
24 Memory Representation of Values

The FFI interface we described in Chapter 23 (Foreign Function Interface) hides the

precise details of how values are exchanged across C libraries and the OCaml runtime.

There is a simple reason for this: using this interface directly is a delicate operation

that requires understanding a few di�erent moving parts before you can get it right.

You �rst need to know the mapping between OCaml types and their runtime memory

representation. You also need to ensure that your code is interfacing correctly with

OCaml runtime's memory management.

However, knowledge of the OCaml internals is useful beyond just writing foreign

function interfaces. As you build and maintain more complex OCaml applications,

you'll need to interface with various external system tools that operate on compiled

OCaml binaries. For example, pro�ling tools report output based on the runtime

memory layout, and debuggers execute binaries without any knowledge of the static

OCaml types. To use these tools e�ectively, you'll need to do some translation between

the OCaml and C worlds.

Luckily, the OCaml toolchain is very predictable. The compiler minimizes the

amount of optimization magic that it performs, and relies instead on its straightforward

execution model for good performance. With some experience, you can know rather

precisely where a block of performance-critical OCaml code is spending its time.

Why Do OCaml Types Disappear at Runtime?

The OCaml compiler runs through several phases during the compilation process. The

�rst phase is syntax checking, during which source �les are parsed into abstract syntax

trees (ASTs). The next stage is a type checking pass over the AST. In a validly typed

program, a function cannot be applied with an unexpected type. For example, the

print_endline function must receive a single string argument, and an int will result

in a type error.

Since OCaml veri�es these properties at compile time, it doesn't need to keep track

of as much information at runtime. Thus, later stages of the compiler can discard and

simplify the type declarations to a much more minimal subset that's actually required

to distinguish polymorphic values at runtime. This is a major performance win versus

something like a Java or .NETmethod call, where the runtimemust look up the concrete

instance of the object and dispatch the method call. Those languages amortize some of
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the cost via �Just-in-Time� dynamic patching, but OCaml prefers runtime simplicity

instead.

We'll explain this compilation pipeline in more detail in Chapter 26 (The Com-

piler Frontend: Parsing and Type Checking) and Chapter 27 (The Compiler Backend:

Bytecode and Native code).

This chapter covers the precise mapping from OCaml types to runtime values and

walks you through them via the toplevel. We'll cover how these values are managed by

the runtime later on in Chapter 25 (Understanding the Garbage Collector).

24.1 OCaml Blocks and Values

A runningOCaml program uses blocks ofmemory (i.e., contiguous sequences of words

in RAM) to represent values such as tuples, records, closures, or arrays. An OCaml

program implicitly allocates a block of memory when such a value is created:

# type t = { foo: int; bar: int };;
type t = { foo : int; bar : int; }

# let x = { foo = 13; bar = 14 };;
val x : t = {foo = 13; bar = 14}

The type declaration t doesn't take up any memory at runtime, but the subsequent

let binding allocates a new block of memory with two words of available space. One

word holds the foo �eld, and the other word holds the bar �eld. The OCaml compiler

translates such an expression into an explicit allocation for the block from OCaml's

runtime system.

OCaml uses a uniform memory representation in which every OCaml variable is

stored as a value. An OCaml value is a single memory word that is either an immediate

integer or a pointer to some other memory. The OCaml runtime tracks all values so that

it can free them when they are no longer needed. It thus needs to be able to distinguish

between integer and pointer values, since it scans pointers to �nd further values but

doesn't follow integers that don't point to anything meaningful beyond their immediate

value.

24.1.1 Distinguishing Integers and Pointers at Runtime

Wrapping primitive types (such as integers) inside another data structure that records

extra metadata about the value is known as boxing. Values are boxed in order to make

it easier for the garbage collector (GC) to do its job, but at the expense of an extra level

of indirection to access the data within the boxed value.

OCaml values don't all have to be boxed at runtime. Instead, values use a single tag

bit per word to distinguish integers and pointers at runtime. The value is an integer

if the lowest bit of the block word is nonzero, and a pointer if the lowest bit of

the block word is zero. Several OCaml types map onto this integer representation,

including bool, int, the empty list, and unit. Some types, like variants, sometimes
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use this integer representation and sometimes don't. In particular, for variants, constant

constructors, i.e., constructors with no arguments like None, are represented as integers,

but constructors like Some that carry associated values are boxed.

