
J. Austral. Math. Soc. (Series A) 56 (1994), 17^0

INTEGRATION WITH RESPECT TO VECTOR VALUED
RADON POLYMEASURES

BRIAN JEFFERIES and WERNER J. RICKER

(Received 12 April 1991)

Communicated by P. G. Dodds

Abstract

Problems dealing with certain functional calculi for systems of non-commuting operators, and
ordered calculi for systems of certain types of pseudo-differential operators, can sometimes be
treated via the methods of integration with respect to polymeasures. The polymeasures arising
in this fashion (called Radon polymeasures) often have additional structure not available in
the general theory. This allows for a more extensive class of "integrable" functions than just
the product functions allowed in the abstract theory. The purpose here is to further develop
special aspects of integration with respect to Radon polymeasures with a particular emphasis on
identifying large classes of "integrable" functions.

1991 Mathematics subject classification (Amer. Math. Soc): 28 B 05, 28 C 15.

Introduction

The purpose of this paper is to further develop special aspects of the theory
of integration with respect to a certain class of unbounded, additive set func-
tions called polymeasures - these are defined on a family of subsets of a product
space. In the case of a product of just two sets, the term bimeasure is used. It has
been maintained that "bimeasures are of little importance because any reason-
ably interesting non-negative, [R-valued bimeasure determines a measure in the
product space" [2, page 129]. Although this viewpoint is valid for non-negative
bimeasures, it is no longer the case for bimeasures and polymeasures which
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18 Brian Jefferies and Werner J. Ricker [2]

may assume negative, or complex values. Such polymeasures are increasingly
found in areas as diverse as non-stationary processes [20, 23], harmonic ana-
lysis [9, 11, 12, 23], operator theory [15] and quantum physics [4] (as predicted
in [17]).

Originally, bimeasures were conceived in order to obtain a representation for
certain types of bilinear mappings [19]. In the subsequent theory of integration
with respect to bimeasures and polymeasures, as developed by Ylinen [24] and
Dobrakov (see [7] and the references therein), attention was restricted to the
integration of n -tuples of functions - quite adequate from the view point of
obtaining canonical extensions of multilinear mappings and for applications
to non-stationary processes. However, there are situations when this class of
functions is too small.

The restricted notion of a Radon polymeasure, introduced in [13], is well-
adapted to deal with problems where the only reason that the polymeasure is not
extendible to a measure "lies at infinity". There are many concrete examples of
this phenomenon. Since Radon polymeasures behave locally like measures, they
admit a more extensive class of integrable functions than arbitrary polymeasures.

For instance, suppose that A\ and A2 are linear operators (not necessarily
bounded or commuting) in some Banach space E. Suppose also that, for any
£i, £2 6 IR.. the operator i{$\Ax + %2A2) is densely denned and closable, and its
closure generates a 1-parameter group of surjective isometries on E. Then, for
every C°°-function / : R2 ->• C with compact support, it is possible to define a
bounded operator f{A\, A2) on E via the Fourier inversion theorem

The assignment / —> f(Au A2) is an operator valued distribution, the so called
Weyl calculus of (A!, A2) [ 1 ]. If this distribution is of order zero, then one would
expect the existence of a Radon bimeasure W such that f(Au A2) = /R2 fdW,
where the "integral" is suitably denned. The larger the class of functions
integrable with respect to W, the more functions f(Au A2) of the noncommuting
pair (Au A2) can be formed, that is, the richer functional calculus for (Au A2).

As another example, suppose that Q is the spectral measure associated with
the operator of "multiplication by JC", and P is the spectral measure associated
with i~ld/dx, both acting in L2(IR). Then the product set function QP is
a Radon bimeasure. The "integral" J^dQP, suitably defined, is a pseudo-
differential operator. If f(x, v) = <f>(x)\Jf(y), x, y e Q&, then one would
expect JR2dQP = J^4>dQ. /R \frdP. However, restricting oneself to the class
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[3] Integration and radon polymeasures 19

of product functions produces an artificially small class of pseudo-differential
operators in this case.

