first part is

Δ𝑀𝑣 + (1 − 𝜌2)2

2(1 − |𝑢 |2)
(1 +𝑂 (1 − 𝜌)) [2(⟨𝑢,∇0𝑢⟩∇0𝑣 + (⟨𝑣,∇0𝑢⟩ + ⟨𝑤,∇0𝑣⟩)∇0𝑤)

− (⟨∇0𝑣,∇0𝑢⟩𝑢 + ⟨∇0𝑤,∇0𝑣⟩𝑢 + ⟨∇0𝑤,∇0𝑤⟩𝑣)]

=𝐿𝑣 + (1 − 𝜌2)2

2(1 − |𝑢 |2)
[2⟨𝑤,∇0𝑣⟩∇0𝑤 − (⟨∇0𝑣,∇0𝑢⟩𝑢 + ⟨∇0𝑤,∇0𝑣⟩𝑢)]

+𝑂 (𝑑3) |∇2
0𝑣 | +𝑂 (𝑑2−𝜀) |∇0𝑣 | +𝑂 (𝑑) |𝑣 |.

In the 𝑚-dimensional spherical coordinates (𝜌, 𝜃1, 𝜃2, · · · , 𝜃𝑚−1), the expression
for the gradient operator ∇0 is

∇0 =
𝜕

𝜕𝜌
e𝜌 +

1
𝜌

𝑚−1∑︁
𝑘=1

(
1∏𝑘−1

𝑗=1 sin 𝜃 𝑗

𝜕

𝜕𝜃𝑘
e𝜃𝑘

)
, (4.7)

where e𝜌 is the radial unit vector and e𝜃𝑘 are the angular unit vectors corresponding
to the coordinates 𝜃𝑘 .

∏𝑘−1
𝑗=1 sin 𝜃 𝑗 denotes the product of sin 𝜃 𝑗 from 𝑗 = 1 to 𝑘 − 1,

with the convention that
∏0

𝑗=1 sin 𝜃 𝑗 = 1. Then (4.1), (4.2) and (4.3) imply

2⟨𝑤,∇0𝑣⟩∇0𝑤 − (⟨∇0𝑣,∇0𝑢⟩𝑢 + ⟨∇0𝑤,∇0𝑣⟩𝑢).
=2⟨𝜙0, 𝜕𝜌𝑣⟩𝜙1 − 2⟨𝜕𝜌𝑣, 𝜙1⟩𝜙0 +𝑂 (𝑑1−𝜀) |𝜕𝜌𝑣 | +𝑂 (1) |∇𝜃𝑣 |

2025/09/03 22:42

https://doi.org/10.4153/S0008414X25101545 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101545


Optimal Boundary Regularity of Proper Harmonic Maps between AHS 31

Since (3) of Theorem 2.8, ⟨𝜙0, 𝜕𝜌𝑣⟩𝜙1 = ⟨𝜕𝜌𝑣, 𝜙1⟩𝜙0. And then

Δ𝑀𝑣 + (1 − 𝜌2)2

2(1 − |𝑢 |2)
(1 +𝑂 (1 − 𝜌)) [2(⟨𝑢,∇0𝑢⟩∇0𝑣 + (⟨𝑣,∇0𝑢⟩

+ ⟨𝑤,∇0𝑣⟩)∇0𝑤) − (⟨∇0𝑣,∇0𝑢⟩𝑢 + ⟨∇0𝑤,∇0𝑣⟩𝑢 + ⟨∇0𝑤,∇0𝑤⟩𝑣)]
=𝐿𝑣 +𝑂 (𝑑3) |∇2

0𝑣 | +𝑂 (𝑑2−𝜀) |∇0𝑣 | +𝑂 (𝑑) ( |𝑣 | + |∇𝜃𝑣 |).

(4.8)

The second part of (3.14) is

( (1 − 𝜌2)2

2(1 − |𝑢 |2)
− (1 − 𝜌2)2

2(1 − |𝑤 |2)
) (1 +𝑂 (1 − 𝜌))

× (2⟨𝑤,∇0𝑤⟩∇0𝑤 − ⟨∇0𝑤,∇0𝑤⟩𝑤)

=
(2 − 𝑚) (1 + 𝜌)2

4
⟨𝑣, 𝜙0⟩𝜙0 +𝑂 (𝑑1−𝜀)𝑣.

(4.9)

In fact, we can calculate

(1 − 𝜌2)2

2(1 − |𝑢 |2)
− (1 − 𝜌2)2

2(1 − |𝑤 |2)
=

(1 − 𝜌2)2 (𝑢 + 𝑤)𝑣
2(1 − |𝑢 |2) (1 − |𝑤 |2)

=
(1 − 𝜌2)2⟨𝜙0, 𝑣⟩

(1 − |𝑢 |2) (1 − |𝑤 |2)
+𝑂 (𝑑1−𝜀)𝑣.