This representation means that integers are unboxed runtime values in OCaml so

that they can be stored directly without having to allocate a wrapper block. They can

be passed directly to other function calls in registers and are generally the cheapest and

fastest values to use in OCaml.

A value is treated as a memory pointer if its lowest bit is zero. A pointer value can

still be stored unmodi�ed despite this, since pointers are guaranteed to be word-aligned

(with the bottom bits always being zero).

The only problem that remains with this memory representation is distinguishing

between pointers to OCaml values (which should be followed by the GC) and pointers

into the system heap to C values (which shouldn't be followed).

The mechanism for this is simple, since the runtime system keeps track of the heap

blocks it has allocated for OCaml values. If the pointer is inside a heap chunk that is

marked as being managed by the OCaml runtime, it is assumed to point to an OCaml

value. If it points outside the OCaml runtime area, it is treated as an opaque C pointer

to some other system resource.

Some History About OCaml's Word-Aligned Pointers

The alert reader may be wondering how OCaml can guarantee that all of its pointers

are word-aligned. In the old days, when RISC chips such as Sparc, MIPS, and Alpha

were commonplace, unaligned memory accesses were forbidden by the instruction set

architecture and would result in a CPU exception that terminated the program. Thus,

all pointers were historically rounded o� to the architecture word size (usually 32 or

64 bits).

Modern CISC processors such as the Intel x86 do support unaligned memory

accesses, but the chip still runs faster if accesses are word-aligned. OCaml therefore

simply mandates that all pointers be word-aligned, which guarantees that the bottom

few bits of any valid pointer will be zero. Setting the bottom bit to a nonzero value is

a simple way to mark an integer, at the cost of losing that single bit of precision.

An even more alert reader will be wondering about the performance implications

are for integer arithmetic using this tagged representation. Since the bottom bit is set,

any operation on the integer has to shift the bottom bit right to recover the �native�

value. The native code OCaml compiler generates e�cient x86 assembly code in this

case, taking advantage of modern processor instructions to hide the extra shifts where

possible. Addition is a single LEA x86 instruction, subtraction can be two instructions,

and multiplication is only a few more.
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24.2 Blocks and Values

An OCaml block is the basic unit of allocation on the heap. A block consists of a

one-word header (either 32 or 64 bits depending on the CPU architecture) followed by

variable-length data that is either opaque bytes or an array of �elds. The header has a

multipurpose tag byte that de�nes whether to interpret the subsequent data as opaque

bytes or OCaml �elds.

The GC never inspects opaque bytes. If the tag indicates an array of OCaml �elds

are present, their contents are all treated as more valid OCaml values. The GC always

inspects �elds and follows them as part of the collection process described earlier.

The size �eld records the length of the block in memory words. This is 22 bits

on 32-bit platforms, which is the reason OCaml strings are limited to 16 MB on

that architecture. If you need bigger strings, either switch to a 64-bit host, or use the

Bigarray module.

The 2-bit color �eld is used by the GC to keep track of its state during mark-

and-sweep collection. We'll come back to this �eld in Chapter 25 (Understanding the

Garbage Collector). This tag isn't exposed to OCaml source code in any case.

A block's tag byte is multipurpose, and indicates whether the data array represents

opaque bytes or �elds. If a block's tag is greater than or equal to No_scan_tag (251),

then the block's data are all opaque bytes, and are not scanned by the collector. The

most common such block is the string type, which we describe in more detail later in

this chapter.

The exact representation of values inside a block depends on their static OCaml

type. All OCaml types are distilled down into values, and summarized below.

• int or char are stored directly as a value, shifted left by 1 bit, with the least signi�cant
bit set to 1.

• unit, [], false are all stored as OCaml int 0.
• true is stored as OCaml int 1.
• Foo | Bar variants are stored as ascending OCaml ints, starting from 0.

• Foo | Bar of int variants with parameters are boxed, while variants with no pa-

rameters are unboxed.

• Polymorphic variants with parameters are boxed with an extra header word to store

the value, as compared to normal variants. Polymorphic variants with no param-

eters are unboxed.

