The effect of population size on effective population size: an empirical study in the red flour beetle *Tribolium castaneum*

LESLIE A. PRAY*, CHARLES J. GOODNIGHT, LORI STEVENS, JAMES M. SCHWARTZ AND GUIYUN YAN

Department of Biology, University of Vermont, Burlington, Vermont, USA

(Received 21 November 1995 and in revised form 18 April 1996)

Summary

Despite the increasing number of studies on the magnitude of \(N_e/N \) ratios, much remains unknown about the effects of demographic and environmental variables on \(N_e/N \). We determined \(N_e/N \) for seven population size treatments, ranging from \(N = 2 \) to \(N = 960 \), in the red flour beetle *Tribolium castaneum*. \(N_e/N \) decreased with increasing \(N \), as evidenced by a significant negative relationship between \(\log N \) and \(N_e/N \). Our results are consistent with other published data on the relationship between \(N_e/N \) and \(N \). Effective population sizes in large populations may be much smaller than previously recognized. These results have important implications for conservation and evolutionary biology.

1. Introduction

Theory of gene frequency change in small populations was developed for the idealized population in which all breeding individuals have an equal expectation of progeny (e.g. Falconer, 1989). Wright (1931) introduced the concept of effective population size (\(N_e \)) to provide a means by which gene frequency change due to drift and inbreeding could be incorporated into population genetic theory such that theoretical expectations could be applied to natural populations. Natural populations are not likely to meet the assumptions of the idealized population. Many factors influence the relative contribution of genes to the gamete pool for sampling for the next generation. These include uneven sex ratio, variance in family size and fluctuations in the population size (e.g. Falconer, 1989; Frankham, 1995). Very few studies have considered how the magnitude of actual population size (\(N \)) may affect \(N_e/N \). This is not surprising given that the concept of \(N_e \) was developed to estimate gene frequency change in small populations (Wright, 1931).

This is a particularly relevant topic for conservation biologists interested in the relationship between \(N_e \) and the minimum viable population size. One of the primary objectives of conservation genetic planning is the maximization of evolutionary potential in the form of genetic variation (e.g. Soulé, 1980; Lande & Barrowclough, 1987). Effective population size is considered an important predictor of a population’s future adaptability, and management plans are often based, at least in part, on a minimum \(N_e \) in an effort to prevent extinction due to loss of evolutionary potential. Franklin (1980), and later Lande & Barrowclough (1987), proposed that an effective population size of 500 be considered the standard minimum. More recently, Lande (1995) suggested that an effective size of 5000 is a more accurate estimate. These numbers are based, however, on simple theoretical expectations. Many population and taxon-dependent parameters affect these expectations, making it difficult to generalize accurately among different populations and taxa. The concept of a minimum effective population size based on level of genetic variation is nonetheless important in conservation policy (e.g. Soulé, 1987; Mace & Lande, 1991; Tear et al., 1995) and necessitates an empirical understanding of the relationship between actual and effective population size.

Nunney (1993) suggests that for most populations \(N_e/N \) (\(N \) being defined as number of adults) is expected to be greater than 0.5, and only in extreme circumstances is it going to be as low as 0.1. \(N_e/N \) ratios in studies involving small populations (\(N < 500 \)) range from approximately 0.5 to 0.9, in accordance with Nunney’s prediction (e.g. Kerr & Wright, 1954a, b; Wright & Kerr, 1954; Buri, 1956; reviewed by Falconer, 1989; see also Crow & Morton, 1955;...
and Nunney & Elam, 1994). Frankham (1995), however, argues that estimates of the order of 0.01 are increasingly more common in the published literature. This is especially true for studies that report on \(N_e/N\) for large populations \((N > 500)\) (Nei & Graur, 1984; Avise, 1992; Briscoe et al., 1992; see Fig. 3). For example, Nei & Graur (1984) summarize data from 64 studies on a wide variety of taxa ranging from primates to lizards to bacteria, with population sizes ranging from approximately \(10^3\) to \(10^{10}\), and report a mean \(N_e/N\) ratio of 0.10 (SD 0.22). Avise (1992) examines \(N_e/N\) ratios for 16 marine populations ranging in size from approximately \(10^3\) to \(10^8\) and reports a mean \(N_e/N\) of 0.07 (SD 0.21). Briscoe et al. (1992) review the data for studies of \(N_e/N\) in large mass-mated populations of *Drosophila*, \(N\) ranging from approximately 500 to 5000, and report a mean \(N_e/N\) ratio of 0.08, SD 0.09 (excluding two outlier estimates greater than 1.0).