Since ⟨𝜙0, 𝜙0⟩ ≡ 1, ⟨𝜙0,
𝜕𝜙0
𝜕𝑥𝑖

⟩ = 0, for any 𝑖 = 1, · · · , 𝑚. (2.41), (4.1) and (4.2) imply
that

2⟨𝑤,∇0𝑤⟩∇0𝑤 − ⟨∇0𝑤,∇0𝑤⟩𝑤
=2⟨𝜙0, 𝜙1⟩𝜙1 − ⟨∇0𝜙0,∇0𝜙0⟩𝜙0 − ⟨𝜙1, 𝜙1⟩𝜙0 +𝑂 (𝑑)
=(2 − 𝑚)𝐴2

1,0𝜙0 +𝑂 (𝑑),

where 𝐴2
1,0 =

⟨∇𝜙0 ,∇𝜙0 ⟩
𝑚−1 .

We conclude from (3.14), (4.8) and (4.9) that

𝐿𝑣 − (𝑚 − 2) (1 + 𝜌)2

4
⟨𝑣, 𝜙0⟩𝜙0

=𝑂 (𝑑3) |∇2
0𝑣 | +𝑂 (𝑑2−𝜀) |∇0𝑣 | +𝑂 (𝑑) ( |𝑣 | + |∇𝜃𝑣 |) +𝑂 (𝑑𝑚+2 log(−𝑑)).

Notice that (1+𝜌)2

4 − 1 =
(𝜌+3) (𝜌−1)

4 . Then 𝑣 satisfies

𝐿𝑣 − (𝑚 − 2)⟨𝑣, 𝜙0⟩𝜙0

=𝑂 (𝑑3) |∇2
0𝑣 | +𝑂 (𝑑2−𝜀) |∇0𝑣 | +𝑂 (𝑑) ( |𝑣 | + |∇𝜃𝑣 |) +𝑂 (𝑑𝑚+2 log(−𝑑)).

(4.10)

4.2 Estimate of ⟨𝑢 − 𝑤, 𝜙0⟩ and 𝑢 − 𝑤

When 𝑚 ≥ 3, we need to deal with (𝑚 − 2)⟨𝑣, 𝜙0⟩𝜙0.

Lemma 4.1 Let 𝑢 be a harmonic map from 𝑀 to 𝑁 so that 𝑢 ∈ 𝐶1 as a map
from 𝐵𝑚 to 𝐵𝑛. Suppose that the boundary map 𝜙0 of 𝑢, when restricted to S𝑚−1,
is in 𝐶∞ (S𝑚−1, S𝑛−1), and has nowhere-vanishing energy density with respect to the
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stanard metrics. Let 𝜙0, 𝜙1, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in 𝐶∞ (S𝑚−1, S𝑛−1) and 𝑤 be given by
Theorem 2.8. Then ⟨𝑢 − 𝑤, 𝜙0⟩ = 𝑂 ((1 − 𝜌)𝑚+1+𝜀0 ) and 𝑢 − 𝑤 = 𝑂 ((1 − 𝜌)𝑚+1),
where 𝜀0 =

(𝑚+1)+
√

(𝑚+1)2+4(𝑚−2)
2 − 𝑚 − 1. In addition, for any 𝜀 > 0, 𝑗 ≥ 0,

|∇ 𝑗

0 ⟨𝑢 − 𝑤, 𝜙0⟩| = 𝑂 ((1 − 𝜌)𝑚+1+𝜀0− 𝑗−𝜀) as 𝜌 → 1− , (4.11)

and for any 𝑠, 𝑗 ≥ 0 , we have

|∇𝑠
𝜃∇

𝑗

0 ⟨𝑢 − 𝑤, 𝜙0⟩| = 𝑂 ((1 − 𝜌)𝑚+1+𝜀0− 𝑗−𝜀) as 𝜌 → 1− . (4.12)

Proof Set 𝑣 := 𝑢 − 𝑤. Multiplying (4.10) by 𝜙0, we have

𝐿⟨𝑣, 𝜙0⟩ − (𝑚 − 2)⟨𝑣, 𝜙0⟩
=𝑂 (𝑑3) |∇2

0𝑣 | +𝑂 (𝑑2−𝜀) |∇0𝑣 | +𝑂 (𝑑) ( |𝑣 | + |∇𝜃𝑣 |) +𝑂 (𝑑𝑚+2 log(−𝑑)).
(4.13)

Define 𝑣0 := ⟨𝑣, 𝜙0⟩. By Proposition 3.3, for any 𝜀 > 0 and non-negative integers
𝑗 , 𝑠, we have |∇𝑠

𝜃
∇ 𝑗𝑣0 | = 𝑂 ((1 − 𝜌)𝑚− 𝑗−𝜀).