It is problems of the above kind which suggest that it is worthwhile to further
develop the theory of integration with respect to Radon polymeasures.

1. Notation and terminology

By a semi-algebra y of subsets of a set fi we mean a collection of sets
containing £2 and 0, closed under finite intersections, and with the property that
if A € y, B € y, then A\B is equal to the union of a finite family of pairwise
disjoint sets £/,-, j = 1 , . . . , k, belonging to y, which are numbered so that if
Uo = A n B, then the union UJL0[/, belongs to ^"for every m = 1,... ,k.

A set function m : y->• C on the semi-algebra ^"is additive if m(A U B) =
m{A) + m{B) for all disjoint sets A, B e 5? such that AU B e y. Let n
denote all finite partitions of the set fi by elements of the semi-algebra y. The
variation \m\ : y ^ [0, oo] of AW is the finitely additive extended-real-valued
function defined by

\m\(A) = sup j J^ \™(A n B)| : 7T e

An y-simple function is a finite linear combination of characteristic functions
of sets from y. The vector space of all ^-simple functions is denoted by
sim (y). The integral sm : y -¥• C of an ^-simple function s with respect to
the additive set function m is defined by linearity, as follows. Suppose that s is
represented as the sum £" = 1 CiXAi with c, e C and At e ^ f o r all i = 1, . . . ,«.
Then for every B & y

sm(B) = ^CjmiAj D B).

The additivity of the set function m on the semi-algebra y ensures that the
definition of the integral sm does not depend on the particular representation of
the simple function 5 as a linear combination of characteristic functions of sets
belonging to y.

The term "locally convex Hausdorff topological vector space" will usually
be abbreviated to "lcs". The vector space of all continuous linear functionals on
E is denoted by E'. If £ € E' and x e E, for convenience we write (x, £) for
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the number £(x). The polar A° of a subset A of £ is the set of all £ e E' such
that |{x, | ) | < 1 for all x G A. Given a topology r o n £ , the vector space E
endowed with the topology r is denoted by Er.

Let E and F be lcs. The algebraic tensor product of E with F is denoted by
E <g) F. The projective topology n on F <g> F is determined by the collection of
seminorms rp,, defined, for each w G F <g> F, by

= i n f

as p and (7 run over collections of seminorms defining the topology of E and F
respectively. The supremum is taken over all representations w = £" = 1 xj <g) yy,
X; G E, y>j € F, j = 1, . . . , «, and « = 1, 2, . . . . The tensor product E <g> F
endowed with the topology n is written as E ®n F. The completion of F ®ff F
is denoted by E®nF. It is a result of Grothendieck [22, Ch. 44] that an
element of E®nF can be represented as a sum X]°li ^-ixj ® Jy where {x,}0^, is
equicontinuous in F, f̂ y}?!, is equicontinuous in F, and {A.,-}?!, is a summable
sequence of real numbers.

If m : y -> F is an additive set function with values in the lcs F, then
for each £ G E', the additive scalar-valued set function {m, | ) is defined by
(/w, £)(A) = (m(A)t) for every A £ y. Similarly, if / : Q ->• F is an F-
valued function, the scalar function (/, £) : Q -> C is defined for each ^ G F'
by </, £)(<u) = (/(<w), t ) for every o> e « .

The case where F is the space ̂ fs(F) of bounded linear operators on a Banach
space F (equipped with the strong operator topology) is of special interest. The
continuous dual of -S^(F) is the space of all finite linear combinations of linear
functionals of the form x (81 £ with x e F and £ G F', where the linear
functional x ® f acts on JSfs(F) by (7, * <8> £) = (Tx, £), 7 G JSf(F). Suppose
that m : y —*• ^ ( F ) is an additive set function. For each x e F, the F-
valued additive set function mx : 5? —>• F is defined by mx(A) = m(A)x,
for every set A G y. It is clear that for each x G F and £ G F', the identity
{mx, £) = (m, JC ® £) holds. Here the brackets on the left refer to the duality
between F and F', and on the right, to the duality between -S^(F) and Jfs(F)'.