Importantly, in all these studies involving large \(N\), except for one estimate in Briscoe et al. (1992), \(N\) signifies approximate census size and not the number of breeding individuals, as in the studies involving small \(N\). Because of this difference, it is difficult to compare \(N_e/N\) ratios accurately between the studies involving small and large populations. Also, uncontrolled demographic variables, especially fluctuations in population size, are likely to be important factors in the studies involving large populations, in contrast to the studies involving small populations in which these variables are kept constant. Here, we examine in a single experiment the changing relationship between \(N\) and \(N_e/N\), where \(N\) is defined as the number of breeding individuals. Variables commonly known to affect \(N_e/N\) ratios, including fluctuations in population size, unequal sex ratio, overlapping generations and density, were carefully controlled.

2. Materials and methods

We measured the effective population size in populations initiated with 2, 4, 8, 16, 48, 480 and 960 individuals. There were 9 replicates for the \(N = 960\) treatment, 12 replicates for the \(N = 480\) treatment, and 25 replicates for all other treatments. The beetles in this experiment were descended from two *Tribolium castaneum* laboratory strains: \(cSM +/+\) and \(cSM b/b\). In each replicate, the test individual was a \(cSM +/+\) female, and all the other beetles were \(cSM b/b\). \(cSM b/b\) beetles are homozygous for an autosomal semi-dominant black body colour marker; \(cSM +/+\) beetles are red. Offspring of a cross between \(cSM +/+\) and \(cSM b/b\) are brown in colour and phenotypically distinguishable from black offspring of within-strain matings. Sex ratios were held constant. For example, in the treatment consisting of 480 founders, 1 red female beetle was placed in a jar with 239 black females and 240 black males. For the \(N = 2\) treatment, only 1 red female and 1 black male beetle were placed into a vial. The beetles were allowed to mate and oviposit for 11 days and then removed. The adult progeny were counted after 6 weeks and the numbers of brown and black offspring were recorded. The mean number of brown beetles within a treatment defines \(\mu_b\) \(\left(\mu_b = \langle X \rangle (\bar{p})\right)\), where \(\bar{X}\) is the mean number of total offspring for each population size treatment and \(\bar{p}\) is the mean proportion of \(+/b\) offspring for each treatment; Wade, 1980, 1984); the variance in the number of brown beetles within a treatment defines \(V_b(V_b = (\sigma^2)(\bar{X}^2))\), where \(\sigma^2\) is the variance in \(\bar{p}\); Wade, 1980, 1984). These statistics were used to calculate \(N_e\) (Crow & Morton, 1955; see below).

We tested only females in an effort to minimize factors known to increase variance in reproductive success. Females generally yield larger \(N_e/N\) ratios than do males because they generally have a lower variance in offspring number (e.g. Wade, 1980). We carefully controlled all variables commonly known to affect \(N_e/N\), including unequal sex ratio (Wright, 1931), overlapping generations (Kimura & Crow, 1963), density (Nozawa, 1970; Wade, 1980) and fluctuating population size (Wright, 1931). Sex ratio was held constant as described above. Our estimate of \(N_e\) is based on data from a single generation; thus the effect of overlapping generations does not exist. We maintain constant density by varying the container size: the surface area to volume ratio for each treatment ranged from \(0.45\) to \(0.65\) mm\(^{-3}\), and the surface area per beetle ranged from \(0.22\) to \(0.33\) mm\(^2\), except for the \(N = 2\) treatment in which the ratio was \(1.09\) mm\(^2\). We corrected for the increase in population size from the parental to offspring generation using the methods of Crow & Morton (1955). Our adjusted variance in offspring number \((V_b)\) is the value that \(V_b\) would have if \(\mu_b\) were constant, i.e. \(\mu_b = 2\). Specifically, \(V_b = s(1-s)\mu_b + s^2V_e\), where \(s\) is a measure of probability of survival to reproductive maturity (Crow & Morton, 1955). In our experiment the \(+/b\) beetles were more fit than the \(b/b\) beetles as evidenced by a larger proportion of \(+/b\) offspring than expected by chance \((\chi^2 = 1262, \ d.f. = 117, P < 0.001)\), and therefore \(2/\mu_b\) provides the most accurate estimate of \(s\). We calculated \(N_e\) according to the formula: \(N_e = 2N/(1 + V_b/2)\) (Crow & Kimura, 1970).

Finally, we compared our results with published results on \(N_e/N\) ratios from other studies that examine \(N_e/N\) across a range of \(N\), where \(N\) is defined as the number of breeding individuals (Nozawa, 1970; Wade, 1980; Husband & Barrett, 1995).