• Floating-point numbers are stored as a block with a single �eld containing the

double-precision �oat.

• Strings are word-aligned byte arrays with an explicit length.
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• [1; 2; 3] lists are stored as 1::2::3::[] where [] is an int, and h::t a block with
tag 0 and two parameters.

• Tuples, records, and arrays are stored as a C array of values. Arrays can be variable

size, but tuples and records are �xed-size.

• Records or arrays that are all �oat use a special tag for unboxed arrays of �oats, or

records that only have float �elds.

24.2.1 Integers, Characters, and Other Basic Types

Many basic types are e�ciently stored as unboxed integers at runtime. The native int

type is the most obvious, although it drops a single bit of precision due to the tag bit.

Other atomic types such as unit and the empty list [] value are stored as constant

integers. Boolean values have a value of 1 and 0 for true and false, respectively.

These basic types such as empty lists and unit are very e�cient to use, since

integers are never allocated on the heap. They can be passed directly in registers and

not appear on the stack if you don't have too many parameters to your functions.

Modern architectures such as x86_64 have a lot of spare registers to further improve

the e�ciency of using unboxed integers.

24.3 Tuples, Records, and Arrays

Tuples, records, and arrays are all represented identically at runtime as a block with

tag 0. Tuples and records have constant sizes determined at compile time, whereas

arrays can be of variable length. While arrays are restricted to containing a single type

of element in the OCaml type system, this is not required by thememory representation.

You can check the di�erence between a block and a direct integer yourself using the

Obj module, which exposes the internal representation of values to OCaml code:

# Obj.is_block (Obj.repr (1,2,3));;
- : bool = true

# Obj.is_block (Obj.repr 1);;
- : bool = false

The Obj.repr function retrieves the runtime representation of any OCaml value.

Obj.is_block checks the bottom bit to determine if the value is a block header or an

unboxed integer.
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24.3.1 Floating-Point Numbers and Arrays

Floating-point numbers in OCaml are always stored as full, double-precision values.

Individual �oating-point values are stored as a block with a single �eld that contains

the number. This block has the Double_tag set, which signals to the collector that the

�oating-point value is not to be scanned:

# Obj.tag (Obj.repr 1.0);;
- : int = 253

# Obj.double_tag;;
- : int = 253

Since each �oating-point value is boxed in a separate memory block, it can be

ine�cient to handle large arrays of �oats in comparison to unboxed integers. OCaml

therefore special-cases records or arrays that contain only float types. These are

stored in a block that contains the �oats packed directly in the data section, with

Double_array_tag set to signal to the collector that the contents are not OCaml values.

First, let's check that �oat arrays do in fact have a di�erent tag number from normal

�oating-point values:

# Obj.double_tag;;
- : int = 253

# Obj.double_array_tag;;
- : int = 254

This tells us that �oat arrays have a tag value of 254. Now let's test some sample

values using the Obj.tag function to check that the allocated block has the expected

runtime tag, and also use Obj.double_field to retrieve a �oat from within the block:

# Obj.tag (Obj.repr [| 1.0; 2.0; 3.0 |]);;
- : int = 254

# Obj.tag (Obj.repr (1.0, 2.0, 3.0) );;
- : int = 0

# Obj.double_field (Obj.repr [| 1.1; 2.2; 3.3 |]) 1;;
- : float = 2.2

# Obj.double_field (Obj.repr 1.234) 0;;
- : float = 1.234

The �rst thing we tested was that a �oat array has the correct unboxed �oat array

tag value (254). However, the next line tests a tuple of �oating-point values instead,

which are not optimized in the same way and have the normal tuple tag value (0).

Only records and arrays can have the �oat array optimization, and for records, every

single �eld must be a �oat.
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24.4 Variants and Lists

Basic variant types with no extra parameters for any of their branches are simply stored

as an OCaml integer, starting with 0 for the �rst option and in ascending order:

# type t = Apple | Orange | Pear;;
type t = Apple | Orange | Pear

# ((Obj.magic (Obj.repr Apple)) : int);;
- : int = 0

# ((Obj.magic (Obj.repr Pear)) : int);;
- : int = 2

# Obj.is_block (Obj.repr Apple);;
- : bool = false

Obj.magic unsafely forces a type cast between any twoOCaml types; in this example,

the int type hint retrieves the runtime integer value. The Obj.is_block con�rms that

the value isn't a more complex block, but just an OCaml int.