Now suppose that ^ i s a a -algebra of subsets of the set Q. Let E be a lcs, and
suppose that m : ^ —> E is a a-additive set function, that is, an F-valued vector
measure. An ^-measurable function / : £2 ->• C is said to be m-integrable if
for every £ G F ' the function / is integrable with respect to the scalar measure

https://doi.org/10.1017/S1446788700034716 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034716


[5] Integration and radon polymeasures 21

(/w, £), and for each A G y there exists a vector fm(A) e £ such that

),?> = f
J A

for every f e £'. Then the set function A ->• fm{A), A e ^ is a vector measure
too, called the indefinite integral of / with respect to m. We sometimes write
fA fdm or fA f(a>)dm(co) for the vector fm(A), A € y, and m( / ) for /m(£2).

An analogous definition is adopted for the integration of vector-valued func-
tions with respect to a scalar measure. Again suppose that ^ is a a-algebra of
subsets of the set £2 and let v : y —*• [0, oo] be a a-finite measure. Let E be
a lcs, and suppose that / : £2 —>• E is an £-valued function. Then / is said
to be v-integrable in E if for every £ e E', the function (/, £) is integrable
with respect to the scalar measure v, and for each A e y there exists a vector
fv{A) e £ such that (/v(A),£) = fA(f, $)dv, for every £ e E'. Then the set
function A —• fv(A), A e yis a vector measure, called the indefinite integral
of / with respect to v. We sometimes write fA fdv or fA f{co)dv{(o) for the
vector fv(A), A e ^"and v( / ) for fv(Q).

Sometimes it is necessary to consider other types of integrals for vector-valued
functions. If / : Q —*• E is the norm limit in the Banach space E of £-valued^-
simple functions (that is, / is strongly measurable), and fQ \\f(a>) \\dv((o) < oo,
then / is said to be Bochner integrable. It turns out that a Bochner integrable
function is integrable in the above sense.

We need to fix some terminology concerning measures defined on the Borel
a-algebra of a Hausdorff topological space X. The relevant results relating to
the measures we consider are set out in [21]. The Borel a -algebra SB(X) of X
is the smallest a-algebra containing every open subset of X.

A a-additive set function /x : 38{X) ->• [0, oo] is said to be a Radon measure
on X if

(i) for every x e X, there exists an open set U containing x such that
ti(U) < oo;

(ii) for every Borel set A contained in X,

(x{A) = sup{/x(A") : K c. A, K is a compact subset of X}

The support of a Radon measure /x : 8$(X) -> [0, oo] is defined by

supp/x = (~){UC : f/is open X, n(U) = 0}.

We shall often say that a Borel measure whose variation has property (ii) is
compact inner regular. A vector measure m : 38(X) —*• E with values in a
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lcs E is said to be compact inner regular if for every Borel set A and every
neighbourhood U of zero in E, there exists a compact subset of K of X such
that K c A, and for every set fi e ^ ( X ) we have w ((A\K) DB) € U. We
also call such a vector measure a (vector-valued) Radon measure.

It follows that v : &{X) -*• C is a Radon measure if both its real and
imaginary parts are Radon measures. Moreover, a cr-additive set function v :
3S{X) ->• C is a Radon measure if and only if its variation | v| : 38(X) -> [0, oo)
is a Radon measure. When it is necessary to emphasise that v may take complex
values, we say that v is a scalar Radon measure.

An important property of Radon measures is that they are determined by their
values on compact sets, which may be seen directly from property (ii). It is not
difficult to show that on a product space, Radon measures are also determined by
their values on compact product sets (see the uniqueness for Henry's extension
theorem in [21, page 51]), even though the cr-algebra generated by the products
of Borel sets need not coincide with the Borel a-algebra of the product space
[21, Chapter 1, Section 9].

