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Abstract. A uniform version of the Shafarevich Conjecture for function ¢elds (Theorem
of Parshin^Arakelov) is proved, together with a uniform version of the geometric Mordell
conjecture (Theorem of Manin). Such results are generalized to base varieties of arbitrary
dimension (i.e. function ¢elds of arbitrary transcendence degree).
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1. Introduction

1.1. THE PROBLEM

Let B be a nonsingular, projective, complex curve and let S be a ¢nite subset of points
of B. The theorem below was conjectured by Shafarevich and proved by Parshin
(assuming S ¼ ;) and Arakelov (general case) in [P] and [A].

THEOREM P-A. Fix gX 2. There exist only ¢nitely many nonisotrivial families of
smooth curves of genus g over B � S.

Some motivation for the Shafarevich conjecture was that, as Parshin shows in [P],
the Mordell conjecture for function ¢elds (Theorem M below, which had already
been proved by Manin [Ma]) can be obtained as a corollary of the above Theorem
P-A. Moreover, the same implication holds true for the number ¢eld analog of
the conjectures of Shafarevich and Mordell.

THEOREMM. Let K be a function ¢eld and let X be a nonisotrivial curve of genus at
least 2 de¢ned over K. Then X has ¢nitely many K-rational points.

Denote by X ðKÞ the set of K-rational points of X . Let V be a smooth variety
over C and let T be a closed subset of V . De¢ne FgðV ;T Þ as the set of equivalence
classes of nonisotrivial families of smooth curves of genus gX 2 over V � T (see
below).
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The problem studied in this paper is how jFgðV ;T Þj and jX ðKÞj vary asV ,T ,X and
K vary. The case where V ¼ B is a curve and K ¼ CðBÞ is its function ¢eld is treated
¢rst, to obtain uniform versions of Theorem P-A and TheoremM. More precisely, it
will be proved that jFgðB;SÞj and jX ðKÞj are uniformly bounded by a function of g,
the genus of B and the cardinality of S (Theorems 3.1 and 4.2).

The generalizations to higher-dimensional bases are obtained by specializing to
suitable curves in V . We obtain a uniformity result where the varieties V are
quanti¢ed by their degree in some ¢xed projective space (3.5 and 4.4). From
this a more intrinsic uniformity statement is obtained for so-called ‘canonically
polarized varieties’, that is, smooth varieties V with ample canonical bundle
KV . A natural invariant quantifying canonically polarized varieties is the Hilbert
polynomial hðxÞ of the canonical polarization (i.e. hðnÞ ¼ wðK�nV Þ ). In such a case
the cardinalities of FgðV ;T Þ and X ðKÞ are bounded by a function of g, the
Hilbert polynomial hðxÞ, and the canonical degree of T (see Theorems 3.4
and 4.3).

The proof of the Shafarevich conjecture is made of two parts, usually called
‘boundedness’ and ‘rigidity’. We proceed like in [P], giving essentially a relative
version of Parshin’s proof of the boundedness part. To obtain our uniform version,
we combine this with techniques from the modern theory of stable curves and their
moduli. This paper is about families of curves; for the analog of the Shafarevich
conjecture for families of higher-dimensional varieties, see [F] and the very recent
preprint [BV].

We prove the uniform version of Manin’s Theorem as a corollary of such a uni-
form version of the Theorem of Parshin and Arakelov. Another perspective on this
issue was taken by Miyaoka in [Mi], where he indicated how an effective version
of theMordell conjecture could be obtained from the Sakai inequality. Our approach
here is completely different.

It is interesting to compare our results with analogous problems in the arithmetic
setting. The uniformity conjecture for rational points of curves over number ¢elds
remains open, despite much work on the subject, in recent years.

UNIFORMITY CONJECTURE. Fix gX 2. There exists a number NðgÞ such that
for any number ¢eld F there exist at most ¢nitely many curves of genus g, de¢ned
over F , and having more than NðgÞ F-rational points.

This is often called the ‘strong’ Uniformity conjecture, to distinguish it from its
weaker variant, where the number ¢eld is ¢xed. At the moment, they are both
open (nor was anyone able to give evidence for their being false). Interest in
such types of problems was revived after it was proved in [CHM] that the
Uniformity conjectures are a consequence of the so-called Lang diophantine
conjectures (also open) about the distribution of rational points on varieties
of general type.
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1.2. PRELIMINARIES

We work over C. Throughout the paper g, q and s will be nonnegative integers such
that gX 2; B will be a smooth, projective complex curve of genus q and S � B
a subset of cardinality s (unless otherwise speci¢ed).

By a ‘stable’ (respectively ‘semistable’) curve we mean a curve which is stable
(respectively semistable) in the sense of Deligne and Mumford [DM]. If C is a
semistable curve, we denote by Cst the stable model of C. Mg (respectively Mg)
denotes the coarse moduli space of smooth (resp. stable) curves of genus g. The
divisor of Mg parametrizing singular curves is denoted by D. A nodal curve is said
to have genus g if its arithmetic genus is g.

If f : X�!V is a morphism, we denote byXv the ¢ber ofX over v 2 V ; if f: X�!Y
is a V -map, we denote by fv: Xv�!Yv the restriction of f to the ¢ber over v 2 V . By
a ‘family of curves’ we mean a projective, £at morphism X�!V of integral varieties
such that Xv is a curve for every v 2 V , smooth for v in some dense, open subset of V .
A family of curves is called ‘isotrivial’ if all of its smooth ¢bers are isomorphic. A
‘family of stable curves of genus g’ is a family of curves X�!V all of whose ¢bers
are stable curves of genus g.

Given two families of curves f : X�!U and h: Y�!U we say that they are
‘equivalent’ if there is an automorphism a of U and an isomorphism e: X�!Y such
that h � e ¼ a � f . This notion is really necessary only in the case dimU > 1, where
U would typically be V � T (see the introduction).

A ¢bration is a proper morphism f : X�!V such that X and V are smooth
integral varieties and the ¢ber Xv is smooth for v in some open dense subset
of V . A semistable ¢bration is a ¢bration all of whose ¢bers are semistable curves.
Given a semistable ¢bration f : X�!V its stable model is the family Y�!V of
stable curves such that for every v 2 V Yv ¼ Xstv . Y is uniquely determined by
the mapping X�!Pðf�o�nf Þ�!B for nX 3 (where of is the relative dualizing
sheaf).

