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Boundary layer instability over a rotating slender
cone under non-axial inflow
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Centrifugal instability of the boundary layer is known to induce spiral vortices over a
rotating slender cone that is facing an axial inflow. This paper shows how a deviation
from the symmetry of such axial inflow affects the boundary layer instability over a
rotating slender cone with half-angle ψ = 15◦. The spiral vortices are experimentally
detected using their thermal footprint on the cone surface for both axial and non-axial
inflow conditions. In axial inflow, the onset and growth of the spiral vortices are governed
by the local rotational speed ratio S and Reynolds number Rel in agreement with the
literature. During their growth, the spiral vortices significantly affect the mean velocity
field as they entrain and bring high-momentum flow closer to the wall. It is found that the
centrifugal instability induces these spiral vortices in non-axial inflow as well; however, the
asymmetry of the non-axial inflow inhibits the initial growth of the spiral vortices, and they
appear at higher local rotational speed ratio and Reynolds number, where the azimuthal
variations in the instability characteristics (azimuthal number n and vortex angle φ) are
low.
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1. Introduction

Boundary layer instability over a rotating body of revolution (disk, cone, sphere, etc.) is an
intriguing problem in fluid mechanics. Such instability is encountered at different scales,
ranging from small-scale phenomena in laboratory experiments to large-scale atmospheric
events. Generally, when the boundary layer over a rotating solid body becomes unstable,
perturbations in the flow field can amplify and induce coherent flow structures (Kobayashi
1994). The mechanisms causing such boundary layer instability depend on the geometry
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and flow conditions. When investigating such three-dimensional boundary layer instability
mechanisms over a rotating body, the case of a rotating cone is usually preferred, since
the relatively simple geometry eases the analysis (Kobayashi, Kohama & Kurosawa
1983; Kohama 1984a). Additionally, a rotating cone is often considered as an idealised
model of engineering systems, such as aero engine spinners, the nose cones of rotating
projectiles (missiles, bullets), etc. Several past studies have contributed to building our
understanding of the boundary layer instability over a rotating cone, but they are limited
to an axisymmetric inflow field. While symmetry about the axis simplifies the analysis,
in practice, deviations from a perfectly symmetric inflow may frequently occur due to
off-design conditions or sometimes as consequences of design choices, e.g. embedded
engines ingesting the airframe boundary layer, ultra-high-bypass-ratio engines with short
intakes at take-off and cross-wind operations, etc. Therefore, it is important to extend
our understanding of the boundary layer instability over a rotating cone to the non-axial
(thereby non-axisymmetric) inflow.

In the past, the boundary layer instability mechanism over a rotating slender cone with
half-angle ψ = 15◦ has been studied in still fluid (Kobayashi & Izumi 1983) as well as
under axial inflow (Kobayashi et al. 1983). The boundary layer on the rotating surface faces
centripetal acceleration, which may lead to an instability, commonly known as centrifugal
instability. Depending upon the rotational speed, toroidal vortices form over a cone rotating
in still fluid (Kobayashi & Izumi 1983), whereas spiral vortices appear on a rotating cone
under an enforced axial inflow (Kobayashi et al. 1983). In meridional cross-sections, these
vortices appear as consecutive pairs of counter-rotating vortices. Their azimuthal number
n and angle φ depend on the local rotational speed ratio S = rω/ue, where r is the local
radius, ω is the angular velocity of the cone and ue is the local boundary layer edge
velocity. With increasing local rotational speed ratio S (from S = 0 to 5–6), both n and
φ decrease as the spiral structure of the vortices starts to approach a toroidal structure.
Between S ≈ 6 and 8, the vortex structure becomes toroidal, similar to that observed
over a rotating cone in still fluid (Kobayashi & Kohama 1985). However, the scope of
the present study is limited to rotational speed ratios 0 < S < 5, and, therefore, the rest of
the discussion is focused on spiral vortices.

Kohama (1984a) studied the behaviour, growth and breakdown of spiral vortices using
particle-based flow visualisation. While tracking the growth of spiral vortices, Kohama
observed that the wall-normal extent of these vortices increased beyond the boundary
layer thickness. In this region, the mixing of low- and high-momentum fluid is enhanced,
forming shear layers of different scales. Kohama (1984a) suggested that this enhanced
activity of mixing affects the mean velocity profiles and could be the leading cause of
boundary layer transitioning to a fully turbulent state. Recently, Hussain et al. (2016)
revisited this topic and developed a distinct theoretical analysis based on the centrifugal
instability mode. They highlighted that, even though cross-flow and Tollmien–Schlichting
instabilities are present in the flow field, the centrifugal instability is prevalent. Garrett
& Peake (2007) and Garrett, Hussain & Stephen (2009) also state that, for a rotating
slender cone (half-angle ψ < 40◦), the cross-flow and absolute instabilities may not play
a dominant role in the boundary layer transition. Kobayashi (1994) found that spiral
vortices, in the form of counter-rotating vortex pairs, appear over a rotating cone with
half-angle ψ < 30◦; whereas for a rotating cone with ψ > 30◦, co-rotating spiral vortices
are observed. Theoretical studies performed by Garrett, Hussain & Stephen (2010) show
that the cross-flow instability mode is dominant on rotating broad cones (half-angle
ψ > 40◦) in axial inflow. In such cases, with increasing local radius, the increasing
tangential velocity of the rotating cone surface leads to a streamwise pressure gradient
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along the cone length. This pressure gradient results in an inflectional profile of the mean
streamwise velocity that leads to cross-flow instability (Kohama 1984b; Garrett et al.
2010). Recent experiments by Kato, Alfredsson & Lingwood (2019a) and Kato et al.
(2019b) also show the existence of co-rotating spiral vortices (relating to the cross-flow
instability) over a broad cone (ψ = 60◦) rotating in still fluid. Overall, past research
provides detailed insights into the formation, growth and breakdown of spiral vortices
over a rotating cone, but all of these detailed studies are limited to axisymmetric inflow
conditions.