In the 𝑚-dimensional spherical coordinates (𝜌, 𝜃1, 𝜃2, · · · , 𝜃𝑚−1), the expression
for the gradient operator ∇0 is (4.7) and the expression for the Laplace operator Δ0 is

Δ0 =
𝜕2

𝜕𝜌2 + 𝑚 − 1
𝜌

𝜕

𝜕𝜌
+ 1
𝜌2ΔS𝑚−1 , (4.14)

where ΔS𝑚−1 is the Laplace operator on the (𝑚 − 1)-dimensional sphere.
Hence, by (4.13), along the direction 𝜌, 𝑣0 := ⟨𝑣, 𝜙0⟩ satisfies the ODEs

(1 − 𝜌2)2

4
𝜕2𝑣0

𝜕𝜌2 + 𝑚(1 − 𝜌2)
2

𝜌
𝜕𝑣0
𝜕𝜌

− (𝑚 − 2)𝑣0 = 𝑂 (𝑑𝑚+1−2𝜀). (4.15)

Define 𝑟 := 1−𝜌
1+𝜌 . We compute

𝜕𝑣0
𝜕𝜌

=
𝜕𝑣0
𝜕𝑟

𝜕𝑟

𝜕𝜌
= − 2

(1 + 𝜌)2
𝜕𝑣0
𝜕𝑟

= − (1 + 𝑟)2

2
𝜕𝑣0
𝜕𝑟

,

𝜕2𝑣0

𝜕𝜌2 =
𝜕 ( 𝜕𝑣0

𝜕𝜌
)

𝜕𝑟

𝜕𝑟

𝜕𝜌
=

(1 + 𝑟)4

4
𝜕2𝑣0

𝜕𝑟2 + (1 + 𝑟)3

2
𝜕𝑣0
𝜕𝑟

.

Based on the above calculations, we can derive

𝑟2 𝜕
2𝑣0

𝜕𝑟2 − 𝑚𝑟
𝜕𝑣0
𝜕𝑟

− (𝑚 − 2)𝑣0 =: 𝜂 = 𝑂 (𝑟𝑚+1−2𝜀). (4.16)

Let 𝑡 = ln 𝑟 and then 𝑟 = 𝑒𝑡 . We proceed to compute the derivatives of 𝑣0 with respect
to 𝑟 in terms of 𝑡

𝜕𝑣0
𝜕𝑟

=
𝜕𝑣0
𝜕𝑡

𝜕𝑡

𝜕𝑟
= 𝑒−𝑡

𝜕𝑣0
𝜕𝑡

,

𝜕2𝑣0

𝜕𝑟2 =
𝜕 ( 𝜕𝑣0

𝜕𝑟
)

𝜕𝑡

𝜕𝑡

𝜕𝑟
= 𝑒−2𝑡 𝜕

2𝑣0

𝜕𝑡2
− 𝑒−2𝑡 𝜕𝑣0

𝜕𝑡
.

(4.17)
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Substituting (4.17) into (4.16), we obtain the following second-order linear ordinary
differential equation

𝜕2𝑣0

𝜕𝑡2
− (𝑚 + 1) 𝜕𝑣0

𝜕𝑡
− (𝑚 − 2)𝑣0 = 𝜂. (4.18)

It has two characteristic roots

𝜇1 =
(𝑚 + 1) −

√︁
(𝑚 + 1)2 + 4(𝑚 − 2)

2
, 𝜇2 =

(𝑚 + 1) +
√︁
(𝑚 + 1)2 + 4(𝑚 − 2)

2
.

We have an explicit formula for 𝑣0,

𝑣0 = 𝐶1 (𝜃)𝑒𝜇1𝑡 + 𝐶2 (𝜃)𝑒𝜇2𝑡 + 𝐺0 (𝜂),

where

𝐺0 (𝜂) =
1

𝜇2 − 𝜇1
[𝑒𝜇2𝑡

∫ 𝑡

𝑡1

𝑒−𝜇2𝜏𝜂(𝜏, 𝜃)d𝜏 − 𝑒𝜇1𝑡

∫ 𝑡

−∞
𝑒−𝜇1𝜏𝜂(𝜏, 𝜃)d𝜏], 𝑡1 ∈ (−∞, 𝑡).

Note that 𝑟 = 𝑒𝑡 .
𝑣0 = 𝐶1 (𝜃)𝑟𝜇1 + 𝐶2 (𝜃)𝑟𝜇2 + 𝐺0 (𝜂)

with

𝐺0 (𝜂) =
1

𝜇2 − 𝜇1
[𝑟𝜇2

∫ 𝑟

𝑒𝑡1
𝑠−1−𝜇2𝜂(𝑠, 𝜃)d𝑠 − 𝑟𝜇1

∫ 𝑟

0
𝑠−1−𝜇1𝜂(𝑠, 𝜃)d𝑠] .