2. Radon polymeasures

Let Q{,..., £2n be non-empty sets, and suppose that S^\,... 5?n are a -algebras
of subsets of Qi,..., Qn respectively. The collection of all product sets Ax x
A2 x . . . x An, where A\ e 5f\,..., An e 5?n is a semi-algebra denoted by
x.nj=xS?j. Apolymeasure is an additive set function m : x " = 1 ^ ->• C such that
for each j = 1,2,... ,n, the set function

Aj —> m(Ai x . . . x Aj x . . . An), Aj € J?j

is a -additive for fixed Ak e ^k, k ^ j , and k — 1 ,2, . . . ,« . The semivariation
norm sv(m) of a polymeasure m : x " = 1 ^ —>• C is defined by

sv(ira) = sup {|m(A)| : A e x ; = 1 ^ } .

It follows from the Nikodym boundedness theorem, and induction, that
sv(/n) < oo for any polymeasure m [5, page 490]. The space of polymeas-
ures on the semi-algebra x " = 1 ^ of product sets is denoted by &>M{xn-xS^i).
It is endowed with the semivariation norm under which it becomes a Banach
space. Furthermore, if a sequence of polymeasures converges setwise on the
semi-algebra x "= x ̂ •., then the limit is again a polymeasure; this is a consequence
of the Vitali-Hahn-Saks theorem for measures [3, Chapter 1].
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An additive set function m : x " = 1 ^ ->• E with values in a lcs E called a
polymeasure if for each £ e £', the set function (m,t-) is a polymeasure. It
follows from the Orlicz-Pettis lemma [18, I Section 1 Theorem 3] that m is
separately a-additive in the original topology of E. Indeed, if r is any topology
consistent with the duality between E and E', then m is a polymeasure in Er.

In the case that (E, || • ||) is a normed space, the semivariation norm sv(m)
of a polymeasure m : x"=1^- -> E is defined by

sv(m) = sup {||m(A)|| : A e x ; = 1 ^ } .

The range of m on x "=1 ̂  is a weakly bounded subset of E because, as remarked
above, sv((w, £)) < °° f°r every £ e £". Because weakly bounded subsets of
E are automatically norm bounded, sv(m) < oo.

Let Xi, X2... Xn be Hausdorff topological spaces. The semi-algebra of
products of sets from the Borel a-algebras of these spaces is denoted by

An additive set function m : x"=1^(Xy) -»• C is called a Radon polymeasure
if it is a Radon measure in each component, and its variation is the restriction
to x"=l&(Xj) of a (possibly infinite) Radon measure on the product space
Y\n

j=l Xj• = X\ x X2 x . . . Xn. As pointed out at the end of section one, this
Radon measure is uniquely determined by its values on compact product sets - it
is denoted, again, by \m \. It turns out that for a polymeasure on the semi-algebra
~Xj=l&(Xj) to be a Radon polymeasure, it suffices that it be separately compact
inner-regular, and each point of Y["=i %j n a s a neighbourhood on which the
variation of m is finite [13, Proposition 1 ].

An additive set function m : xJ= 1^(X,) -> E with values in a lcs E is called
a Radon polymeasure if for each £ G E', the set function {m, f) is a Radon
polymeasure. If r is any topology consistent with the duality between E and
E', then m is a Radon polymeasure in ET.

In the following section, we review integration with respect to Radon poly-
measures as outlined in [13], where the concept was introduced.

3. Integration with respect to Radon polymeasures

Let X\, X2, • • •, Xn be Hausdorff topological spaces and let the set function
m : x"=l&(Xj) ->• C be a Radon polymeasure. Given a topological space T,
let ^j denote the family of all compact subsets of T. We have assumed that the
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variation \m\ : xJ=1^(X7) -> [0, oo] of m is the restriction, to the semi-algebra
y."=l&(Xj), of a Radon measure defined on the Borel a -algebra &(Y["j=\ Xj)
of the product space Y["=i %j- Therefore, for every Kj e ^x;. j = 1, . . . ,«, the
restriction \m\KiX,xKn of \m| to the semi-algebra Xj=l^(Kj) is the restriction to
y."=lSS{Kj) of a unique Radon measure defined on &([\j=i Kj)- The uniqueness
is a consequence of the Remark at the end of Section 1. There is no danger of
confusion if we again denote this Radon measure by \m \ K{ x... x Kn • The restriction
of m to Xj=l£$(Kj) is also the restriction of a unique C-valued Radon measure
defined on &(Y["=l Kj). We denote this by mKxX...xKn-