Depending on the inflow conditions and cone angle, both centrifugal and cross-flow
instability mechanisms lead to spiral vortices over a rotating cone. Generally,
vortices generated by the centrifugal instability are of counter-rotating nature in their
cross-sections. This behaviour has also been observed in flow cases other than rotating
cones, where the centrifugal instability is present, e.g. Görtler vortices on concave walls
(Görtler 1954; Drazin 2002), Taylor vortices between two rotating coaxial cylinders (Taylor
1923; Drazin 2002), etc. Recent studies have shown the existence of the centrifugal
instability mode over a spinning cylinder in uniform flow, orthogonal to the rotation axis
(Mittal 2004; Radi et al. 2013; Rao et al. 2013a,b), and the vorticity contours associated
with this mode suggest the counter-rotating nature of the vortices, which appear as
travelling waves (Rao et al. 2013a). On the other hand, the cross-flow instability gives
rise to co-rotating vortices (Kobayashi 1994). This behaviour also extends beyond the
case of a rotating cone, e.g. spiral vortices on a rotating disk (Kobayashi, Kohama &
Takamadate 1980; Kohama 1984b), cross-flow vortices over a swept wing (Kohama 1987),
etc. Therefore, an observed vortex cross-section can be linked to a type of instability.

Considering the geometry and the associated instability mechanism, cones can be
classified into two categories: slender cones (half-angleψ � 30◦), where the centrifugal
instability is dominant, and broad cones (half-angle ψ � 30◦), where the cross-flow
instability is dominant. The centrifugal instability over a slender cone, with half-angle
ψ = 15◦, rotating in an axisymmetric inflow field has been well addressed in the
literature(Kobayashi et al. 1983, 1987; Kohama 1984a). Therefore, the present study is
focused on this geometry to investigate the effect of non-axial inflow on the centrifugal
instability.

The present study shows how a deviation from a symmetric inflow condition affects
the development of spiral vortices, induced by the centrifugal instability, over a rotating
slender cone with half-angle ψ = 15◦. The definitions of the cone geometry and flow
parameters are described in § 2. The specifications of the experimental set-up and data
processing methods are detailed in § 3. The detailed results and discussions are presented
in § 4. The measurement approach has been validated by revisiting the axial inflow case,
discussed in § 4.1. The effect of non-axial inflow on the spiral vortex appearance and
growth is discussed in § 4.2. A physical interpretation of the observed differences between
axial and non-axial inflow cases is presented in § 4.3. Finally, the important conclusions
are discussed in § 5.

2. Definitions of geometry and flow parameters

A schematic of a rotating cone in the Cartesian coordinate system is shown in figure 1. The
angular velocity ω is aligned with the positive x axis. The coordinate system x′, y′ is used
when discussing the velocities in the wall-parallel and wall-normal directions, respectively.
The cone surface is represented by l and θ , based on cylindrical polar coordinates.
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Figure 1. Schematic of the rotating cone and coordinate systems.

Here, l is the meridional distance from the cone apex, and θ is the azimuthal angle
measured from the counter-rotating meridian.

The local Reynolds number Rel and local rotational speed ratio S are the important
flow parameters that govern the spiral vortex growth (Kobayashi et al. 1983, 1987). Their
definitions are as follows:

Rel = uel
ν
, S = rω

ue
. (2.1a,b)

Here, ue is the boundary layer edge velocity, ν is the kinematic viscosity of air, r is the
local radius and ω is the angular velocity of the cone.

The boundary layer edge velocity ue is defined as the time-averaged streamwise velocity,
measured at a wall-normal location where the magnitude of the vorticity component out
of the meridional plane reaches zero. In practice, the vorticity is considered to be zero
below the value of measurement uncertainty (<0.24U∞/D), where U∞ is the free-stream
velocity and D is the base diameter of the cone. For the axial inflow, the boundary layer
edge velocity over the entire cone is obtained by fitting a power-law form ue = CU∞lm
(Garret & Peake 2007) to the measured velocity field for l/D = 0.8 to 1.8 (C = 1.66,
m = 0.19 and root-mean-square (r.m.s.) fit error < 0.02U∞).

Although the spiral vortex growth depends on the local scaling S and Rel (Kobayashi
et al. 1987), the inflow Reynolds number ReL and the base rotational speed ratio Sb
are useful parameters while discussing the experimental conditions. They are defined as
follows:

ReL = U∞L
ν

, Sb = Dω
2U∞

. (2.2a,b)

Here, L = D/(2 sin(ψ)) is the total cone length along x′, and a subscript b refers to the
cone base. The dependence on the finiteness of a cone can be eliminated by defining a
parameter κ as

κ = ReL

Sb
= U2∞

sin(ψ)ων
. (2.3)

Here, κ depends only on the cone half-angle, angular velocity and free-stream conditions.
Since κ is the slope of the line ReL = κSb, it provides a general direction along which the
curves of Rel versus S lie for particular experimental conditions. In the subsequent text,
Sb, ReL and κ are used while referring to different inflow conditions and, consequently, for
the different distributions of local flow parameters Rel and S over the cone.
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Operating condition no. ReL Sb IRT PIV α

I 1.5 × 104 5 � � 0◦, 2◦, 4◦ and 10◦
II 1.9 × 104 4 � — 0◦, 2◦, 4◦ and 10◦
III 2.1 × 104 3.5 � — 0◦, 2◦, 4◦ and 10◦
IV 2.5 × 104 3 � � 0◦, 2◦, 4◦ and 10◦
V 3.7 × 104 2 � — 0◦
VI 1.5 × 104 0 — � 0◦, 2◦, 4◦ and 10◦
VII 2.5 × 104 0 — � 0◦, 2◦, 4◦ and 10◦

Table 1. Test matrix.