From (4.16), there exists a positive number 𝐶 > 0 such that |𝜂(𝑠, 𝜃) | ≤ 𝐶𝑠𝑚+1−2𝜀 .
Therefore

|𝐺0 (𝜂) | ≤ 𝐶𝑟𝑚+1−2𝜀 + 𝐶𝑟𝜇2 .

Since we have known 𝑣 = 𝑂 (𝑟𝑚−𝜀) , 𝐶1 = 0. So

𝑣0 = 𝐶2 (𝜃)𝑟𝜇2 + 𝐺0 (𝜂). (4.19)

In view of 𝐺0 (𝜂) = 𝑂 (𝑟𝑚+1−2𝜀), we have 𝑣0 = 𝑂 (𝑟𝑚+1−2𝜀).
Owing to (4.10) and (4.19), 𝑣 satisfies equation

𝐿𝑣 =
(1 − 𝜌2)2

4
Δ0𝑣 +

𝑚∑︁
𝑖=1

𝑚(1 − 𝜌2)
2

𝑥𝑖
𝜕𝑣

𝜕𝑥𝑖
= 𝑂 (𝑑𝑚+1−2𝜀).

By Proposition 3.3, 𝑣 satisfies the ODEs

(1 − 𝜌2)2

4
𝜕2𝑣

𝜕𝜌2 + 𝑚(1 − 𝜌2)
2

𝜌
𝜕𝑣

𝜕𝜌
= 𝑂 (𝑑𝑚+1−2𝜀). (4.20)

Notice that 𝑟 = 1−𝜌
1+𝜌 , 𝑣 satisfies

𝑟2 𝜕
2𝑣

𝜕𝑟2 − 𝑚𝑟
𝜕𝑣

𝜕𝑟
=: 𝜂 = 𝑂 (𝑟𝑚+1−2𝜀). (4.21)

Let 𝑡 = ln 𝑟 and then 𝑟 = 𝑒𝑡 . We compute

𝜕2𝑣

𝜕𝑡2
− (𝑚 + 1) 𝜕𝑣

𝜕𝑡
= 𝜂. (4.22)
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It has two characteristic roots

𝜇1 = 0, 𝜇2 = 𝑚 + 1.

We have an explicit formula for 𝑣,

𝑣 = 𝐶1 (𝜃)𝑒𝜇1𝑡 + 𝐶2 (𝜃)𝑒𝜇2𝑡 + 𝐺0 (𝜂)

where

𝐺0 (𝜂) =
1

𝜇2 − 𝜇1
[𝑒𝜇2𝑡

∫ 𝑡

𝑡1

𝑒−𝜇2𝜏𝜂(𝜏, 𝜃)d𝜏 − 𝑒𝜇1𝑡

∫ 𝑡

−∞
𝑒−𝜇1𝑡𝜂(𝜏, 𝜃)d𝜏], 𝑡1 ∈ (−∞, 𝑡).

Notice that 𝑟 = 𝑒𝑡 ,

𝑣 = 𝐶1 (𝜃)𝑟𝜇1 + 𝐶2 (𝜃)𝑟𝜇2 + 𝐺0 (𝜂),
with

𝐺0 (𝜂) =
1

𝜇2 − 𝜇1
[𝑟𝜇2

∫ 𝑟

𝑒𝑡1
𝑠−1−𝜇2𝜂(𝑠, 𝜃)d𝑠 − 𝑟𝜇1

∫ 𝑟

0
𝑠−1−𝜇1𝜂(𝑠, 𝜃)d𝑠] .

From (4.16), there exists a positive number 𝐶 > 0 such that |𝜂(𝑠, 𝜃) | ≤ 𝐶𝑠𝑚+1−2𝜀 .
Therefore

|𝐺0 (𝜂) | ≤ 𝐶𝑟𝑚+1−2𝜀 + 𝐶̂𝑟𝜇2 .

Since we have known 𝑣 = 𝑂 (𝑟𝑚−𝜀) , 𝐶1 = 0. So

𝑣 = (𝐶2𝜃)𝑟𝜇2 + 𝐺0 (𝜂) (4.23)

In view of 𝐺0 (𝜂) = 𝑂 (𝑟𝑚+1−2𝜀), we have 𝑣 = 𝑂 (𝑟𝑚+1−2𝜀).
Repeating the process above, we can get ⟨𝑣, 𝜙0⟩ = 𝑂 (𝑟min{𝜇2 ,𝑚+2−3𝜀}) =

𝑂 (𝑟𝜇2 ), (𝜇2 =
(𝑚+1)+

√
(𝑚+1)2+4(𝑚−2)

2 ) and 𝑣 = 𝑂 (𝑟𝑚+1).
According to (4.13), 𝑣0 = ⟨𝑣, 𝜙0⟩ satisfies the conditions of Lemma 4.1 of [19] if

the general elliptic operator is substituted for Δ0. Similar to the proof of Proposition
3.3(Replace 𝑚 in Prop 3.3 with 𝑚 + 1 + 𝜀0.), for any 𝜀 > 0 and non-negative integers
𝑗 , 𝑠, we have |∇𝑠

𝜃
∇ 𝑗𝑣0 | = 𝑂 ((1 − 𝜌)𝑚+1+𝜀0− 𝑗−𝜀).