Variants that have parameters are a little more complex. They are stored as blocks,

with the value tags ascending from 0 (counting from leftmost variants with parameters).

The parameters are stored as words in the block:

# type t = Apple | Orange of int | Pear of string | Kiwi;;
type t = Apple | Orange of int | Pear of string | Kiwi

# Obj.is_block (Obj.repr (Orange 1234));;
- : bool = true

# Obj.tag (Obj.repr (Orange 1234));;
- : int = 0

# Obj.tag (Obj.repr (Pear "xyz"));;
- : int = 1

# (Obj.magic (Obj.field (Obj.repr (Orange 1234)) 0) : int);;
- : int = 1234

# (Obj.magic (Obj.field (Obj.repr (Pear "xyz")) 0) : string);;
- : string = "xyz"

In the preceding example, the Apple and Kiwi values are still stored as normal

OCaml integers with values 0 and 1, respectively. The Orange and Pear values both

have parameters and are stored as blocks whose tags ascend from 0 (and so Pear has a

tag of 1, as the use of Obj.tag veri�es). Finally, the parameters are �elds that contain

OCaml values within the block, and Obj.field can be used to retrieve them.

Lists are stored with a representation that is exactly the same as if the list was written

as a variant type with Nil and Cons. The empty list [] is an integer 0, and subsequent

blocks have tag 0 and two parameters: a block with the current value, and a pointer to

the rest of the list.

Obj Module Considered Harmful

Obj is an undocumented module that exposes the internals of the OCaml compiler and

runtime. It is very useful for examining and understanding how your code will behave

at runtime but should never be used for production code unless you understand the im-

plications. The module bypasses the OCaml type system, making memory corruption

and segmentation faults possible.
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Some theorem provers such as Coq do output code that uses Obj internally, but the

external module signatures never expose it. Unless you too have a machine proof of

correctness to accompany your use of Obj, stay away from it except for debugging!

Due to this encoding, there is a limit around 240 variantswith parameters that applies

to each type de�nition, but the only limit on the number of variants without parameters

is the size of the native integer (either 31 or 63 bits). This limit arises because of the

size of the tag byte, and that some of the high-numbered tags are reserved.

24.5 Polymorphic Variants

Polymorphic variants are more �exible than normal variants when writing code but are

slightly less e�cient at runtime. This is because there isn't as much static compile-time

information available to optimize their memory layout.

A polymorphic variant without any parameters is stored as an unboxed integer and

so only takes up one word of memory, just like a normal variant. This integer value is

determined by applying a hash function to the name of the variant. The hash function

is exposed via the compiler-libs package that reveals some of the internals of the

OCaml compiler:

# #require "ocaml-compiler-libs.common";;
# Btype.hash_variant "Foo";;
- : int = 3505894

# (Obj.magic (Obj.repr `Foo) : int);;
- : int = 3505894

The hash function is designed to give the same results on 32-bit and 64-bit ar-

chitectures, so the memory representation is stable across di�erent CPUs and host

types.

Polymorphic variants use more memory space than normal variants when param-

eters are included in the data type constructors. Normal variants use the tag byte to

encode the variant value and save the �elds for the contents, but this single byte is

insu�cient to encode the hashed value for polymorphic variants. They must allocate a

new block (with tag 0) and store the value in there instead. Polymorphic variants with

constructors thus use one word of memory more than normal variant constructors.

Another ine�ciency over normal variants is when a polymorphic variant constructor

has more than one parameter. Normal variants hold parameters as a single �at block

with multiple �elds for each entry, but polymorphic variants must adopt a more �exible

uniform memory representation, since they may be reused in a di�erent context across

compilation units. They allocate a tuple block for the parameters that is pointed to

from the argument �eld of the variant. There are thus three additional words for such

variants, along with an extra memory indirection due to the tuple.

The extra space usage is generally not signi�cant in a typical application, and

polymorphic variants o�er a great deal more �exibility than normal variants. However,

if you're writing code that demands high performance or must run within tight memory
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bounds, the runtime layout is at least very predictable. The OCaml compiler never

switches memory representation due to optimization passes. This lets you predict the

precise runtime layout by referring to these guidelines and your source code.