Figure 1 also schematically shows the spiral vortices and their characteristics. Here,
the spiral vortex angle φ is the angle between the meridional line and the direction of
the perturbation wave propagation; this is same as the angle between the vortex axis
direction and the circumferential direction (Kobayashi et al. 1983). The azimuthal number
of vortices n ideally represents the azimuthal wavelength λθ = 2πr/n.

3. Experimental set-up

The experiments are performed in a low-speed open jet wind tunnel facility (named W
tunnel) at the Faculty of Aerospace Engineering, TU Delft. The exit cross-section is
0.6 m × 0.6 m. A slender cone (half-angle ψ = 15◦, base diameter D = 0.047 m), made
out of polyoxymethylene, is rotated by a brushless motor at 5000 r.p.m. The non-axial
inflow is imposed by varying the incidence angle α between 0◦ and 10◦. Since the present
study is focused on deviations from axial symmetry, first, small variations in the incidence
angles are considered (α = 2◦ and 4◦). A considerably larger value of α = 10◦, which
corresponds to a relative incidence α/ψ = 0.67, is also tested. High values of incidence
angles may cause flow separation, and such investigations are beyond the scope of the
present study. The inflow velocity of the wind tunnel is varied over 2.46–6.15 m s−1

to obtain different values of the base rotational speed ratio Sb, and,therefore, different
distributions of local Reynolds number Rel and rotational speed ratio S. The test matrix is
presented in table 1.

It is known that coherent spiral vortices are counter-rotating in nature for cone
half-angles ψ < 30◦ (Kobayashi et al. 1983), and can be identified by their traces on the
surface temperature (Tambe et al. 2019). As depicted in figure 2, in the region of their
mutual downwash, the local heat transfer coefficient is higher, and, therefore, the cone
surface is cooled to a greater extent compared to the region of mutual upwash. When
observed with infrared thermography (IRT), this results in alternating dark (cool) and
bright (hot) fringes, with a vortex pair in between two consecutive bright (or dark) fringes.
To increase the thermal contrast, the cone is radiatively heated with a white light source
from one side (slightly increasing the model temperature by less than 2 to 2.5 K) and is
observed with an IR camera from the opposite side (see figure 3a). The surface temperature
fluctuations are obtained as digital pixel intensity fluctuations I′. The surface temperature
fluctuations for the non-rotating cone were measured on the cone surface illuminated by
the lamp (for α = 0◦ and 4◦). The time-resolved velocity field is measured at the symmetry
plane using particle image velocimetry (PIV) (see figure 3b). Tables 2 and 3 contain the
specifications of the IRT and PIV set-ups, respectively.
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Figure 2. Surface temperature footprint of a counter-rotating vortex pair.
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Figure 3. Schematics of the experimental set-up.

Camera FLIR (CEDIP) SC7300 Titanium
Noise equivalent temperature difference 25 mK
Spatial resolution 0.28 mm px−1

Integration time 201 μs
Acquisition frequency 200 Hz
Number of images per dataset 2000
Heat source Theatre lamp (575 W)

Table 2. Specifications of the infrared thermography set-up.
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Camera Photron Fastcam SA-1
Sensor dimensions 1024 px × 1024 px
Vector pitch (3C) 0.16 mm
Interrogation window size 48 px × 48 px
Vector pitch (2C) 0.42 mm
Interrogation window size 24 px × 24 px
Laser Nd:YAG Continuum MESA PIV 532-120-M
Acquisition frequency 2.5 kHz
Number of image pairs per dataset 1000
Seeding Smoke particles (diameter ≈ 1 μm)

Table 3. Specifications of the PIV set-up.

In addition to the footprints of the spiral vortices, the data from IRT also include
effects due to vortex pairing or free-stream disturbances. These footprints have spatial
wavelengths longer than those of the spiral vortices (azimuthal vortex number n < 8).
Additionally, the measurements also include camera noise, which appears as short spatial
wavelengths (approximately 4 pixels). All these effects hinder the visualisation of the
spiral vortices, and are removed by following the method described in the literature
(Tambe et al. 2019). In this method, proper orthogonal decomposition (POD) is used
to decompose the dataset as a linear combination of spatial modes with time-dependent
coefficients. These spatial modes are orthogonal, and are obtained by applying singular
value decomposition on the snapshot matrix of the measurement data. The traces of spiral
vortices are obtained by reconstructing the temperature field using selected POD modes.
The criteria for POD mode selection are defined based on the contribution of POD modes
towards the expected range of streamwise wavelengths and the azimuthal number of spiral
vortices. For further details on the experimental technique and data analysis method, the
reader is directed to Tambe et al. (2019).

4. Results and discussion

4.1. Axial inflow
Under the axial inflow condition, spiral vortices grow in the laminar boundary layer
over the rotating slender cone, leaving footprints on the surface temperature. These
instantaneous footprints, which are reconstructed from the POD modes, can be seen
in figures 4(a) and 4(b) as a projection in the xy plane and on an unwrapped surface,
respectively (at Sb = 5 and ReL = 1.5 × 104). At approximately x/D = 0.6, the spiral
vortices start to appear in a coherent fashion, i.e. the spacing between the vortices is nearly
uniform around the azimuth at a constant radius. They grow in the downstream direction
until a point of maximum amplification at around x/D = 1.2, beyond which their footprint
deteriorates and the coherence starts to get disturbed. This growth is evident from the
statistical r.m.s. of surface temperature fluctuations (I′

rms, computed from 2000 images
acquired at 200 Hz) shown in figures 4(c) and 4(d). Here, I′

rms starts to increase around
x/D = 0.8, till a maximum value at around x/D = 1.2, beyond which the fluctuations
decrease. No such surface temperature fluctuations were observed for a non-rotating cone
(I′

rms < 2).
Figure 5 allows the comparisons between (a) the meridional variation of the surface

temperature fluctuations (I′
rms traced at y/D = 0 from figures 4c), (b) the instantaneous
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Figure 4. Instantaneous surface temperature footprints of the spiral vortices (a,b) and the corresponding
statistical r.m.s. of the surface temperature fluctuations (I′

rms) over a dataset (c,d) (here α = 0◦, operating
condition I: Sb = 5 and ReL = 1.5 × 104).