■

4.3 The coefficient function 𝜙𝑚+1 and the rest of the proof

The next step in the proof of Theorem 1.1 is to find 𝑊𝑚+1 = 𝑤 + 𝜙𝑚+1𝑑
𝑚+1 where 𝑤

is given by Theorem 2.8 such that 𝑢 −𝑊𝑚+1 = 𝑜(𝑑𝑚+1).
We have already proved 𝑢 − 𝑤 = 𝑂 (𝑑𝑚+1) in Lemma 4.1, but since we have

reached the conclusion by solving ordinary differential equations, the coefficient
𝑢−𝑤
𝑑𝑚+1 is not yet certain. Therefore, the following lemma proves this coefficient by
the convergence method.

Define

𝑐(𝜌, 𝜃) = 𝑢 − 𝑤

𝑑𝑚+1 (𝜌, 𝜃) (4.24)
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Lemma 4.2 Let 𝑢 be a harmonic map from 𝑀 to 𝑁 so that 𝑢 ∈ 𝐶1 as a map
from 𝐵𝑚 to 𝐵𝑛. Suppose that the boundary map 𝜙0 of 𝑢, when restricted to S𝑚−1,
is in 𝐶∞ (S𝑚−1, S𝑛−1), and has nowhere-vanishing energy density with respect to the
stanard metrics. Let 𝜙0, 𝜙1, · · · , 𝜙𝑚, 𝜓𝑚+1,1 in 𝐶∞ (S𝑚−1, S𝑛−1) and 𝑤 be given by
Theorem 2.8. Let 𝑐 be defined by (4.24). Then there exists 𝜙𝑚+1 ∈ 𝐶∞ (S𝑚−1;S𝑛−1)
such that 𝑐 converges to 𝜙𝑚+1 in 𝐶 𝑗 (S𝑚−1;S𝑛−1) for all 𝑗 ≥ 0 as 𝜌 → 1, and for
any 𝑠 ≥ 0,

|∇𝑠
𝜃 (𝑐 − 𝜙𝑚+1) | ≤ 𝐶 (1 − 𝜌)1−𝜀 , (4.25)

where 𝜀 can take any real number in (0, 1).

Proof Set 𝑣 := 𝑢 − 𝑤. By Proposition 3.3 and Lemma 4.1, we know for any 𝜀 > 0
and non-negative integers 𝑗 , 𝑠, |∇ 𝑗∇𝑠

𝜃
𝑣 | = 𝑂 ((1 − 𝜌)𝑚+1− 𝑗−𝜀).

Define function 𝜑 := ∇𝑠
𝜃
𝑣 and 𝜑0 := ∇𝑠

𝜃
⟨𝑣, 𝜙0⟩. Differentiating (4.13) with respect

to 𝜃 𝑠 times, we know

𝐿𝜑0 − (𝑚 − 2)𝜑0 = 𝑂 ((1 − 𝜌)𝑚+2−𝜀). (4.26)

Set 𝑟 = 1−𝜌
1+𝜌 and 𝜇2 =

(𝑚+1)+
√

(𝑚+1)2+4(𝑚−2)
2 . So for any fixed 𝜃0 ∈ S𝑚−1, we have

𝑟2 𝜕
2𝜑0 (𝜃0, 𝑟)

𝜕𝑟2 − 𝑚𝑟
𝜕𝜑0 (𝜃0, 𝑟)

𝜕𝑟
− (𝑚 − 2)𝜑0 = 𝑂 (𝑟𝑚+2−𝜀).

Introducing 𝜉0 (𝑟) := 𝜑0 (𝜃0 ,𝑟 )
𝑟𝜇2 , we have

𝑟𝜇2+2 𝜕
2𝜉0

𝜕𝑟2 + (2𝜇2 − 𝑚)𝑟𝜇2+1 𝜕𝜉0
𝜕𝑟

=𝑟2 𝜕
2𝜑0

𝜕𝑟2 − 𝑚𝑟
𝜕𝜑0
𝜕𝑟

− 𝜇2 (𝜇2 − 𝑚 − 1)𝜑0 = 𝑂 (𝑟𝑚+2−𝜀),

(𝑟𝜇2+2𝜉
′

0 (𝑟))
′ + (𝜇2 − 𝑚 − 2)𝑟𝜇2+1𝜉

′

0 (𝑟) = 𝑂 (𝑟𝑚+2−𝜀),

where we have used that 𝜇2 is a solution of 𝜇2
2 − (𝑚 + 1)𝜇2 − (𝑚 − 2) = 0.