3. Results

(i) *This experiment*

Estimated values of the mean number of offspring (\(\mu_b\)), \(V_b\) (unadjusted variance in offspring number), \(\bar{p}\) and \(\bar{X}\) from which \(\mu_b\) and \(V_b\) are calculated, and \(N_e/N\)
The effect of N on N_e

Table 1. Summary of N_e/N ratios and parameters calculated to estimate N_e/N

<table>
<thead>
<tr>
<th>N</th>
<th>\bar{p} (SD)</th>
<th>\bar{X} (SD)</th>
<th>μ_α</th>
<th>V_α</th>
<th>N_e/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>46.88 (0)</td>
<td>46.88</td>
<td>0</td>
<td>1.02</td>
</tr>
<tr>
<td>4</td>
<td>0.52</td>
<td>88.68 (0.14)</td>
<td>45.85</td>
<td>146.49</td>
<td>0.95</td>
</tr>
<tr>
<td>8</td>
<td>0.26</td>
<td>157.20 (16.2)</td>
<td>42.52</td>
<td>217.94</td>
<td>0.91</td>
</tr>
<tr>
<td>16</td>
<td>0.13</td>
<td>332.14 (43.0)</td>
<td>44.49</td>
<td>222.65</td>
<td>0.92</td>
</tr>
<tr>
<td>48</td>
<td>0.06</td>
<td>923.72 (29.1)</td>
<td>53.92</td>
<td>276.23</td>
<td>0.93</td>
</tr>
<tr>
<td>480</td>
<td>0.005</td>
<td>9635.83 (87.2)</td>
<td>49.29</td>
<td>721.95</td>
<td>0.78</td>
</tr>
<tr>
<td>960</td>
<td>0.004</td>
<td>16792.44 (657.3)</td>
<td>60.74</td>
<td>929.65</td>
<td>0.81</td>
</tr>
</tbody>
</table>

p, mean proportion of $+/b$ offspring; \bar{X}, mean number total offspring; μ_α, mean number of $+/b$ offspring; V_α, variance in number of $+/b$ offspring. See text for formulae for μ_α and V_α. $N_e/N = 2/[1+(s(1-s)\mu_\alpha+s^2V_\alpha)/2]$, where $s = 2/\mu_\alpha$.

Fig. 1. The relationship between N and N_e/N ($P = 0.0024$, $r^2 = 0.86$).

are presented in Table 1. The relationship between N and N_e/N is best described by a logarithmic model: $N_e/N = 1013-0.0751 \log N$, $r^2 = 0.86$, $P = 0.0024$ (Fig. 1; Table 1). N_e/N decreases as N increases, and as population size increases the rate of change in N_e/N decreases.

Because $N_e/N = 2/[1+V_\alpha/2]$, a decrease in N_e/N is proportional to an increase in V_α. To evaluate why V_α increases as N increases, we tested the effect of N on the components of V_α, specifically V_α and μ_α. There is a marginally significant increase in μ_α with increasing log N ($r^2 = 0.56$, $P = 0.05$) and a significant increase in V_α with increasing log N ($r^2 = 0.94$, $P = 0.0003$).

(ii) The relationship between N and N_e/N in other published studies

We are aware of only one other study that includes N_e/N ratios for both small ($N < 500$) and large ($N > 500$) population sizes in one experiment. Husband & Barrett (1992) compare genetic and ecological measures of N_e in 10 populations of the plant *Eichhornia paniculata* (Pontederiaceae). For their ecological measure of N_e (N_{ecomb}), N_e/N decreases as log N increases ($P = 0.03$, $r^2 = 0.46$) and ranges from 0.03 (48: 25\% of the negative trend in ν_e/N for both the ecological and genetic estimates of N_e (but see Husband & Barrett, 1995). With these new estimates, the negative linear regression of N_e/N on log N is also significant ($P = 0.0008$, $r^2 = 0.77$), with N_e/N ranging from 0.02 to 0.17 with a mean of 0.11 (SD = 0.07). Husband & Barrett (1992) observe that their estimates of N_e are lower than those typically reported for animals, even for small populations (see Fig. 2), and they suggest that this may be due to population structure. Nunney (1995) recalculated what may be a more accurate estimate of N_e and N_e/N for both the ecological and genetic estimates of N_e (but see Husband & Barrett, 1995). With these new estimates, the negative trend in N_e/N is still significant for the genetic estimate of N_e ($P = 0.01$, $r^2 = 0.54$); the trend for the recalculated ecological estimates cannot be similarly analysed, however, because the data points are not independent. To our knowledge, there has been no study in which N_e/N ratios have been reported for a range of both small and large population sizes for which population structure is not a factor.