footprints of spiral vortices over a rotating cone and their influence on (c) the mean
flow field compared to (d) the mean flow of a non-rotating case. The flow phenomena
occurring at the peak I′

rms (point lm in figure 5a) can be further understood by observing
the corresponding velocity fields in the wall-normal (x′y′) plane. For a non-rotating cone,
the time-averaged velocity field shows a region of low streamwise momentum (along x′)
close to the wall (see figure 5d). However, for the rotating cone, a similar low-momentum
region is observed only until around x′/D = 1.24 (see figure 5c). Beyond this point, there
is a sudden increase in the x′ momentum near the wall. This point coincides with the
location of the I′

rms peak. It is clear that, as the spiral vortices get amplified, they transport
the outer high-momentum fluid towards the wall, resulting in increased x′ momentum close
to the wall. This mixing process was also observed by Kohama (1984a). During the process
of amplification, the local shear at the wall is increased as the outer high-momentum fluid
is transported close to the wall. This increases the surface heat transfer. Consequently, the
footprints of the spiral vortices become stronger in the temperature map. The maximum
observed surface temperature fluctuations are of the order of 1.3 K. Although not shown
here, a similar agreement between the location of increased x′ momentum (obtained from
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Figure 5. Growth and spatial organisation of the spiral vortices in axial inflow (α = 0◦). (a) A trace of I′
rms

at y/D = 0, (b) instantaneous surface temperature footprints of the spiral vortices over a rotating cone, and
time-averaged velocity fields in x′y′ plane for (c) rotating (operating condition I: Sb = 5 and ReL = 1.5 × 104)
as well as (d) non-rotating case (operating condition VI: Sb = 0 and ReL = 1.5 × 104).

PIV) and the peak of I′
rms (obtained from IRT) has been observed in all the investigated

cases when both PIV and IRT are performed.
Figure 6 shows the cross-sections of the spiral vortices in the symmetry plane at

t0 + 14.57T , where t0 is the time at the start of acquisition and T = 0.012 s corresponds
to the time period of a cone rotation. Additionally, supplementary movie 1 (available
at https://doi.org/10.1017/jfm.2020.990) shows the time series of this vector field. The
contours of wall-normal velocity fluctuations clearly show the alternating upwash and
downwash regions near the wall. Together with vectors, this confirms the counter-rotating
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Figure 6. Instantaneous wall-normal velocity fluctuations with respect to the mean flow showing
cross-sections of the spiral vortices (here α = 0◦, operating condition I: Sb = 5 and ReL = 1.5 × 104); also
see supplementary movie 1.
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Figure 7. Spiral vortices as observed in a PIV recording. Image processing is applied to emphasise seeding
density variations. The vortex cores are marked as red dots. Also see supplementary movie 2. (Here α = 0◦,
operating condition I: Sb = 5 and ReL = 1.5 × 104).

nature of the spiral vortices, which is linked to the centrifugal instability (Taylor 1923;
Görtler 1954; Kobayashi et al. 1983; Rao et al. 2013a).

The growth of spiral vortices can be seen by tracking their evolution in time.
Supplementary movie 2 shows the spiral vortices evolving over the rotating cone surface.
A snapshot from this movie can also be seen in figure 7. The flow is from left to right,
and the angular velocity is aligned with positive x. The raw PIV recordings are processed
such that the brighter regions signify higher seeding density. The seeding particles, being
slightly heavier than air, get ejected outwards from the vortex cores due to the centrifugal
force. Therefore, these vortex cores have low seeding density and appear as darker regions
(marked as red dots). When tracking the spiral vortices as they move downstream, it
appears that they have grown significantly after the maximum amplification point lm
(corresponding to peak I′

rms).
Figure 8 shows the spiral vortex evolution using three consecutive instants obtained

from IRT measurements. Images on the right are the instantaneous temperature footprints
of the spiral vortices. On the left, the traced values of I′ along the y/D = 0 are shown in
combination with I′

rms. In the top row of figure 8, a batch of relatively strong vortices has
just entered the amplification region at an instant of time ta = t0 + 22T . At ta + 0.42T ,
the footprint of the vortices has grown in amplitude. At the next instant ta + 0.83T , the
amplitude has further increased. In this region a peak in I′

rms is observed. Moving further
downstream from the I′

rms peak, the overall coherence decreases, i.e. the spacing between
the vortices starts to vary around the circumference at a constant radius. Here, instances of
vortex pairing are also observed.
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Figure 8. Instantaneous surface temperature footprints of the spiral vortices (b) and corresponding trace of
intensity fluctuations I′ at y/D = 0 compared with I′

rms over the dataset (a) (here α = 0◦, operating condition
I: Sb = 5 and ReL = 1.5 × 104).

It is clear from figures 5 and 8 that the I′
rms peak represents the maximum amplification

of the spiral vortices. Therefore, the point lm can be associated with the maximum
amplification. The corresponding Reynolds number is defined as

Rel,m = lmue

ν
. (4.1)

The point lc at which I′
rms starts to grow is a critical point that represents the start of

spiral vortex growth. The corresponding critical Reynolds number is defined as

Rel,c = lcue

ν
. (4.2)

In the present study, a closer inspection of figure 8 (right columns) shows that the spiral
vortices appear at around x/D = 0.5–0.6, which is before the critical point lc (around
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Figure 9. Comparison of Rel,c and Rel,m measured in the present experiments with the data from the literature
(Kobayashi et al. 1983; Hussain et al. 2016) for the cases with axial inflow: (I) Sb = 5, ReL = 1.5 × 104;
(II) Sb = 4, ReL = 1.9 × 104; (III) Sb = 3.5, ReL = 2.1 × 104; (IV) Sb = 3, ReL = 2.5 × 104; and (V) Sb = 2,
ReL = 3.7 × 104.

x/D = 0.78) corresponding to the experimental value of the critical Reynolds number
Rel,c = 5.7 × 103 for the operating condition I. The accurate detection of the location
where the spiral vortices originate is hindered by measurement limitations, because the
spiral vortices are expected to be weak near their origin and their effect on the surface
temperature may be below the measurement noise (<25 mK). Therefore, in the present
study, the critical Reynolds number Rel,c is the Reynolds number that corresponds to a
critical point at which the spiral vortices start to undergo a rapid growth, rather than a
point at which they originate.