Given a polynomial pðxÞ we denote by HilbpðxÞ½Pr� the Hilbert scheme
parametrizing closed subschemes of Pr having Hilbert polynomial equal to pðxÞ.
Given a scheme Z and a scheme Y�!Z quasi-projective and £at over Z, we denote
byHilbZ½Y � the Hilbert scheme parametrizing closed, £atZ-subschemes ofY . Given
X�!Z projective and £at over Z, the functor HomZ½X ;Y � of Z-morphisms is
represented by a scheme HomZ½X ;Y � which is described as an open subscheme
of HilbZ½X �Z Y �.

LetX be a curve of genus g, B a curve of genus q and S � B a set of cardinality s; let
fðX ;B;SÞ be a numerical function of X ,B and S. It will be convenient to use the
following terminology.

DEFINITION. f is ‘uniformly bounded’ if there exists a constant cðg; q; sÞ such that
for all X , B, S as above we have fðX ;B;SÞW cðg; q; sÞ. We say that a (¢nite) set is
uniformly bounded if its cardinality is uniformly bounded.
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An example of a uniformly bounded set which is relevant to this paper is the
following. Let eðgÞ be some positive integer depending on g, let CðB;S; eðgÞÞ be
the set of ¢nite coverings of B having degree at most equal to eðgÞ, and rami¢ed
only over S. Then CðB;S; eðgÞÞ is a uniformly bounded set (this would fail in positive
characteristic). The claim, of course, follows from Riemann’s theorem and from the
fact that an element in CðB;S; eðgÞÞ is given by a group homomorphism from
the fundamental group of B n S to the symmetric group on eðgÞ elements.

Let K be a ¢eld containingC, let C be a smooth, irreducible curve de¢ned over K .
De¢ne

QK ðCÞ :¼ fðf;DÞ: D smooth curve of genus X 2 over K;

f: C ! D finite mapg:

So that if gðCÞW 1, thenQK ðCÞ is empty. If instead gðCÞ ¼ 2 thenQK ðCÞ ¼ AutK ðCÞ.
We recall a famous theorem about QCðCÞ:

THEOREM D. QCðCÞ is a ¢nite set. More precisely, there exists a number DCðgÞ
such that for every curve C 2Mg we have jQCðCÞjW DCðgÞ:

The ¢rst assertion is the classical theorem of De Franchis ([D]). The second is a
modern re¢nement, which actually comes with an explicit bound for DCðgÞ. See [AP]
and [K] for current records and related references. We observe that a noneffective
proof of the existence of a uniform bound DCðgÞ (which is all we need here), given
the theorem of De Franchis, is a simple application of the existence of Hilbert
schemes. We need a uniform version over function ¢elds.

PROPOSITION 1.1. Fix gX 2. There exists a number DðgÞ such that for any function
¢eld K and for any smooth curve X of genus g de¢ned over K we have jQK ðX ÞjW DðgÞ:

Remark. We shall see that DðgÞ ¼ DCðgÞ.

Proof.Let ðfi;YiÞ 2 QK ðX Þ be distinct elements, for i ¼ 1; :::;N. By contradiction,
suppose that N > DCðgÞ. We need the following

CLAIM. Let B be an integral scheme, let X, Y 1 and Y 2 be families of stable curves of
genus at least 2 over B. For i ¼ 1; 2, let fi: X�!Yi be ¢nite B-morphisms. Then there
exists an open subset U of B such that 8b 2 U, f1

b 6¼ f2
b.

If f1
¼ f2 we take U ¼ ;, hence we shall assume that the two morphisms are dis-

tinct. The Lemma is also clear if Y 1 and Y 2 are not ¢berwise isomorphic. Suppose
then that 8b 2 B we have Y 1

b ffi Y
2
b . This does not imply that the total spaces are

isomorphic. Suppose ¢rst that they are, so that Y 1 ffi Y 2 ffi Y then fi determines
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a map Fi: B�!HomB½X ;Y � de¢ned by FiðbÞ ¼ fib. Clearly f1
b ¼ f2

b if and only if
F1ðbÞ ¼ F2ðbÞ, since F1ðBÞ \ F2ðBÞ is closed we are done.

Now the general case. Given that Y 1 and Y 2 are ¢berwise isomorphic, we can
construct a natural covering of B where they become isomorphic. This will be de¢ned
by the scheme over B IsomB½Y 1;Y 2��!B; representing the functor of
B-isomorphisms of the two families. It is well known that IsomB½Y 1;Y 2��!B is
a ¢nite and unrami¢ed map (cf [DM]). Let B0 be a connected component dominating
B and let X 0;Z1;Z2 be the base changed families of X Y 1, and Y 2 respectively. Now
Z1 ffi Z2 over B0. Let wi: X 0�!Zi for i ¼ 1; 2 be the pull-back of fi. By the previous
discussion, there exists an open subset U 0 � B0 where w1 and w2 have distinct
restrictions on the ¢bers. Since B0 is ¢nite over B, the image of U 0 in B is open,
and we are done.

Let then Ui;j be the open subset of B such that 8b 2 Ui;j we have fib 6¼ fjb. For i 6¼ j
we have that Ui;j is not empty. Let U :¼

T
1W i<jWN Ui;j; of course U is open and

non empty. Let b 2 U , then by construction we have N distinct elements
ðfib;Y

i
bÞ in QCðXbÞ. But N > DCðgÞ, while by the re¢nement of the theorem of

De Franchis over the complex numbers we know that jQCðXbÞjW DCðgÞ. We reached
a contradiction. &

2. Boundedness Results for Stable Families

The following set up will be ¢xed throughout the section. Let f : X�!B be a
nonisotrivial family of stable curves of genus g. The surface X needs not be smooth:
it will be normal with isolated singularities of type xy ¼ tn at the nodes of the ¢bers.
We shall consider the relatively minimal desingularization r: Y�!X of X , with
its natural map h ¼ f � r: Y�!B. Then h: Y�!B is a semistable ¢bration. We shall
denote by S � B the set parametrizing singular ¢bers (of both f and h), and we
denote s :¼ jSj.