Nozawa (1970) and Wade (1980) both reported lower N_e/N in larger populations of *Drosophila melanogaster* and *T. castaneum*, respectively (2 ≤ N ≤ 100 in Nozawa, 1970; and 4 ≤ N ≤ 48 in Wade, 1980; Fig. 2). Both studies were designed to test density.
effects, however, and in our experiment we held density constant. Also, our study included larger populations.

4. Discussion

Our results show that the ratio N_e/N ranges from 0.91 to 1.02 in small populations (N ranging from 2 to 48) and decreases to 0.78 to 0.81 in larger populations ($N = 480$ and $N = 960$). The trend in our data is small but consistent and statistically highly significant. Almost all the variation in the data is explained by the model ($r^2 = 0.86$). The trend in our data is consistent with other empirical studies that provide results on the relationship between N_e/N and N, where N is defined as the number of breeding individuals (Fig. 2; Nozawa, 1970; Wade, 1980; Husband & Barrett, 1992).

There are several features of the experimental design that could have affected our results. These include the sex and genotype of the test individual, and the possibility of frequency-dependent selection. For example, because males generally show greater variation in reproductive success (Wade, 1980), one might expect to see a greater trend if we had tested males instead of females. In his study on the effect of density on N_e/N, Wade (1980) reports that the effect is indeed greater for males than females. However, Nozawa (1970) reports on similar density effects between males and females. In our experiment, the genotype of the test individual for each assay had a higher fitness, on average, than the genotypes of the other beetles in the populations (Table 1). The only study that we are aware of that examines genotypic effect on N_e/N in Tribolium is Wade (1980). Wade (1980) conducted two sets of assays, one using cSM +/+ test individuals and the other using cSM b/b test individuals, and for both genotypes N_e/N decreases as log N increases (see Fig. 2 for a graph of combined data set). Although the trend is steeper for the +/+ beetles, it is statistically significant only for the b/b beetles, whether testing males, females or both sexes combined. This suggests that even if we had tested a less fit genotype such as b/b, the results would still be significant. With regard to the possibility of frequency-dependent selection, whether we had tested +/+, b/b or any other genotype, the proportion of the test individuals' offspring in the total population decreases as N increases. Frequency-dependent viability selection has been shown to exist in T. castaneum (Schwartz et al., 1996). However, one would expect rare genotype advantage to cause an increase, not a decrease, in N_e/N with increasing N. Thus rare genotype advantage cannot explain our results.

N_e/N ratios in larger populations are generally smaller than N_e/N in small populations (Fig. 3), primarily because larger populations are more likely to experience fluctuations in population size (Nei & Graur, 1984; Frankham, 1995). Importantly, fluctuating population size and other variables commonly known to affect N_e/N were carefully controlled in our experiment, and yet we still observed a significant decrease in N_e/N with increasing N, suggesting that other factors not commonly associated with increasing population size may also affect N_e/N. Thus, although fluctuating population size may be the most important variable affecting N_e/N ratios in Fig. 3, as the authors of those papers explain, our results suggest that there may be additional factors associated with population size, such as increased competition, that may also lower N_e/N ratios.

In conservation planning the effect of population size on N_e/N needs to be considered when predicting N_e/N ratios. Otherwise, long-term predictions are likely to underestimate the actual population size necessary to maintain a minimum effective population size. For many taxa it is likely that the ratio N_e/N is very small for effective populations as large or larger than 10^5 (see Fig. 3), a recently suggested minimum N_e (Lande, 1995). The minimum viable population size based on level of genetic variation probably varies, however, and needs to be empirically studied in order to set realistic and appropriate conservation goals.

The trend in our data also signifies the importance of designing experiments on N_e/N such that any one parent's contribution to the total progeny is small (J. F. Crow, personal communication). In this way, experimental effects would not be confounded by uncontrolled factors associated with population size, and results could be more accurately extrapolated to larger, natural populations.
The effect of N on N_e

We thank A. Guala and N. Paffett-Lugassy for helping to count beetles. We especially thank R. Frankham and an anonymous reviewer for insightful comments and suggestions that greatly improved the manuscript. J. Crow, P. Hedrick and R. Lande made helpful comments on an earlier draft of the manuscript. This research was supported by NSF grants DEB-9307694, DEB-9321689, BSR-902269 and DEB-9209695.

References