Since spiral vortex growth depends on local Reynolds number Rel and rotational speed
ratio S, the critical and maximum amplification locations for all the axial inflow cases
are represented in the parameter space spanned by Rel and S; see figure 9. The grey lines
(numbered as I to V) in figure 9 represent the variation of local Reynolds number Rel
versus rotational speed ratio S on the cone surface for different operating conditions. These
lines can be used to relate the flow parameters (Rel and S) to the corresponding physical
location on the cone surface.

Figure 9 shows that the measured values of maximum amplification Reynolds number
Rel,m agree closely with the theoretical predictions of Kobayashi et al. (1983). The values
of the critical Reynolds number Rel,c fall closer to the measurements of Kobayashi et al.
(1983), and also agree well with the theoretical predictions of Hussain et al. (2016).
However, these values of Rel,c are nearly an order of magnitude higher than the theoretical
predictions of Kobayashi et al. (1983), which were based on the linear stability analysis
(not shown here). Hussain et al. (2016) argue that the theoretical predictions of the critical
Reynolds number Rel,c are sensitive to the accuracy of computing the base flow over
which the instability develops. With more accurate computations of the base flow, their
theoretical predictions of Rel,c seem to closely agree with the experimental measurements.
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Figure 10. Asymmetry in the outer flow field. (a) Meridional variation of the boundary layer edge velocity.
(b) Conceptual sketch of asymmetry in the boundary layer profiles between co-rotating and counter-rotating
meridian, drawn at a cross-flow section of the cone (viewed from the cone apex).

Similarly, Segalini & Camarri (2019) also highlight that the accurate computation of the
base flow may play an important role in accurately predicting the stability characteristics
over a rotating slender cone.

4.2. Non-axial inflow
Introducing a non-zero incidence angle significantly disturbs the symmetry of the flow
field. Owing to the incidence angle, the edge velocity of the boundary layer (with respect
to the cone surface) at a given axial location varies circumferentially, unlike in axial
inflow. Figure 10(a) shows the meridional variation of the edge velocity measured by PIV
for the cases of rotating and non-rotating cones at α = 0◦ and α = 4◦. The comparison
shows that, due to the incidence angle, the edge velocity is increased on the leeward
meridian and decreased on the windward meridian. Consequently, the flow parameters,
Reynolds number Re∗

l and rotational speed ratio S∗, vary circumferentially at a fixed axial
location, unlike in the axial inflow case. Here, ∗ is used to denote the parameters obtained
using the local edge velocities in the case of non-axial inflow. Additionally, there is a
component of free-stream velocity in the y direction. This, coupled with the cone rotation,
adds to an asymmetry with respect to the xy plane, dividing the regions into co-rotating
and counter-rotating, as shown in figure 1. The conceptual difference in the tangential
velocity profiles of the boundary layer at the counter- and co-rotating meridians is shown
in figure 10(b) for the region where the tangential velocity of the cone surface is greater
than the component of the outer flow velocity in the y direction (shown for |vθ | > |ve|).
As a result, one can observe that the boundary layer profile is skewed to a larger extent on
the counter-rotating meridian than on the co-rotating meridian. Consequently, the relative
effect of rotation on the flow is higher in the counter-rotating meridian, analogous to
coaxial cylinders rotating in opposite directions. Whereas, in the co-rotating meridian, the
flow experiences a lower relative effect of rotation, analogous to coaxial cylinders rotating
in the same direction. This effect can be accounted for by the variation in local rotational
speed ratio as S∗ ≈ (vθ − ve)/ue, in the region where |vθ | > |ve|.

It is clear that, due to the asymmetries in the velocity magnitude (leeward and windward
meridians) and the relative velocity direction (counter- and co-rotating meridians), the
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Figure 11. Correlation between the flow parameters from axial inflow (S, Rel at α = 0◦) and non-axial inflow
(S∗, Re∗

l at α = 4◦) along cone meridians (operating condition I: Sb = 5 and ReL = 1.5 × 104).

α C m r.m.s. fit error Measurement range Meridian Operating conditions

0◦ 1.66 0.190 0.02U∞ l/D = 0.8–1.8 — I, IV
2◦ 1.37 0.136 0.01U∞ l/D = 0.83–1.8 Windward I
2◦ 1.39 0.135 0.01U∞ l/D = 0.83–1.8 Windward IV
2◦ 1.35 0.100 0.011U∞ l/D = 0.66–1.8 Leeward I
2◦ 1.36 0.110 0.012U∞ l/D = 0.66–1.8 Leeward IV
4◦ 1.53 0.18 0.01U∞ l/D = 0.83–1.8 Windward I
4◦ 1.66 0.194 0.01U∞ l/D = 0.83–1.8 Windward IV
4◦ 1.30 0.090 0.014U∞ l/D = 0.6–1.8 Leeward I
4◦ 1.32 0.100 0.017U∞ l/D = 0.6–1.8 Leeward IV
10◦ 1.3 0.13 0.01U∞ l/D = 0.8–1.8 Windward I

Table 4. Fit parameters of the edge velocity ue = CU∞lm over the rotating cone.

local skewness of the boundary layer profile is distributed asymmetrically around the
circumference. Therefore, at a fixed radius, this results in an asymmetric variation of local
flow parameters (Re∗

l , S∗) above and below the values corresponding to the axial inflow
case at the same operating conditions, i.e. same inflow Reynolds number ReL and base
rotation ratio Sb. Figure 11 shows these variations in local flow parameters (Re∗

l , S∗) at
windward and leeward meridians in relation to the values from the axial inflow (Rel, S) at
the same operating conditions (ReL, Sb). This shows that, along the cone meridians, S∗ and
Re∗

l follow the general trends of S and Rel, respectively, with small azimuthal variation.
Additionally, the edge velocities required to estimate Re∗

l and S∗ for all other investigated
cases can be obtained using the fit parameters C and m from table 4 such that ue = CU∞lm.