Set K — Y["j=i Kj, w h e r e Kj e 1fXi, j = I, . . . , n , and suppose that L —
Y["=i Lj is a closed subset of K. The Radon measure mK is consistent with mL

in the sense that mK(A) — mL{A) for every Borel set A e ^(Il"=i A/)-
ensured by the equality m(A) =mK(A) = mL(A), valid for all A e xJ
because xn

j=l£8(L}) contains an open base for the topology of ]~["=i Lj. We
also have \m\K(A) = |m|z.(A), for every Borel set A e ^(FI"=i ^;) o n c e w e

establish the identities |mK| = |m|/c and |mL| = |/n|/..
For any compact product set K — \^j=\Kj, the inequality |wi/f|(A) >

\m\(A) — \m\K(A) is immediate for any A € x"=l&(Kj), because on the
left hand side, the variation is calculated from partitions of A with sets in
^(n"=i #,) , and on the right hand side, with sets in xn

j=l3S(Kj). It follows from
the Stone-Weierstrass theorem that every continuous function / : fT? i ^j ~*
C is measurable with respect to the cr-algebra generated by x"=l3S{Kj), so
\fmK(A)\ < |WI | ( | / |XA) = M J C ( I / I X A ) . Moreover, \mK\(A) = supmx<i
\fmK(A)\, so the desired equality \mK\(A) = \m\K(A) follows. Both \mK\ and
\m\K are finite Radon measures which agree on the base of open product sets
for the topology of f]"= 1 Kj, so they are equal on &([\"=i Kj).

If the family of compact product sets K is directed by inclusion, then the
Radon measure \m \ is the supremum of the increasing family of Radon measures
\m\K in the sense of [21, Proposition 7, p. 56].

A function / : [TJ=1 Xj ->• C is said to be m-integrable if for every Kj e tfx,,
j = 1 , . . . , n, its restriction fKlX...xKn to Y["=1 Kj is \m\KlX...xKn - integrable, and
there exists a Radon polymeasure fm : xn

j=xSB{Xj) ->• C such that

fm(Kxx . . . x Kn)= /
JK,x...xKn

j G ^ X ^ J = 1, . . . ,«. The integrability with respect to \m\KxX,,,xKn of a
function defined on ]~["=1 ^ ; is sufficient to ensure its integrability with respect
to the C-valued Radon measure mKiX,xKn; the integral above therefore makes
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[9] Integration and radon polymeasures 25

sense. As usual, we shall sometimes write fA fdm or fA f(co)dm(co) for the
vector fm(A), A e x?=1#(X,-), and m(f) for fm{\\n

j=l Xj).
Now suppose that E is a lcs and that m : x"=l38{Xj) ->• E is an F-valued

Radon polymeasure. A function / : Y["j=\ Xj -> C is said to be m-integrable if
for each § e E', f is (m, £) -integrable, and there exists an £-valued Radon poly-
measure / m : x1=1@(Xj) - • E such that (/w(A), £) = fA f((o)d(m, £)(a>),
for every § 6 £', and A e x"=l&(Xj). We sometimes write /A / dm or
/A f{(o)dm{a>) for /m(A), and m( / ) for fm(U"j=i xj)-

Let F be a Banach space. Suppose that m : x"=l&(Xj) -> Jz?s(F) is a Radon
polymeasure. For each x e. F and £ e F' the scalar-valued Radon polymeasure
(mx, | ) is defined as in Section 1. It follows from the definition above, for the
case of £ = Jifs(F), that a function/ : J~["=1 Xj ->• C is m-integrable if for each
x e F and f € F', / is <mx, |)-integrable and there exists an Jz^(F)-valued
Radon polymeasure fm : x]=l&(Xj) ->• J^ (F) such that (/m(A)x,£) =
/ , f(o)d(mx, £)(&>) for every x e F, | e F' and A e x]=1@(Xj).

For the purpose of developing a functional calculus for non-commuting op-
erators, it would be natural to adopt the viewpoint that the indefinite integral
of a function with respect to a Radon polymeasure should be another Radon
polymeasure. A minimal requirement for this prescription to apply is that /
should be m-integrable, as in the definition above.