Set 𝑦0 := 𝑟𝜇2+2𝜉
′

0 (𝑟) and notice that 𝜇2 < 𝑚 + 2. Then 𝑦0 satisfies the following
ODE and

𝑟𝑦
′

0 (𝑟) + (𝜇2 − 𝑚 − 2)𝑦0 =: 𝜋0 = 𝑂 (𝑟𝑚+3−𝜀)
has solution

𝑦0 (𝑟) = 𝑟𝑚+2−𝜇2 (
∫ 𝑟

𝑟0

𝜋0 (𝑅)𝑅𝜇2−𝑚−3d𝑅 + 𝐶),

where 𝑟0 ∈ (0, 𝑟). Since 𝑦0 = 𝑂 (𝑟𝜇2+1−𝜀), 𝐶 = 0 and 𝑦0 = 𝑂 (𝑟𝑚+3−𝜀). Therefore
𝜉
′

0 (𝑟) = 𝑂 (𝑟𝑚+1−𝜇2−𝜀), which gives 𝜉0 (𝑟) = 𝑂 (𝑟𝑚+2−𝜇2−𝜀) and 𝜑0 = 𝑂 (𝑟𝑚+2−𝜀).
Differentiating (4.10) with respect to 𝜃 𝑠 times, we have

𝐿𝜑 =
(1 − 𝜌2)2

4
Δ0𝜑 +

𝑚∑︁
𝑖=1

𝑚(1 − 𝜌2)
2

𝑥𝑖
𝜕𝜑

𝜕𝑥𝑖
= 𝑂 ((1 − 𝜌)𝑚+2−𝜀).
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Similar to the estimate of 𝜑0, we can get

𝑟2 𝜕
2𝜑(𝜃0, 𝑟)
𝜕𝑟2 − 𝑚𝑟

𝜕𝜑(𝜃0, 𝑟)
𝜕𝑟

= 𝑂 (𝑟𝑚+2−𝜀).

Introducing 𝜉 (𝑟) := 𝜑 (𝜃0 ,𝑟 )
𝑟𝑚+1 , we have

𝑟𝑚+3 𝜕
2𝜉

𝜕𝑟2 + (𝑚 + 2)𝑟𝑚+2 𝜕𝜉

𝜕𝑟
= 𝑟2 𝜕

2𝜑

𝜕𝑟2 − 𝑚𝑟
𝜕𝜑

𝜕𝑟
= 𝑂 (𝑟𝑚+2−𝜀),

(𝑟𝑚+3𝜉
′ (𝑟))′ − 𝑟𝑚+2𝜉

′ (𝑟) = 𝑂 (𝑟𝑚+2−𝜀).
Set 𝑦 = 𝑟𝑚+3𝜉

′ (𝑟), then

𝑟𝑦
′ (𝑟) − 𝑦 =: 𝜋 = 𝑂 (𝑟𝑚+3−𝜀)

has solution

𝑦(𝑟) = 𝑟 (
∫ 𝑟

0
𝑅−2𝜋(𝑅)d𝑅 + 𝐶).

Since 𝑦 = 𝑂 (𝑟𝑚+2−𝜀), 𝐶 = 0 and 𝑦 = 𝑂 (𝑟𝑚+3−𝜀). Therefore 𝜉
′ (𝑟) = 𝑂 (𝑟−𝜀), which

gives

|
∇𝑠

𝜃
𝑣(𝜃0, 𝑟)
𝑟𝑚+1 −

∇𝑠
𝜃
𝑣(𝜃0, 𝑟)
𝑟𝑚+1 | = |𝜉 (𝑟) − 𝜉 (𝑟) | ≤ 𝐶 |𝑟1−𝜀 − 𝑟1−𝜀 |

and

|∇𝑠
𝜃 (

𝑣(𝜃0, 𝜌)
(1 − 𝜌)𝑚+1 − 𝑣(𝜃0, 𝜌)

(1 − 𝜌)𝑚+1 ) | ≤ 𝐶 | (1 − 𝜌)1−𝜀 − (1 − 𝜌)1−𝜀 |.