A large part of the material of this section is adapted from [P] and [S]. Recall that,
by Arakelov’s Theorem,of is an ample line bundle (since the family is not isotrivial).
It easily follows that oh is a big and nef line bundle on Y .

All the results of this section hold uniformly for any smooth complex curve B of
genus q and for any stable, nonisotrivial family f : X�!B of curves of genus g having
at most s singular ¢bers. We shall not repeat this in every statement.

LEMMA 2.1. Let gX 2; q; e be ¢xed integers. There exists a number nðg; q; eÞ such
that for any line bundle E 2 PicB with degE ¼ e and for any nX nðg; q; eÞ:

(1) o�nf � f
�E is ample;

(2) o�nh � h
�E is nef and big.

Remark. The bound above does not depend on the number of singular ¢bers.
Proof. Clearly (2) follows from (1). To prove (1) we use the Nakai Moishezon

criterion (which holds for a normal surface). Denote Ln ¼ o�nf � f
�E; it is easy
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to see that if eX 0 then Ln is ample for all nX 1, hence we can assume that e < 0. We
have L2

n ¼ n
2o2

f þ 2neð2g� 2Þ and, since o2
f X 1, if n > �2eð2g� 2Þ we have that

L2
n > 0.
Let now C be an integral curve in X , then of � C > 0 because of is ample. If C is

contained in a ¢ber, Ln � C ¼ o�nf � C > 0:
Suppose now that fjC : C�!B is a ¢nite map. We need the fact that there exists

n0ðg; q; eÞ such that if mX n0ðg; q; eÞ, then Lm is effective.
Before proving this, let us see how it implies the Lemma. Let

Lm ¼ Oð
P
riCiÞ � OðV Þ such that V is an effective divisor supported on the ¢bers

of f , ri > 0 and Ci are irreducible curves that cover B via f .
If C 6¼ Ci, then Lm � CX 0, as sum of intersections of effective, irreducible divisors

with distinct supports; therefore Lmþh � C > 0 for every hX 1.
If C ¼ Ci, then degf fjC : C�!BgWmð2g� 2Þ; hence

Lm � CXmðof � CÞ þ emð2g� 2Þ > emð2g� 2Þ:

Therefore if h > �emð2g� 2Þ we have that Lmþh � C > 0. It remains to prove that
there is n0ðg; q; eÞ such that Lm is effective for mX n0ðg; q; eÞ.

For nX 2, R1f�Ln ¼ 0 hence

wðLnÞ ¼ wðf�LnÞ ¼
n
2

� �
ð12l� dÞ þ l� ð2n� 1Þð�eþ q� 1Þðg� 1Þ;

where we used the formula

deg f�onf ¼
n
2

� �
ð12l� dÞ þ l for nX 2

proved in [Mu] (see [Mu] for the de¢nition of l and d). Then, if q 6¼ 0,

wðLnÞX
n2

2
ð12l� dÞ � n

12l� d
2
þ 2ðq� eþ 1Þðg� 1Þ

� �

(recall that we are assuming e < 0). We conclude that if n > 1þ 4ðq� eþ 1Þðg� 1Þ
and qX 1, we have wðLnÞ > 0; we leave it to the reader to ¢nd the bound if q ¼ 0.

It is easy to see that h2ðX ;LnÞ ¼ 0 (see the proof of Corollary 2.3(c) below) and
hence H0ðX ;LnÞ 6¼ 0 for such a choice of n. &

Let oX be the dualizing sheaf of X . We need a basic lemma:

LEMMA 2.2. Let f : X�!B be a family of stable curves. Let A 2 PicX be a relatively
very ample line bundle. Then A is very ample on X if, for any line bundle M 2 PicB
such that degM ¼ �1;�2, we have that A� o�1X � f

�M is nef and big.
Proof. It is well known that A is very ample if and only if for every pair of (not

necessarily distinct) points p and q in X , we have that H1ðX ;A� IpÞ ¼
H1ðX ;A� I p � IqÞ ¼ 0: Let Fp and Fq be the ¢bers of f passing through p and
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q respectively. We have exact sequences:

0�!A� IFp�!A� Ip�!Ip � AjFp�!0

and

0�!A� IFpIFq�!A� I p � Iq�!I qI p � AjFp[Fq�!0:

Since A is relatively very ample, we have

H1ðFp; I p � AjFp Þ ¼ H
1ðFp [ Fq; IqI p � AjFp[Fq Þ ¼ 0

for every p and q in X . Therefore, to show that A is very ample, it is enough to prove
that

H1ðX ;A� IFpÞ ¼ H
1ðX ;A� IFp � IFqÞ ¼ 0;

that is, it is enough to prove that for every line bundleM on B of degree equal to �1
or �2 we have H1ðX ;A� f �MÞ ¼ 0.

By Serre’s duality,H1ðX ;A� f �MÞ ffi H1ðX ;oX � ðA� f �MÞ
�1
Þ
�1. We conclude

by the Kawamata^Viehweg vanishing theorem, which can be applied to our surface
X (see [V] 2.35). According to this theorem, if L is nef and big, then
H1ðX ;L�1Þ ¼ 0; we apply it to L ¼ o�1X � A� f

�M, and conclude the proof. &

COROLLARY 2.3. Fix gX 2 and q. There exists an integer n0ðg; qÞ such that for
nX n0ðg; qÞ,

(a) onf is very ample on X.
(b) H1ðX ;onf Þ ¼ H

1ðY ;onhÞ ¼ 0.
(c) H2ðX ;onf Þ ¼ H

2ðY ;onhÞ ¼ 0.

Remark. (a) is in [S] (Lemme 9). We include a proof as it only takes two further
lines added to what we have already proved. Observe also that from Matsusaka’s
big theorem one derives that there exists a constant k0 depending on the Hilbert
polynomial wðonf Þ such that onf is ample for nX k0. This is a weaker version of
ðaÞ below, as k0 depends on g; q and s.

Proof. By Lemma 2.2, onf is very ample if on�1f � f �ðM � K�1B Þ is nef and big for
every M of degree �1 or �2 on B. Then we apply Lemma 2.1 and obtain (a).

(b) follows from Lemma 2.1 and the Kawamata^Viehweg vanishing theorem (see
above) applied to the line bundle on�1f � f �K�1B . Similarly for oh.