Let £ be a lcs and let m : x"=l&(Xj) —> E be an £-valued Radon poly-
measure. A subset K of Wj=l Xj is said to be m-null, if for every £ e £", the set
K is |(m, £)|-null, that is |(m, $)\(K) = 0. The usual terminology of "m-a.e."
is applied to properties which hold off an m-null set. A function which vanishes
m-a.e. is said to be m-null.

The linear space of all m-integrable functions is denoted by Jz?'(m). The
quotient space with respect to the linear space of all m-null functions is denoted
by Ll(m). For each continuous seminormp on E, and each Kx 6 1fXl, •• •, Kn e
^x,, we associate a seminorm PKlx...xKn defined on O{m) by

supsv(/(m,£)),

for every / e Ll(m). Here Up is the polar set {x : p(x) < 1}°. The collection
of seminorms so defined endows Ll(m) with a locally convex topology. If E
happens to be the space =Sfs(F) of bounded linear operators on a Banach space
F and Bx (F') denotes the closed unit ball of F', then the seminorms px,Ktx...xKn
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defined on L\m) for each x e F, and Kx e <^>
Xl, • • •> Kn e ^x. by

~ SUP l / (mx, t>|ArlX...xArn + sup sv(/(mjr, £ » ,

define the topology of L1 (m). It proves convenient to consider another stronger
topology on Ll(m). It follows from the principle of uniform boundedness that
for each Kx € <t?Xl,..., Kn e ^ and / € Ll(m),

- SUP Px,Ktx...xKn(f) < °°-

The space Ll(m) with the locally convex topology defined by the seminorms
qKtx...xKn, for ^ € ^ j ^ , 6 <<fxn is denoted by Lx

u{m). If X , , . . . , Xn are
locally compact and cr-compact, then Lx

u{m) is a Fr6chet space.
We now turn to the consideration of classes of functions which are integrable

with respect to any Radon polymeasure.
For ease of presentation, the remaining results of this section are stated for

Radon bimeasures, but the proofs go over to Radon polymeasures by induction.
At this point, we emphasise that bimeasures do have some special properties not
necessarily shared by polymeasures in more than two variables, see, for example
[4, 8, 14]. The proofs below do not appeal to any of these properties.

In the next result, integration with respect to Radon polymeasures is connected
to the theory of integration with respect to measures.

LEMMA 1. Let m : 38(X{) x &(X2) ->• C be a Radon bimeasure. Suppose
that the function f : X{ x X2 —> 0& is integrable with respect to the Radon
measure \m\. Then f is m-integrable, fm is the restriction to 38(X{) x &(X2)
of a Radon measure, and \m(f)\ < |m|( | / | ) .

PROOF. For each compact product set K c X\ x X2, the restriction fK of
/ to K is integrable with respect to the C-valued Radon measure mK and
\mK\(\fK\) < \m\(\f\xic) < M ( | / | ) . Let J^be the family of compact product
sets directed by inclusion. Because / is \m\-integrable, for every € > 0, there
exists a compact set C such that \m\(\f\xc<) < e/2. We may assume that C is
a product set.

Let K, / b e compact product sets containing C. Because XKHJ^K — Xx
it follows that for every Borel set A € 38{XX x X2),

\fKmK(A) - fjmj{A)\ = \[/KXK\J] .mK{A) - [/JXJ\K] .mj(A)\
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[11] Integration and radon polymeasures 27

< \mK\ {\/KXK\J\) + \mj\ (\/JXJ\K\)

<2\m\{\f\Xc)<e.

Thus /jf/Wjf, K e ^converges in variation to a finite Radon measure n. For
each J eX fKmK(J) = [fKXjlmK{J) = fjmj(J) for all K e J^such that
J c K, so wehave«(7) = fjnij(J). The function / is therefore m-integrable,
and the restriction of n to 3&{XX) x 38{X2) is / m .

Given a Hausdorff topological space X, the collection of all bounded Borel
measurable functions on X is denoted by j£?