Generally, at constant ReL and ω, we can write S∗(θ, α, l) = S(l)+ ε∗1 (θ, α, l)
and Re∗

l (θ, α, l) = Rel(l)+ ε∗2 (θ, α, l). Here, ε∗1 and ε∗2 are deviations from the flow
parameters for the corresponding axial inflow (ε∗1 = ε∗2 = 0 when α = 0◦). It is clear that,
due to the incidence angle, the distribution of the flow parameters (Rel, S) around the cone
gets distorted. The conceptual sketch of this distortion is shown in figure 12. It can be
observed that the isolines of S and Rel at a given location l1 are coincident under axial
inflow. At a non-zero incidence angle, these isolines become skewed. Consideration of
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Figure 12. A conceptual sketch depicting the distorted distribution of the flow parameters S and Rel due to a
non-zero incidence angle, shown as isolines of S∗ = S|l=l1 and Re∗

l = Rel|l=l1 at a given location l1.

this distorted distribution of the flow parameters is important for the discussion presented
in § 4.3.

The asymmetry in the flow field has been found to have a significant effect on the
formation and growth of the spiral vortices. Figure 13(c) shows the instantaneous surface
temperature map over a rotating cone with the incidence angle α = 4◦. It is important
to observe that the spiral vortices are still present in asymmetric inflow conditions.
However, their formation and growth are delayed to a location further downstream
compared to the corresponding axial inflow case (compare points lc and lm in figures 13c
and 5a).

Figure 13 shows the corresponding time-averaged velocity field for both rotating (b,d)
and non-rotating (a,e) cones under the same operating condition (α = 4◦, ReL and Sb).
When the cone is not rotating, the velocity field is asymmetric, with overall lower x′
velocity in the windward meridian. However, both windward and leeward meridians show
a region of low x′ momentum close to the wall. When the cone is rotating, the mixing
of high- and low-momentum fluid is observed close to the walls in both windward and
leeward meridians, similar to the axial inflow conditions. As a consequence of the delayed
growth of the spiral vortices, the mixing is also delayed to the downstream location with
respect to the axial inflow case. Additionally, the mixing is more gradual in the leeward
meridian than in the windward meridian. In the windward meridian, the x′ momentum is
initially lower due to the incidence angle, but increases after the amplification of the spiral
vortices.

Figure 13(c) also shows the loci of critical and maximum amplification points of the
spiral vortex growth. These points are distributed at different radii around the cone due
to the flow asymmetry, unlike in axial inflow. On the counter-rotating meridian, the
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Figure 13. Instantaneous surface temperature footprints of the spiral vortices over a rotating cone (c), and
time-averaged velocity fields in the x′y′ plane for rotating (b,d) case (α = 4◦, operating condition I: Sb = 5
and ReL = 1.5 × 104) as well as non-rotating (a,e) case (α = 4◦, operating condition VI: Sb = 0 and ReL =
1.5 × 104).

critical and maximum amplification points are at lower axial locations (x/D = 1.18 and
x/D = 1.41, respectively); here, the deviation from the symmetric condition is expected
to be highest (see figure 10b). The amplification on the leeward meridian occurs at the
location with increased x′ momentum near the wall. However, on the windward meridian,
the location where the x′ momentum starts to increase near the wall (around x′/D = 1.35)
appears to coincide with the critical point of the spiral vortex growth. In this region, the
wall-normal velocity component is stronger and may play a role in delaying the local
amplification of the spiral vortices; however, a separate investigation is required to further
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Figure 14. Instantaneous velocity fluctuations with respect to the mean flow showing cross-sections of the
spiral vortices in (a) windward and (b) leeward meridians (α = 4◦, operating condition I: Sb = 5 and ReL =
1.5 × 104). Contours represent the wall-normal velocity component. Also see supplementary movies 4 and 5.
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Figure 15. Spiral vortices as observed in a PIV recording. Image processing is applied to emphasise seeding
density variations. The vortex cores are marked as red dots. Also see supplementary movie 3 (windward
meridian, α = 4◦, operating condition I: Sb = 5 and ReL = 1.5 × 104).

address this aspect. When comparing the location of amplification for the non-axial inflow
to the axial inflow case, the location on the counter-rotating meridian is used.

Figure 14 shows the cross-sections of the spiral vortices in the windward and leeward
meridians. Contours of wall-normal velocity fluctuations and vectors show the consecutive
mutual upwash and downwash regions, similar to the axial inflow case (compare with
figure 6). This confirms the counter-rotating nature of the vortices under non-axial inflow
and, therefore, confirms the presence of the centrifugal instability.

Supplementary movie 3 shows spiral vortices evolving in the windward meridian; a
snapshot from this movie can be seen in figure 15. The flow is from left to right, and
the angular velocity of the cone is aligned with the positive x axis. The processed PIV
images show the vortex cores as dark spots with lower seeding densities (marked as red
dots), similar to that shown in supplementary movie 2. The vortex cores appear to grow
significantly around the point lm (corresponding to peak I′

rms). Comparing supplementary
movies 2 and 3 (or figures 7 and 15) shows that, in movie 3 (or figure 15), the spiral
vortex growth has been delayed to a downstream location due to the non-axial inflow.
Additionally, supplementary movies 4 and 5 show the time series of the vector fields shown
in figures 14(a) and 14(b), respectively.