It is enough to prove (c) for oh. By Serre duality

H2ðX ;onhÞ ¼ H
0ðX ;o�ð1�nÞh � h�KBÞ

now o�ð1�nÞh � h�KB � Xb < 0 for nX 2. Since X 2
b ¼ 0 we obtain that o�ð1�nÞh � h�KB

cannot possibly be effective. &
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LEMMA 2.4. o2
h and wðOY Þ are uniformly bounded.

Proof.The ¢rst part of the statement is in [S], The¤ ore' me 3, where, more precisely, it
is proven that o2

hW 8gðg� 1Þðq� 1þ ðs=2ÞÞ. The uniform boundedness of wðOY Þ
follows from [P] Proposition 1. &

COROLLARY 2.5. Fix n so that 2.3 holds. Then there exists a number r0 ¼ r0ðg; q; sÞ
such that h0ðX ;onf ÞW r0.
Proof. It is suf¢cient to show the statement for onh. We have by Riemann^Roch

and by Corollary 2.3

h0ðY ;onhÞ ¼ wðonhÞ ¼ wðOY Þ þ
n2o2

h � nðoh � KY Þ
2

and

ðoh � KY Þ ¼ o2
h þ oh � h�KB ¼ o2

h þ ð2g� 2Þð2q� 2Þ > ð2g� 2Þð2q� 2Þ:

We conclude by using the previous result. &

The above analysis can be now applied to perform a useful construction. Fix
nX n0ðg; qÞ so that Corollary 2.3 holds, and let d ¼ nð2g� 2Þ. Given f : X�!B,
the line bundle onf determines an embedding f: X ,!Pr ¼ PðH0ðX ;onf Þ

�
Þ, where

rW r0ðg; q; sÞ as in Corollary 2.5 above. For every b 2 B, the ¢ber Xb is mapped
isomorphically by f to a curve spanning a linear subspace Pk � Pr, where
k ¼ d � g. In fact, H1ðX ;onf � IXb Þ ¼ 0, because we have chosen n so that
onf � IXb is ample (see the proof of Corollary 2.3).

Let pðxÞ ¼ dx� gþ 1, ¢xPr as above and consider the Hilbert schemeHilbpðxÞ½Pr�

with its universal curve Y � HilbpðxÞ½Pr� �Pr; we now introduce the following
subscheme of HilbpðxÞ½Pr�

Jr :¼ fh 2 HilbpðxÞ½Pr�: Yh is stable and spans a Pk; o�nYh ffi OPkð1Þ � OYhg;

where Yh denotes the ¢ber over h 2 HilbpðxÞ½Pr� of the universal curve. We denote the
locus of singular curves by Dr � Jr.

LEMMA 2.6. Jr is a smooth, irreducible, quasi-projective variety of dimension
rðkþ 1Þ þ kþ 3g� 3. Dr is a reduced divisor with normal crossings singularities.
Proof. If k ¼ r we denote Jr ¼ Hg; this is the subset of the Hilbert scheme

parametrizing stable curves embedded by the n-canonical linear series; since
r ¼ d � g, these curves are not contained in any hyperplane. The geometry of
Hg is well understood, in fact the geometric invariant theory quotient of Hg by
the natural action of SLðrþ 1Þ is identi¢ed with Mg. Results of [G] give our state-
ment for r ¼ k. If k < r there is a natural surjective morphism l: Jr�!Gðk; rÞ where
Gðk; rÞ is the Grassmannian of k-dimensional linear subspaces in Pr. The map l
maps the point h to the linear span of the ¢ber Yh in Pr. Its ¢bers are all isomorphic
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to Hg. To conclude just notice that Gðk; rÞ is a smooth and irreducible projective
variety of dimension ðkþ 1Þðr� kÞ. &

The embedding f: X ,!Pr de¢ned above de¢nes a morphism F: B�!Jr. Fix a pro-
jective model B � Jr � Ps and let G be the graph of F, so that G � B � Jr � Ps.

LEMMA 2.7. There exists e0ðg; q; sÞ such that degGW e0ðg; q; sÞ.

This is essentially Lemma 5 in [P]. To adjust Parshin’s proof to our situation, one
needs to consider heights with respect to the polarization given by onf rather than
K6
X . Effective versions of such a result are given in [EV], for example, or in the more

recent [T] where other relevant references are given.

3. Uniform Versions of the Theorem of Parshin and Arakelov

3.1. ONE-DIMENSIONAL BASE

Fix B a curve and S � B as usual.

DEFINITION. Let FgðB;SÞ to be the set of equivalence classes of nonisotrivial
¢brations f : X ! B, with X a smooth, relatively minimal surface and, for all
b 62 B, Xb is a smooth curve of genus g.

By the existence and unicity of relatively minimal models over B for ¢brations
of genus g over an open subset of B, this de¢nition is consistent with the one
given in the introduction for FgðV ;T Þ. The goal of this section is the following
result:

THEOREM 3.1. Fix gX 2, q and s. There exists a number Pðg; q; sÞ such that for any
curve B of genus q and for any subset S � B of cardinality s, we have
jFgðB;SÞjW Pðg; q; sÞ.

There are few cases where the theorem is already known (see [B]): if q ¼ 0 and sW 2,
then FgðP

1;SÞ ¼ ; for every g; if q ¼ 1 and S ¼ ; again for every g, FgðB; ;Þ ¼ ;.
This fact allows us to ignore the equivalence relation for families over B (all
automorphism groups being uniformly bounded).

The theorem is proved in three steps. First we show that for every pair ðB;SÞ as
above, the set of nonconstant morphisms c: B�!Mg such that c�1ðDÞ � S and such
that c is the moduli map (see below) for some family of stable curves over B, is
uniformly bounded. Then we show that for any ¢xed c the set of families having
c as moduli map is uniformly bounded. Finally, we reduce the general case to
the stable case.
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The ¢rst part is a consequence of the construction of a moduli space for moduli
maps of curve of genus q to Mg. Let N be a coarse moduli space (for example,
N ¼Mg or N ¼Mg).

DEFINITION. A morphism c: B�!N is a ‘moduli map’ if c is nonconstant and if
there exists a family f : X�!B of objects parametrized by N such that
c: b 7!½Xb� is the moduli map of f .