LEMMA 2. Let E be a Banach space, and suppose that m : 38(X{)x.38{X2) ->
£ w a /?ado« bimeasure. For functions fx e JSf°°(Xi) anrf / 2 e Jf^CXj), to
f : Xx x X2 —> C be the function defined by f(xux2) = fi(x\) f2(x2) for all
xi e Xi andx2 e X2. T/ten / is m-integrable and

(1) sv(/m)<16sv(m)||/1| |0O||/2| |0O.

PROOF. Let sk, k = 1,2,.. . be ^(Xi)-simple functions converging uni-
formly to fx on Xi, and let tk, k = 1, 2 , . . . be ^(X2)-simple functions conver-
ging uniformly to / 2 on X2.

We first define a candidate for the bimeasure fm and then prove that it is
indeed the indefinite integral of / with respect to m. Firstly, for each k, j —
1,2,... , we define (sk <8> tj).m : &(X{) x <^(X2) ->• E by linearity as the
integral of a finite linear combination of characteristic functions of sets from
38{X{) x SB{X2) with respect to the additive set function m. Then (sk <g> tj).m
is obviously a bimeasure. It satisfies (1) with / i — S* and f2 = ty, this may be
seen as follows. Fix A e 38{X{) and define MA : 3S(X2) ->• £ by MA(fi) =
5tw(A x B) for every B e ^(X 2 ) . Then tj.MA(B) = (sk (8) tj).m{A x B) for
all B € <^(X2), and by virtue of Proposition I.I.I 1 of [3],

sup \\tj.MA(B)\\ <4|U;||0O sup 1^^(5)11=411^1100 sup \\sk.m(xB)\\.

Similarly, fix B € S8(X2) and define mB : &(X{) ->> E by mB(A) =
m(A x B) for every A € 38{X{). Then

sup ||fJt.mB(A)|| <4||sft||00 sup
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so that

= sup \\tj.MA(B)\\ < 16||jt||ooll0lloo sup
Ae®(X,)
Be3S(X2)

For each j — 1,2,.. . ,set (/i ®tj).m(A x B) — \imk^<x{sk®tj).m{A x B)
for every A € @){X{) and B e ^(X2)- The limit exists because m is a bounded
additive set function in the first variable. That (/i <8> tj).m is a bimeasure
follows from the Vitali-Hahn-Saks theorem. Moreover, (fx <g> tj).m is compact
inner-regular in the first variable. Because (/i <g> l).m is a bounded additive set
function in the second variable, the limit

fi).m{A x B) = lim(/i <g> ?,).m(A x B)

exists for every A e ^ (Xi) and fi € &(X2), and is again a bimeasure which is
separately compact inner-regular. The inequality (1) clearly holds.

Now suppose that K\ and K2 are compact subsets of X\ and X2, respectively.
Then by uniform convergence, for each A € 38{K{) x 3S(K2),

(/i ® fi)-m(A) = lim \im(sk ® tj).m(A)
j—>oc k—>-oo

- lim lim / (sk ®tj
j*ook^oo J

= /
J A

which proves that the bimeasure (/i <g> /2).m is indeed a Radon bimeasure - the
indefinite integral of / with respect to the Radon bimeasure m.

REMARK 1. The proof of Lemma 2 shows that for any bimeasure m, a natural
meaning can be attached to the indefinite integral ( / ® g)-m of the product
of bounded measurable functions / and g with respect to m. In other words,
integrate with respect to each variable separately. The proof also shows that
if / and g are as above, then fx xX f ® gdm = fx fd^ig, where /jLg is the
^-valued Borel measure on Xi defined by /xg(A) = m(xA <8> g)-

A similar proof shows that if E is a sequentially complete lcs, the tensor
product / = /i 0 f2 of two functions / , e -Sf°°(Xi) and f2 e Jzf°°(X2) is m-
integrable. In particular, it applies to the case where E = J£S(F) for a Banach
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space F. If for an additive set function m : 3S{X\) x 3§(X2) ->• %{F) bounded
on the semi-algebra &(X\) x 38(X2), we define the semivariation sv(m) by

sv(m) = sup{||m(Ai x A2)|| : A, € &(X{), A2 e &(X2)},

where the norm is the operator norm on J£{F), then when m is an J^(F)-valued
Radon bimeasure, the inequality sv(/m) < 16sv(m)||/i||oo||/2||Oo holds. An
appeal to the principle of uniform boundedness implies that sv(w) < oo, even
though m is not necessarily a bimeasure for the topology of uniform convergence