Additionally, a comparison of cases with different incidence angles (α = 0◦ to 10◦) is
shown in figure 16. It is important to note that the spiral vortices appear and get amplified
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Figure 16. Effect of incidence angle variation on the instantaneous surface temperature footprints (at random
instants) of the spiral vortices at operating condition I (Sb = 5 and ReL = 1.5 × 104), counter-rotating meridian
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Figure 17. Effect of incidence angle on the (a) critical and (b) maximum amplification Reynolds numbers
(Rel,c and Rel,m) shown on the scaling from the axial inflow cases (Rel and S) with the same operating
conditions: (I) Sb = 5, ReL = 1.5 × 104; (II) Sb = 4, ReL = 1.9 × 104; (III) Sb = 3.5, ReL = 2.1 × 104; and
(IV) Sb = 3, ReL = 2.5 × 104.

even in the non-axial inflow at the investigated inflow Reynolds numbers. The present
observations are limited to the measured values of ReL < 2.5 × 104.

Figure 17 shows the effect of incidence angle on the (a) critical Reynolds number Rel,c
and (b) maximum amplification Reynolds number Rel,m measured on the counter-rotating
meridian, and defined using the edge velocity of the corresponding axial inflow case at the
same ReL and Sb. (Typical correlations between local flow parameters in axial inflow S and
Rel, and non-axial inflow S∗ and Re∗

l , seen in figure 11, show that for large meridional shifts
(changes in l/D) the flow parameters change by similar magnitudes in axial and non-axial
inflow.) The important observation here is that even a small change in incidence angle
greatly delays the critical Reynolds number, and, therefore, the amplification of spiral
vortices. This is evident by observing that the extent of the delay is much larger when
changing the incidence angle from 0◦ to 2◦ than from 2◦ to 4◦.

In figure 17, the critical and maximum amplification points corresponding to the case
of α = 4◦ appear at slightly lower rotational speed ratio S as compared to the case of
α = 2◦. This is a consequence of using the edge velocity field for the axial inflow case
even for the non-axial inflow. Figure 18 shows the Re∗

l,m and S∗ computed by using the edge
velocity and locations of peak I′

rms measured by observing windward and leeward meridian
separately. Note that, at a meridian, the data points for α = 2◦ now appear at lower values
of S∗ as compared to the case of α = 4◦. Along a meridian, the effect of increasing
incidence angle on the vortices is monotonic, such that, with increasing incidence angle,
the critical and maximum amplification locations appear at higher rotational speed ratios.
Overall, the scaling in figure 17 can be used to highlight the significant differences between
the symmetric and asymmetric flow fields.

4.3. Physical interpretation
The delayed appearance and growth of spiral vortices in the non-axial inflow can be linked
to the following aspects: azimuthal variations (at a constant radius) of the local flow
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Figure 19. An example showing how (a) spiral vortex angle φ and (b) azimuthal number n are extracted from
the reconstructed surface temperature footprints (α = 4◦, operating condition I: Sb = 5 and ReL = 1.5 × 104).

parameters (Re∗
l and S∗), and, consequently, the variations in the azimuthal number (n)

and angle (φ) of the most amplified local perturbations that form the spiral vortices.
To obtain the vortex angle φ, extrema of I′ are tracked along the vortex (within

y/D = −0.07 and 0.07), for example, as shown in figure 19(a). The azimuthal number
of vortices (counter-rotating vortex pairs) n is obtained from the dark and bright fringes,
as shown in figure 19(b). This procedure is repeated at various axial locations for all the
cases investigated with IRT to cover a range of rotational speed ratio S. The invisible side
of the cone in figure 19 is also investigated separately for all the cases of non-axial inflow.

Figures 20 and 21 show the variation of azimuthal number of vortices n and spiral
vortex angle φ with rotational speed ratio S, respectively, for axial as well as non-axial
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Figure 20. Azimuthal number of vortices n in non-axial inflow compared with the axial inflow cases from
Kobayashi et al. (1983) and Tambe et al. (2019).

inflow conditions. Since the rotational speed ratio S∗ circumferentially varies in non-axial
inflow, and the complete three-dimensional velocity measurements around the rotating
cone are unavailable here, the spiral vortex characteristics (n and φ) are presented
against the rotational speed ratio S from the corresponding axial inflow case (the typical
correlation between S, S∗ and meridional location l can be found in figure 11a). The overall
trends of spiral vortex characteristics (n and φ) against the rotational speed ratio S are
similar for axial and non-axial inflows. Importantly, the values of n, φ, |dn/dS| and |dφ/dS|
decrease with increasing rotational speed ratio S.

Generally, a range of perturbations with different wavelengths and orientations can grow
in an unstable boundary layer, but the local flow conditions determine the wavelengths that
can outgrow the rest (Drazin 2002). Over a rotating cone, an additional constraint restricts
the azimuthal wavelengths (λθ ) that may grow such that there is an integer number (n)
of spiral vortices around the cone at a given radius; because any remaining fraction of
a wave cannot sustain as a vortex. For an axial inflow, the local flow parameters (S and
Rel) are constant along the azimuth for a given radius. Ideally, this condition allows the
growth of the same wavelength (such that λθ /r = 2π/n) at the same angle (φ) around the
azimuth (at a given radius). However, in non-axial inflow, the local flow parameters (S∗
and Re∗

l ) azimuthally vary at a given radius. Moreover, their isolines are skewed (as shown
in figure 12). Such locally varying conditions can give rise to different wavelengths at
different orientations around the azimuth, which can inhibit the formation of azimuthally
coherent spiral vortices.