Letting 𝜌 → 1, the conclusion follows.
■

Proof of Theorem 1.1. Let 𝜙0, · · · , 𝜙𝑚, 𝜓𝑚+1,1 and 𝑤 be given by Theorem 2.8 and
𝜙𝑚+1 be given by Lemma 4.2. Set 𝑣 := 𝑢−𝑤. According to Lemma 4.1, we know 𝑣 =

𝑂 (𝑟𝑚+1). By Theorem 4.2 of [19], 𝑢 ∈ 𝐶∞ (𝐵𝑚
1 ; 𝐵𝑛

1 ) ∩ 𝐶𝑚,𝛼 (𝐵𝑚
1 ; 𝐵𝑛

1 ),∀𝛼 ∈ (0, 1).
Let

𝑤𝑚+1 = 𝑤 + 𝜙𝑚+1𝑑
𝑚+1.

By (4.25), for any 𝑠 ≥ 0, we have

|∇𝑠
𝜃 (𝑢 − 𝑤𝑚+1) | = 𝑂 (𝑑𝑚+2−𝜀),∀𝜀 > 0.

Furthermore, by Theorem 4.2 of [19], for any non-negative integers 𝑗 and 𝑠, it holds
that

|∇ 𝑗∇𝑠
𝜃 (𝑢 − 𝑤𝑚+1) | = 𝑂 (𝑑𝑚+2− 𝑗−𝜀),∀𝜀 > 0.

Let 𝑤𝑚0 = 𝜙0 +
𝑚0∑
𝑘=1

𝜙𝑘 (𝑥)𝑑𝑘 +
𝑚0∑

𝑘=𝑚+1

[ 𝑚0−1
𝑚

]∑
𝑙=1

𝜓𝑘,𝑙 (𝑥)𝑑𝑘 (log(−𝑑))𝑙 . We assume, by

induction, that the following inequality has been established for 𝑚 = 𝑚0 ≥ 𝑚 +1 and
for all non-negative integers 𝑗 and 𝑠,

|∇ 𝑗∇𝑠
𝜃 (𝑢 − 𝑤𝑚0 ) | = 𝑂 (𝑑𝑚0+1− 𝑗−𝜀). (4.27)
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In Theorem 2.8, solving the equation 𝐵𝑚0+1 [𝑢] + 𝐹𝑚0+1 [𝑢] + 𝐸𝑚0+1 [𝑢] = 0
is equivalent to finding 𝜙𝑚0+1 that satisfies this relationship. Similarly, the set of
equations 𝐵𝑚0+1,𝑙 [𝑢] + 𝐹𝑚0+1,𝑙 [𝑢] + 𝐸𝑚0+1,𝑙 [𝑢] = 0 for 𝑙 = 1, · · · , [𝑚0−1

𝑚
] is used to

determine the coefficients 𝜓𝑚0+1,𝑙 . We then define the function

𝑤𝑚0+1 := 𝜙0 +
𝑚0+1∑︁
𝑘=1

𝜙𝑘 (𝑥)𝑑𝑘 +
𝑚0∑︁

𝑘=𝑚+1

[ 𝑚0−1
𝑚

]∑︁
𝑙=1

𝜓𝑘,𝑙 (𝑥)𝑑𝑘 (log(−𝑑))𝑙 .

We have

𝜏(𝑤𝑚0+1) = 𝑂 (𝑑𝑚0+2 log(−𝑑)). (4.28)

Based on equation (4.27), we can establish an estimate for the difference between
𝑢 and 𝑤𝑚0+1. For any non-negative integers 𝑗 and 𝑠, we have

|∇ 𝑗∇𝑠
𝜃 (𝑢 − 𝑤𝑚0+1) |

=|∇ 𝑗∇𝑠
𝜃 (𝑢 − 𝑤𝑚0 − 𝜙𝑚0+1𝑑

𝑚0+1 −
[ 𝑚0

𝑚
]∑︁

𝑙=1
𝜓𝑚0+1,𝑙 (𝑥)𝑑𝑚0+1 (log(−𝑑))𝑙) |

=𝑂 (𝑑𝑚0+1− 𝑗−𝜀).

(4.29)

Set 𝑣𝑚0+1 := 𝑢 − 𝑤𝑚0+1 and 𝑣0
𝑚0+1 := ⟨𝑢 − 𝑤𝑚0+1, 𝜙0⟩. Similar to the process used

to derive equation (4.10), and by leveraging the result in (4.28), we can obtain

𝐿𝑣𝑚0+1 − (𝑚 − 2)⟨𝑣𝑚0+1, 𝜙0⟩𝜙0

=𝑂 (𝑑3) |∇2
0𝑣𝑚0+1 | +𝑂 (𝑑2−𝜀) |∇0𝑣𝑚0+1 |

+𝑂 (𝑑) ( |𝑣𝑚0+1 | + |∇𝜃𝑣𝑚0+1 |) +𝑂 (𝑑𝑚0+2 log(−𝑑)),
(4.30)

where linear operator 𝐿 is defined in (4.6).
Multiplying both sides of equation (4.30) by the function 𝜙0, we get

𝐿⟨𝑣𝑚0+1, 𝜙0⟩ − (𝑚 − 2)⟨𝑣𝑚0+1, 𝜙0⟩
=𝑂 (𝑑3) |∇2

0𝑣𝑚0+1 | +𝑂 (𝑑2−𝜀) |∇0𝑣𝑚0+1 |
+𝑂 (𝑑) ( |𝑣𝑚0+1 | + |∇𝜃𝑣𝑚0+1 |) +𝑂 (𝑑𝑚0+2 log(−𝑑)).