Clearly, if N is a ¢ne moduli space, every nonconstant map is a moduli map. We
denote M½B; g� (respectively, M½B; g�) the set of moduli maps from B to N ¼Mg

(respectively, N ¼Mg). Let S be a ¢nite subset of B, denote by M½ðB;SÞ; g� the
set of all moduli maps c of B to Mg such that c�1ðDÞ � S. That is, M½ðB;SÞ; g�
is the set of moduli maps with degeneracy locus contained in S; it is a ¢nite set,
by the theorem of Parshin and Arakelov.

PROPOSITION 3.2. Fix gX 2, q, and s. There exists a number P0ðg; q; sÞ such that for
any curve B of genus q and any ¢nite subset S � B of cardinality s we have
jM

�
ðB;SÞ; g

�
jW P0ðg; q; sÞ:

Proof. In the relative setting, let h: B�!Z be a projective morphism of integral
varieties (we can assume it to be smooth). We shall say that a Z-morphism
C: B�!N � Z is a moduli map over Z if there exists a family X�!B such that
8z 2 Z the restriction cz: Bz�!N � fzg is the moduli map for the family Xz�!Bz.

We are mainly interested in the following variant. Given h: B�!Z as above, con-
sider the special case in which h is a family of smooth curves. In addition, assume
that h has s nonintersecting sections si: Z�!B with h � si ¼ idZ for every
i ¼ 1; . . . ; s. Denote s ¼ fs1; . . . ; ssg, S ¼ [siðZÞ � B, for z 2 Z denote by Sz the
¢nite subset of Bz given by fs1ðzÞ; . . . ; ssðzÞg. Consider the Z-set
MZ½ðB; sÞ; g��!Z whose ¢ber over z 2 Z is the set M½ðBz;SzÞ; g�.

As a set, the above space of moduli maps with ¢berwise ¢xed degeneracies is
naturally a subset

MZ½ðB; sÞ; g� � HomZ
�
B;Mg �Z Z

�
:

We are going to show that MZ½ðB; sÞ; g� is a ¢nite union of irreducible,
quasi-projective varieties; to do that we construct an auxiliary parameter scheme
A which has a natural morphism to HomZ

�
B;Mg �Z Z

�
, whose image we shall

identify with MZ½ðB; sÞ; g�.
Let Jr be as de¢ned at the end of the previous section and let J r :¼ Jr � Z. De¢ne

HomZ
�
ðB; sÞ;J r

�
to be the subscheme of HomZ½B;J

r� parametrizing morphisms F
such that F�1ðDr � ZÞ � S and such that 8z 2 Z the restriction fz: Bz�!J

r � fzg
is not constant. There is an inclusion of schemes

HomZ
�
ðB; sÞ;J r

�
,!HilbZ

�
B �Z J

r�
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associating its graph to a morphism. Since B is projective over Z, for a ¢xed integer e
we can consider the quasi-projective scheme over Z parametrizing morphisms of
degree e, that is we consider

Home
Z

�
ðB; sÞ;J r

�
,!Hilb

ex�qþ1
Z

�
B �Z J

r�:
Let

A :¼
[
rW r0

[
eW e0

Home
Z

�
ðB; sÞ;J r

�
;

where e0 ¼ e0ðg; q; rÞ and r0 ¼ r0ðg; q; rÞ are as in Lemma 2.7 and Corollary 2.5,
respectively. A is thus a scheme of ¢nite type over Z. We now show that A carries
a natural family of moduli maps to Mg, with ¢xed degeneracies. This follows from
the functorial properties of the various moduli spaces involved. We have a diagram
of objects an morphisms over Z:

A ,!
i

HilbZ
�
B �Z J

�
x?? x??
G �!

j
C ,! B�J �HilbZ

�
B �Z J

�
x?? x?? x??

A� B  � W �! D ,! B� Y �HilbZ
�
B �Z J

�
;

where J is the disjoint union of J r, for rW r0 , Y�!J is the universal family, and
the Hilbert scheme is de¢ned correspondingly. We denoted G ¼ i�C and
W ¼ j�D. The above diagram yields

W �! A�Z B??y ??y
A �! Z  � B

so that for every a 2 A, if z is the image of a in Z and Bz is the ¢ber of B over z, the
restrictionWa�!fag � Bz is a family of stable curves of genus g with singular ¢bers
over ða; siðzÞÞ for i ¼ 1; . . . ; s. Therefore, the above diagram can be viewed as an
element of HomZ

�
B;Mg �Z Z

�
ðAÞ and as such it determines a unique morphism

b: A�!HomZ
�
B;Mg �Z Z

�
: Now Imb is a ¢nite union of quasi-projective schemes

over Z and, by construction, it is a subset of the set of moduli maps with ¢xed
degeneracies, that is Imb �MZ½ðB; sÞ; g�: To show that the above inclusion is in
fact an equality of sets we apply the results of the previous section. Given a moduli
map c: B�!Mg, let f : X�!B be the corresponding family of stable curves. By
the construction at the end of Section 2 we can associate to such data a morphism
from B to Jr (canonically up to an action of the PGLðrþ 1Þ); this determines a unique
point in A � HomZ

�
ðB; sÞ;J r

�
whose image via b is the given ½c�.

To conclude the proof of the proposition, we shall apply the above construction to
a suitable h: B�!Z with s sections. Suitable means that Z must be some ¢ne moduli
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space for curves of genus q with s marked points. There are various choices for this,
for example, Z ¼MN

q;s, the moduli space of smooth curves of genus q, with smarked
points, and level NX 3-structure. For every pair ðB;SÞ as above, there exists a (not
necessarily unique) point z 2 Z corresponding to such a pair (that is, Bz ¼ B and
fs1ðzÞ; . . . ; snðzÞg ¼ S). Now MZ½ðB; sÞ; g� is a ¢nite union of irreducible
quasi-projective varieties over Z and its ¢ber over the point z is M

�
ðB;SÞ; g

�
(for

every z 2 Z). By the theorem of Parshin and Arakelov,MZ½ðB; sÞ; g� has ¢nite ¢bers
over Z; therefore there exists an upper bound P0ðg; q; sÞ on the cardinality of the
¢bers. &

This concludes the ¢rst part of the program to prove Theorem 3.1. The discussion
that follows is needed in order to handle curves with automorphisms. We start with
a general fact about moduli maps over a general base scheme which will be useful
later. Let V be a ¢xed quasi-projective variety of any dimension, assume that V
is irreducible and smooth, and let c: V�!Mg be a morphism such that
Imc \Mg 6¼ ;.