The non-axial inflow significantly disturbs the azimuthal coherence of the instantaneous
spiral vortex footprints. This is evident from figure 22, which shows the unwrapped
surfaces of a rotating cone for axial and non-axial inflow. In the axial inflow case
(figure 22a), the spiral vortex footprints show strong coherence (less azimuthal variation in
spacing and orientation) from l/D = 0.6 to their maximum amplification at l/D = 1.24,
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et al. (1983), Hussain et al. (2016) and Tambe et al. (2019).

after which the coherence decreases. Figures 22(b) and 22(c) are uncorrelated instants
from separate measurements on opposite sides of the cone at α = 4◦. Here, the local
flow parameters S∗ and Re∗

l vary azimuthally, as shown at the windward (θ = 90◦)
and leeward (θ = 270◦) meridians for figures 22(b) and 22(c). Consequently, the vortex
footprints show an overall weak azimuthal coherence, as their spacing and orientation
vary along the azimuth. Additionally, the critical and maximum amplification loci also
show significant azimuthal variations, in contrast with the axial inflow, where there is no
such azimuthal variation.

Relating to the cases from figure 22, the azimuthal variations in the local instability
characteristics are shown in figure 23. The most amplified perturbation waves are
schematically shown at leeward and windward meridians (figure 23b–d). The azimuthal
differences (between leeward and windward meridians) of vortex number Δn and angle
Δφ (figure 23a) are estimated using the experimental data (figures 20 and 21), where
the respective trends of n and φ versus the rotational speed ratio S agree for axial and
non-axial inflow (for S = 2.5–4.6). For the purpose of estimation, the local values of
n and φ are obtained by replacing S with S∗ in the curve fits (figures 20 and 21). This
approximation is based on the assumption that the local effects of rotation (relative to the
edge velocity) on the local instability characteristics are similar in axial and non-axial
inflow, e.g. stronger rotation (higher S or S∗) promotes longer azimuthal wavelengths
(lower n), with their wavefronts oriented more towards the tangential velocity of rotation
(lower φ). These approximate estimates in figure 23(a) should only be interpreted for
their qualitative trends. Here, both Δn and Δφ are large initially (at l/D < 1.35), which
suggests a large variation in the most amplified perturbation waves around the azimuth, as
depicted in figure 23(c). This is the region where no vortices are observed (l/D < 1.35 in
figures 22b and 22c). Further downstream (where overall S∗ values increase), the
differences Δn and Δφ decrease, suggesting that similar perturbation waves can grow
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Figure 22. Comparison of the spiral vortex footprints over the unwrapped cone surface for α = 0◦ (a) and
α = 4◦ (b,c, as uncorrelated instances) at operating condition I: Sb = 5 and ReL = 1.5 × 104.

around the azimuth (see figure 23d), similar to the axial inflow case (figure 23b). This is
the region where the spiral vortices are observed. This shows that, at increased rotational
speed ratios, azimuthal coherence is approached, which promotes the growth of the spiral
vortices around the cone surface in the non-axisymmetric flow field.

5. Conclusions and discussions

The spiral vortices, induced by the centrifugal instability, over the rotating slender
cone (ψ = 15◦) were visualised by their surface temperature footprints, obtained by
IRT coupled with the POD approach. Incidence angles α = 0◦, 2◦, 4◦ and 10◦ were
investigated. The measured surface temperature fluctuations show the growth of spiral
vortices over a rotating slender cone. For axial inflow, the critical and maximum
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amplification locations of the spiral vortex growth (in parameter space of Reynolds number
and rotational speed ratio) agreed with the past literature, validating the approach.

The conclusions are summarised as follows.

(i) The asymmetry of the non-axial inflow inhibits the initial growth of the spiral
vortices. However, spiral vortices, induced by the centrifugal instability, were
detected at a higher local rotational speed ratio S and local Reynolds number Rel
as compared to the corresponding axial inflow case.

(ii) The azimuthal variation of local Reynolds number and rotational speed ratio in
non-axial inflow causes azimuthally varying instability characteristics (azimuthal
number n and angle φ of the most amplified perturbations). It is postulated that
these variations may inhibit the growth of azimuthally coherent spiral vortices.

(iii) However, at a higher local rotational speed ratio, the instability characteristics
(azimuthal vortex number n and vortex angle φ) become less sensitive to the changes
in local flow parameters, which allows the spiral vortices to grow.

It should be noted that the present study does not deny other possible phenomenological
differences (different instability mechanisms) in asymmetric flow around the rotating
cone. However, such phenomena, caused by asymmetry itself, are expected to be
azimuthally incoherent. The centrifugal instability appears to be overall dominant
in the region with increased azimuthal coherence of its instability characteristics.
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Understanding other secondary phenomena and their relative importance with respect to
the observed centrifugal instability needs a separate investigation.

Although the investigations in this study are of fundamental nature, the results are
relevant for various engineering applications in which a rotating slender cone faces
non-axial inflow. In novel aircraft propulsion concepts, aero engine spinners may face
a non-axial inflow when the embedded engines ingest the airframe boundary layer, or
when the flow separates in the short intakes of ultra-high-bypass-ratio engines. In these
cases, spiral vortices may still appear over a rotating slender cone, but their formation
and growth will be delayed to a downstream location compared to the axial inflow at the
same operating conditions. These vortices can alter the distortion and blade incidence
angles at the blade–hub junction, thus changing the loss mechanisms. However, the inflow
Reynolds number (ReL � 2.5 × 104) and Mach number (M < 0.02) of the present study
do not cover the whole range of the flow conditions encountered in aviation. In this
regards, investigating the Reynolds-number and Mach-number effects on the boundary
layer instability over a rotating cone is still an open question. Moreover, the boundary
layer instability over cones of different half-angles rotating in axial or non-axial inflow
has still not been experimentally investigated. This is particularly challenging because,
between half-angles 30◦ and 40◦, the instability mechanism changes from the centrifugal
to the cross-flow (Kobayashi 1994).

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2020.990.
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