(4.31)

Define 𝜑𝑚0+1 := ∇𝑠
𝜃
(𝑢 − 𝑤𝑚0+1). Differentiating (4.31) with respect to 𝜃, we know

𝜑0
𝑚0+1 := ∇𝑠

𝜃
⟨𝑢 − 𝑤𝑚0+1, 𝜙0⟩ satisfies

𝐿𝜑0
𝑚0+1 − (𝑚 − 2)𝜑0

𝑚0+1

=𝑂 (𝑑3) |∇2
0𝜑𝑚0+1 | +𝑂 (𝑑2−𝜀) |∇0𝜑𝑚0+1 |

+𝑂 (𝑑) ( |𝜑𝑚0+1 | + |∇𝜃𝜑𝑚0+1 |) +𝑂 (𝑑𝑚0+2 log(−𝑑)).
(4.32)

As in the proof of Lemma 4.1, we know that 𝜑0
𝑚0+1 = 𝑂 ((1 − 𝜌)𝑚0+2−𝜀). So we can

conclude that

𝐿𝜑𝑚0+1 = 𝑂 ((1 − 𝜌)𝑚0+2−𝜀). (4.33)
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Finally, by using equation (4.29), we can derive

(1 − 𝜌2)2

4
𝜕2𝜑𝑚0+1

𝜕𝜌2 +
𝑚∑︁
𝑖=1

𝑚(1 − 𝜌2)
2

𝜌
𝜕𝜑𝑚0+1

𝜕𝜌
= 𝑂 (𝑑𝑚0+2−𝜀). (4.34)

Define 𝑟 := 1−𝜌
1+𝜌 , we can get

𝑟2 𝜕
2𝜑𝑚0+1

𝜕𝑟2 − 𝑚𝑟
𝜕𝜑𝑚0+1

𝜕𝑟
=: 𝜂 = 𝑂 (𝑟𝑚0+2−𝜀). (4.35)

Next, we introduce a new function 𝜉𝑚0+1 (𝑟) := 𝜑𝑚0+1 (𝜃0 ,𝑟 )
𝑟𝑚+1 . By substituting

𝜑𝑚0+1 = 𝑟𝑚+1𝜉𝑚0+1 (𝑟) into the previous equation, we obtain

𝑟𝑚+3 𝜕
2𝜉𝑚0+1

𝜕𝑟2 + (𝑚 + 2)𝑟𝑚+2 𝜕𝜉𝑚0+1

𝜕𝑟
= 𝑟2 𝜕

2𝜑𝑚0+1

𝜕𝑟2 − 𝑚𝑟
𝜕𝜑𝑚0+1

𝜕𝑟
= 𝑂 (𝑟𝑚0+2−𝜀),

(𝑟𝑚+3𝜉
′

𝑚0+1 (𝑟))
′ − 𝑟𝑚+2𝜉

′

𝑚0+1 (𝑟) = 𝑂 (𝑟𝑚0+2−𝜀).

Set 𝑦𝑚0+1 = 𝑟𝑚+3𝜉
′

𝑚0+1 (𝑟), then

𝑟𝑦
′

𝑚0+1 (𝑟) − 𝑦𝑚0+1 =: 𝜋𝑚0+1 = 𝑂 (𝑟𝑚0+3−𝜀)

has solution

𝑦𝑚0+1 (𝑟) = 𝑟 (
∫ 𝑟

0
𝑅−2𝜋(𝑅)d𝑅 + 𝐶).

Therefore 𝑦𝑚0+1 = 𝑂 (𝑟𝑚0+3−𝜀) and 𝜉𝑚0+1 = 𝑂 (𝑟𝑚0−𝑚+1−𝜀), which gives 𝜑𝑚0+1 =

𝑂 (𝑟𝑚0+2−𝜀).
We may then argue as Theorem 4.2 of [19] to obtain For any non-negative inte-

gers 𝑗 and 𝑠, |∇𝑠
𝜃
∇ 𝑗
𝜌 (𝑢 − 𝑤𝑚0+1) | = 𝑂 (𝑑𝑚0+2− 𝑗−𝜀),∀𝜀 ∈ (0, 1).
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