DEFINITION. Let Fc be the set of all equivalence classes of stable families
f : X�!V such that for every v 2 V , Xv is stable and cðvÞ ¼ ½Xv�.

LEMMA 3.3. For every V and c as above, jFcjW DðgÞ.
Proof. Let f i: Xi�!V , i ¼ 1; . . . ; n, be distinct elements of Fc, and assume, by

contradiction, that n > DðgÞ (see 1.1). The families f i are ¢berwise isomorphic.
We construct a covering V 0�!V over which they are all isomorphic to a certain
family X�!V 0. Let Vi :¼ IsomV ðXi;XnÞ so that Vi has a natural, ¢nite morphism
to V (Theorem 1.11 of [DM]). Replacing Vi with a connected component
dominating V will not alter the argument. Let Xi1 :¼ X

i �V V1 for i ¼ 1; . . . ; n.
Then X1

1 ffi X
n
1 over V1. Moreover, for each i there is a natural commutative

diagram

Xi1 �! Xi

f i1

??y ??y f i
V1 �! V

and over V1 we have n� 1 different families f i1. Iterate this construction to get
V 0�!V . We have a commutative diagram for every i ¼ 1; . . . ; n

X �!
fi

Y i �! Xi??y ??y ??y
V 0 ¼ V 0 �! V ;

where Yi ¼ Xi �V V 0 and fi is an isomorphism. By assumption, fi 6¼ fj, we thus
obtain n > DðgÞ distinct elements in QK ðX Þ (K being the function ¢eld of V 0), which
is not possible, from Proposition 1.1. &
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Proof of Theorem 3.1. Denote by FgðB;SÞ
s the subset of FgðB;SÞ consisting of

semistable ¢brations. We use curves with level structure to show that there is a map

l: FgðB;SÞ�![ FgðB0;S0Þs;

where the union is for ðB0;S0Þ varying in a uniformly bounded set, and the ¢bers are
uniformly bounded sets.

Fix NX 3 and letMN
g be the moduli space of stable curves of genus g with level N

structure. This is a ¢ne moduli space, endowed with a universal family CNg �!M
N
g and

with a ¢nite morphism to Mg. Let ½ f : X�!B� 2 FgðB;SÞ, we have a commutative
diagram

Z �! C
N
g??y ??yh

X 0 �!
f 0

B0 �!
c0

M
N
g??y ??yr
??y

X �!
f

B �!
c

Mg

where f 0 is the rigidi¢cation of f by level N structures, so that r is a ¢nite morphism
which is e¤ tale with group Spðg;Z=nZÞ away from S. Therefore r, which depends
on f , varies in a uniformly bounded set as f varies. Let S0 ¼ r�1ðSÞ.

Away from singular ¢bers, c0 is the moduli map of f 0, so that the pull back Z of CNg
to B0 is naturally birational toX 0 over B0 (in factZ is isomorphic toX 0 away from S0).
The family Z�!B0 is a stable reduction of f .

Now we de¢ne l by sending the ¢bration f : X�!B to the relatively minimal
semistable ¢bration obtained by resolving the singularities of the stable family
Z�!B0. The previous discussion shows that the union de¢ning the range of l is
over ðB0;S0Þ varying in a uniformly bunded set; in addition, the ¢bers of l are
uniformly bounded, by Proposition 1.1.

It remains to show that FgðB;SÞs is uniformly bounded. There is a surjection

FgðB;SÞ
s
�!M

�
ðB;SÞ; g

�
f 7! cf ;

where cf ðbÞ ¼ ½X
st
b �, that is to say, cf is the moduli map of the stable model of

X�!B. From Proposition 3.2,M
�
ðB;SÞ; g

�
is uniformly bounded. Since the smooth,

relatively minimal model is unique, the ¢ber of the above map over cf ¼ c is
naturally in bijective correspondence with Fc. But Fc is uniformly bounded by
Lemma 3.3, the Theorem is thus proved. &

3.2. HIGHER DIMENSIONAL BASE

We apply the results of Theorem 3.1 to families of curves parametrized by smooth,
projective, integral varieties V of arbitrary dimension. The ¢rst issue is how to
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quantify the base spaces, so as to obtain analog uniformity statements.We proceed as
follows: ¢x a polynomial h 2 Q½x� such that hðZÞ � Z. LetMhðxÞ be the moduli space
of smooth projective varieties V having ample canonical line bundle KV and such
that wðK�nV Þ ¼ hðnÞ It is well known (see [V]) thatMhðxÞ is a quasi-projective scheme,
called the moduli space of ‘canonically polarized’ varieties. For example, if
deg h ¼ 1, in order for MhðxÞ not to be empty one needs that there exist an integer
qX 2 such that hðxÞ ¼ ð2q� 2Þx� qþ 1 and MhðxÞ is equal to the moduli space
of curves of genus q. We have the following generalization of Theorem 3.1:

THEOREM 3.4. Fix nonnegative integers gX 2 and s and ¢x a polynomial h as above.
There exists a number Pðg; h; sÞ such that for any V 2MhðxÞ, for any closed T � V such
that KdimV�1

V � TW s there exist at most Pðg; h; sÞ equivalence classes of nonisotrivial
families of smooth curves of genus g over V � T.
Proof. The proof follows from a more general uniformity statement for polarized

varieties (Lemma 3.5 below). First, we use Matsusaka’s big Theorem and ¢x an
integer n ¼ nðhÞ depending on the Hilbert polynomial h such that for every nX n
and for every V 2MhðxÞ, the line bundle K�nV is ample. By the vanishing Theorem
of Kodaira, it follows that h0ðV ;K�nV Þ ¼ hðnÞ for n > n and for every V 2MhðxÞ.
Fix then n > n and let r ¼ hðnÞ � 1; we ¢x a projective space Pr such that for every
V 2MhðxÞ, the line bundle K�nV determines a projective model of V in Pr having
degree d determined by h (in fact, d equals the leading coef¢cient of h, multiplied
by dimV !). The Theorem follows from the following lemma:

LEMMA 3.5. Fix g, d, r and s integers; there exists a number Hðg; d; r; sÞ satisfying the
following property. For any smooth projective variety V � Pr of degree d and for any
subvariety T � V of degree s, there exist at most Hðg; d; r; sÞ equivalence classes of
nonisotrivial families of smooth curves of genus g over V � T.
Proof. There exists a number q ¼ qðd; rÞ such that V is covered by smooth curves

B of genus at most q passing through any of its points. In fact, such B are just
onedimensional linear sections of V , that is, they are obtained by intersecting V
with the correct number of generic hyperplanes in Pr. By a theorem of Castelnuovo
(see [ACGH] III.2), the genus of a smooth curve of degree d in Pr is bounded above
by a function qðd; rÞ of d and r. In addition, any such B intersects T in at most
s points. Let

P ¼ max
q0W q;s0W s

fPðg; q0; s0Þg

(see Theorem 3.1 for the de¢nition of Pðg; q; sÞ). LetU ¼ V � T . We show thatU has
at most P moduli maps to Mg. By contradiction, suppose that for n > P there exist
c1; . . . ;cn different such moduli maps. Thus, for every i there exists a nonisotrivial
family of smooth curves Xi�!U having ci: U�!Mg as a moduli map. There exists
a dense open subset U 0 � U such that for every u in U 0 we have ciðuÞ 6¼ cjðuÞ. From
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the previous discussion, there exists a smooth curve B of genus at most q such that the
restrictions of Xi to B are distinct, nonisotrivial families of smooth curves over
B � S, where S :¼ ðT \ BÞred . Let fi: Y

i�!B be the smooth relatively minimal model
of XijB over B. Then ½ fi� 2 FgðB;SÞ and ½ fi� 6¼ ½ fj�. Since S has cardinality at most s,
FgðB;SÞ has at most P elements; we reached a contradiction.

To conclude the proof of the Lemma, ¢x c: U�!Mg any such a moduli map;
Lemma 3.3 shows that there exist at most DðgÞ families of curves over U having
c as moduli map. We can conclude that the number of equivalence classes of
nonisotrivial families of smooth curves of genus g over U is bounded above by
Hðg; d; r; sÞ ¼ DðgÞ � P. &

Remark. In particular we obtained, of course, that for every pair ðV ;T Þ, the set
FgðV ;T Þ is ¢nite.

4. Uniformity of Rational Points of Curves over Function Fields

4.1. PARSHIN’S CONSTRUCTION REVISITED

We deal here with a well known construction of Parshin, the goal of which was to
show that the Shafarevich conjecture implies the Mordell conjecture. Fix a curve
B, a ¢nite subset S � B and let K be the ¢eld of rational functions of B; let
f : X�!B be a nonisotrivial ¢bration having smooth ¢ber away from S.

Remark. By the existence and unicity of minimal models for (nonruled) smooth
surfaces, giving f : X�!B is the same as giving the generic ¢ber of it. Therefore
we shall abuse the notation slightly and denote by X ðKÞ the set of sections of f ,
identifying it with the set of rational points.

The goal of Parshin’s method is to obtain a map aX : X ðKÞ�! [ Fg0 ðB0;S0Þ ¼: PX
such that the union on the right is over a ¢nite set. The construction is such that
aX has ¢nite ¢bers. The Shafarevich conjecture (i.e. the Parshin^Arakelov Theorem)
gives that FgðB;SÞ is always a ¢nite set. Therefore X ðKÞ is ¢nite.

We will revise Parshin’s method to show that, as X and B vary among curves with
¢xed genus g and q, and S varies among sets of ¢xed cardinality s:

(1) the ¢bers of aX are uniformly bounded,
(2) the union de¢ning PX is over a uniformly bounded set.

From Theorem 3.1, the sets FgðB;SÞ are uniformly bounded. We shall hence con-
clude that rational points are uniformly bounded.

Let s 2 X ðKÞ be a K-rational point of X , so that s can be viewed as a section
s: B�!X of f : X�!B. Let S ¼ sðBÞ be the image curve. We are going to
construct a ¢nite covering r: B0�!B, rami¢ed only over S, a ¢bration Y 0�!B0 with
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a commutative diagram

Y 0 �! X
f 0
??y ??yf
B0 �!

r
B

such that every ¢ber Y 0b0 is a ¢nite covering of Xb (b ¼ rðb0Þ) which rami¢es only over
sðbÞ. The goal is to carry this out so that all numerical invariants of the new family
are bounded with q, g and s. We here provide a brief account, see [S] or [P] for
the missing details.

The section s gives a map u: X�!Pic0X=B de¢ned by uðxÞ ¼ x� sð f ðxÞÞ.
Multiplication by 2 in Pic0X=B yields a covering of X over B, which, away from
singular ¢bers, is e¤ tale of degree 22g. Let Y be a connected component of such
covering, we get a new family of curves of genus gðY ÞW 1þ 22gðg� 1Þ; for
b 62 S, each ¢ber Y 0b is an e¤ tale covering of the corresponding ¢ber Xb. Let D
be the preimage of S in Y . Then D is e¤ tale of degree at most 22g over B n S.

There exists a covering B1�!B of degree at most 22gð22g � 1Þ, rami¢ed only over S
such that on the relatively minimal desingularization Y1 of B1 �B Y there are two
disjoint sections s1 and s2 with Si ¼ Imsi mapping to D via the natural morphism
Y1�!Y .