24.6 String Values

OCaml strings (and their mutable cousins, bytes) are standard OCaml blocks with

the header size de�ning the size of the string in machine words. The String_tag (252)

is higher than the No_scan_tag, indicating that the contents of the block are opaque to

the collector. The block contents are the contents of the string, with padding bytes to

align the block on a word boundary.

On a 32-bit machine, the padding is calculated based on the modulo of the string

length and word size to ensure the result is word-aligned. A 64-bit machine extends

the potential padding up to 7 bytes instead of 3. Given a string length modulo 4:

• 0 has padding 00 00 00 03
• 1 has padding 00 00 02
• 2 has padding 00 01
• 3 has padding 00

This string representation is a clever way to ensure that the contents are always

zero-terminated by the padding word and to still compute its length e�ciently without

scanning the whole string. The following formula is used:

number_of_words_in_block * sizeof(word) - last_byte_of_block - 1

The guaranteed NULL termination comes in handy when passing a string to C, but

is not relied upon to compute the length from OCaml code. OCaml strings can thus

contain NULL bytes at any point within the string.

Care should be taken that any C library functions that receive these bu�ers can also

cope with arbitrary bytes within the bu�er contents and are not expecting C strings. For

instance, the C memcopy or memmove standard library functions can operate on arbitrary

data, but strlen or strcpy both require a NULL-terminated bu�er, and neither has a

mechanism for encoding a NULL value within its contents.

24.7 Custom Heap Blocks

OCaml supports custom heap blocks via a Custom_tag that lets the runtime perform

user-de�ned operations over OCaml values. A custom block lives in the OCaml heap
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like an ordinary block and can be of whatever size the user desires. The Custom_tag

(255) is higher than No_scan_tag and so isn't scanned by the GC.

The �rst word of the data within the custom block is a C pointer to a struct of

custom operations. The custom block cannot have pointers to OCaml blocks and is

opaque to the GC:

struct custom_operations {
char *identifier;
void (*finalize)(value v);
int (*compare)(value v1, value v2);
intnat (*hash)(value v);
void (*serialize)(value v,

/*out*/ uintnat * wsize_32 /*size in bytes*/,
/*out*/ uintnat * wsize_64 /*size in bytes*/);

uintnat (*deserialize)(void * dst);
int (*compare_ext)(value v1, value v2);

};

The custom operations specify how the runtime should perform polymorphic com-

parison, hashing and binary marshaling. They also optionally contain a �nalizer that

the runtime calls just before the block is garbage-collected. This �nalizer has nothing

to do with ordinary OCaml �nalizers (as created by Gc.finalize and explained in

Chapter 25 (Understanding the Garbage Collector)). They are instead used to call C

cleanup functions such as free.

24.7.1 Managing External Memory with Bigarray

A common use of custom blocks is to manage external system memory directly from

within OCaml. The Bigarray interface was originally intended to exchange data with

Fortran code, and maps a block of systemmemory as a multidimensional array that can

be accessed from OCaml. Bigarray operations work directly on the external memory

without requiring it to be copied into the OCaml heap (which is a potentially expensive

operation for large arrays).

Bigarray sees a lot of use beyond just scienti�c computing, and several Core libraries

use it for general-purpose I/O:

Iobuf The Iobuf module maps I/O bu�ers as a one-dimensional array of bytes. It

provides a sliding window interface that lets consumer processes read from

the bu�er while it's being �lled by producers. This lets OCaml use I/O bu�ers

that have been externally allocated by the operating system without any extra

data copying.

Bigstring The Bigstring module provides a String-like interface that uses

Bigarray internally. The Bigbuffer collects these into extensible string

bu�ers that can operate entirely on external system memory.

The Lacaml1 library isn't part of Core but provides the recommended interfaces

to the widely used BLAS and LAPACK mathematical Fortran libraries. These allow

1 http://mmottl.github.io/lacaml/
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developers to write high-performance numerical code for applications that require

linear algebra. It supports large vectors and matrices, but with static typing safety of

OCaml to make it easier to write safe algorithms.
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