One can construct a further covering B2�!B1, rami¢ed only over the preimage of
S, such that on Y2 ¼ Y1 �B1 B2 the line bundle OY2ðG1 þ G2Þ, given by the the
pull-back of S1 þ S2 admits a square root. Such a B2 is obtained by ¢rst mapping
B1 to Pic0Y1=B1 via b 7!s1ðbÞ � s2ðbÞ, and then by considering the multiplication
by 2 map Pic0Y1=B1�!Pic0Y1=B1 and de¢ning B2 ¼ B1 �Pic0Y1=B1

Pic0Y1=B1

(replacing B2 by a connected component dominating B1 if necessary).
This ensures (after a further degree-2 base change rami¢ed over singular ¢bers)

that there exists a double covering Y3�!Y2 having branch locus G1 þ G2. Finally,
let Y 0 be the relatively minimal resolution of Y3 over B2, let B0 ¼ B2, let
r: B0�!B be the covering map and let S0 ¼ r�1ðSÞ. Then f 0: Y 0�!B0 is the family
we wanted; by construction the ¢bers of Y 0 away from S0 are coverings of the ¢bers
of f of degree dividing 22gþ1, having two simple rami¢cation points lying over
S. Hence gðY 0ÞW 2þ 22gþ1ðg� 1Þ, let gðgÞ ¼ 2þ 22gþ1ðg� 1Þ. r is a covering of
degree bounded above by a function of only g and s, and rami¢ed only over S;
let S0 ¼ r�1ðSÞ, then the pair B0;S0 belongs to a uniformly bounded set I of
cardinality at most cðg; q; sÞ (some constant depending only on g; q and s).
Moreover, the genus of B0 is uniformly bounded by a constant qðg; q; sÞ. We shall
de¢ne aX ðsÞ ¼ ½ f 0: Y 0�!B0�.

LEMMA 4.1. There exists a number Aðg; q; sÞ such that for every curve B of genus q,
for every ¢nite subset S � B of cardinality s and for every nonisotrivial ¢bration
X�!B of genus g, having smooth ¢ber outside of S, the ¢bers of the map aX have
cardinality at most Aðg; q; sÞ.
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Proof. Let ½ f 0: Y 0�!B0� be an element in ImaX which lies in Fg0 ðB0;S0Þ. As we have
seen, a K-rational point s 2 a�1X ð½ f

0�Þ determines a commutative diagram of objects
and morphisms

Y 0 �! Y �B B0 �! Y �! X
f 0
??y ??y ??y ??yf
B0 ¼ B0 �!

r
B ¼ B

let r0: Y 0�!X be the composition map above, then s is uniquely determined as the
branch locus of r0. Now, r varies in a uniformly bounded set, as we have just seen.
By Proposition 1.1 so does r0. &

THEOREM 4.2. Fix gX 2 and q. There exists an integer Mðg; q; sÞ such that for every
curve B of genus q, for every S � B with jSjW s, and for every nonisotrivial curve X of
genus g, de¢ned over K ¼ CðBÞ and having smooth ¢ber outside of S, we have
jX ðKÞjW Mðg; q; sÞ
Proof.Maintaining the same notation as before, by the Theorem of Parshin and

Arakelov, PX is a ¢nite set; by the previous Lemma we get
jX ðKÞjW Aðg; q; sÞ � jPX j: It remains to show that PX is unformly bounded. Recall
that PX ¼ [Fg0 ðB0;S0Þ, where the union is over a uniformly bounded set. More
precisely, the union is taken over

(a) g0W gðgÞ;
(b) ðB0;S0Þ varies in a set of cardinality at most cðg; q; sÞ;
(c) q0 ¼ gðB0ÞW qðg; q; sÞ;
(d) s0 ¼ jS0jW sðg; q; sÞ:

By Theorem 3.1, there exists Pðg; q; sÞ such that for every curve B of genus q and
every S of cardinality s we have jFgðB;SÞjW Pðg; q; sÞ.

Hence, letting PMðg; q; sÞ :¼ maxfPðg0; q0; s0Þg for g0, q0 and s0 satisfying (a), (c) and
(d) above, we conclude jPX jWPMðg; q; sÞ � gðgÞ � cðg; q; sÞ: &

4.2. FIELDS OF HIGHER TRANSCENDENCE DEGREE

We obtain as a corollary a uniformity result about rational points of curves over
function ¢elds of any dimension. In [Ma] it is shown that working by induction
on the transcendence degree, the Mordell conjecture for curves over function ¢elds
of any dimension follows from the one-dimensional case. Here we show that, by
specializing to certain curves, from the uniform version given by Theorem 4.2,
one can obtain uniformity statements for function ¢elds of any dimension. We
use the same notation introduced at the end of the previous section, to state and
prove Theorem 3.4.

THEOREM 4.3. Fix nonnegative integers gX 2 and s and ¢x a polynomial h 2 C½x�.
There exists a number Mðg; h; sÞ such that for any V 2MhðxÞ, for any closed
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T � V such that KdimV�1
V � TW s and for any nonisotrivial curve X of genus g, de¢ned

over K, having smooth ¢ber away from T we have jX ðKÞjW Mðg; h; sÞ, where K is the
¢eld of functions of V.
Proof. Exactly as in the proof of Theorem 3.4, one reduces the proof to the state-

ment below.

LEMMA 4.4. Fix g, d, r and s integers; there exists a number Nðg; d; r; sÞ such that for
any smooth irreducible projective variety V � Pr of degree d, for any subvariety
T � V of degree s and for any nonisotrivial family of curves f : X�!V such that
for every v 62 T the ¢ber Xv is a smooth curve of genus g, there exist at most
Nðg; d; r; sÞ rational sections of f .
Proof. As in the ¢rst part of the proof of Lemma 3.5, let q ¼ qðd; rÞ be the maxi-

mum genus of a curve of degree d in Pr. Then V is covered by smooth curves
of genus at most q through any of its points. Any such a curve, call it B, intersects
T in at most s points.

Let

Nðg; d; r; sÞ :¼ max
q0W q;s0W s

fMðg; q0; s0Þg

(see Theorem 4.2) and let us show that f has at most Nðg; d; r; sÞ sections. By con-
tradiction, let n > Nðg; d; r; sÞ and suppose that there exist s1; . . . ; sn distinct sections
of f . Observe that there exists an open, dense subset U of V such that si is regular on
it and for every u 2 U , we have siðuÞ 6¼ sjðuÞ if i 6¼ j.

There exists a curve B of genus at most q as above, such that B \U 6¼ ; and such
that the restriction fB: XB�!B is not isotrivial. fB is a family of curves of genus
g having smooth ¢ber away from the set ðT \ BÞred of cardinality at most s. By
construction, the restrictions of s1; . . . ; sn to B give n distinct sections of fB. This
is a contradiction to 4.2. &
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