PROPOSITION 3. Let E be a Banach space, and suppose that m : 38(X\) x
&(X2) -*• E is a Radon bimeasure. Any function belonging to the complete pro-
jective tensor product Jf00(X1)^x^f00(X2)ofthe spaces JS?°°(X,) and 3?°°(X2)
is m-integrable.

PROOF. Suppose that / e ^°°(X{)®n^°o{X2). Then there exist bounded
Borel measurable functions /„ : Xx -> C and gn : X2 -> C, and numbers
K > 0, n — 1, 2 . . . such that

for all JC, e X i and jc2eX2, with H/JL < landl lgJL < lforalln = 1,2,
and 5Z^=i «̂ < °° [22, Theorem 45.1]. Let b be the bimeasure defined by

b{Ax

for each A, e ^ (Xi) and A2 e SS{X2). According to Lemma 2, /„ ® gn is
m-integrable for each n = 1,2,... . The sum converges absolutely because

Al xA2) | | <
n=\ n=l

for all A\ € ^ (XO, A2 € &(X2), so that b is an £-valued bimeasure. Each of
the bimeasures (/„ (8) gn)m is separately compact inner-regular, so that b is too.

Let K be a compact product set in Xx x X2, and let f € £'. Then for every
A € #(Xi) x

n A)
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n=\

= J fKd(m,^)K.

Thus, \(b, %)\(K) < | | / IU(m, %)\(K). The same inequality holds if K is
replaced by any product set U for which \{m, i-)\(U)) < oo. Because m is a
Radon bimeasure, it follows that b is a Radon bimeasure. Consequently, / is
m -integrable, and fm — b.

REMARK 2. Not all bounded Borel measurable functions are integrable with
respect to a given bimeasure. For example, suppose that </>, \js € 1
and m : &(R2) —>• C is the bimeasure denned by

m(A x B) = lim I f \/f(y)e-ixy<p(x)dxdy

for all A, B € ^(IR). Clearly, eiaxy is integrable with respect to m for all a e R,
a ^ 1, but e'^ is not m -integrable. This also shows that dominated convergence
does not hold for bimeasures and functions which are not products of pairs of
functions.

We state here a basic convergence theorem for polymeasures (but formulated
just for bimeasures for ease of presentation). It is a simple application of domin-
ated convergence for vector measures, and Remark 1 (see also [20, Theorem 1,
p. 45]).

PROPOSITION 4. Let E beaBanach space, and let m : SB{XX) x &(X2) -+ E
be a Radon bimeasure. Suppose that for each n = 1, 2 , . . . , /„ : Xx ->• C and
gn : X2 —>• C are bounded Borel measurable functions. Suppose also that there
exists C > 0 such that |/n(JCi)| < C for all Xi € Xu and |gn(^2)l < C for all
x2 € X2,for every « = 1, 2 , . . . .

/ / limn_>00 fn = f pointwise on X{ and l im^oo gn — g pointwise on X2,
then the iterated limit

Jirn^ lim/w(/n®gm) =m(f ®g).

A stronger version of the bounded convergence theorem has been proved
by Dobrakov [6, Theorem 3]. Furthermore, Dobrakov has given a general
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dominated convergence theorem for polymeasures with respect to n -tuples of
functions [7, Theorem 10 and Corollary to Theorem 5]. (Note, however, that
the proof of Theorem 5 is incomplete; it is given in article XIV of Dobrakov's
sequence of papers).

The next convergence result is a consequence of the Vitali-Hahn-Saks the-
orem. If /A is a non-negative Radon measure on a Hausdorff space X, then
L^C/x) denotes the collection of all fi-equivalence classes of functions / such
the ^(I/IXK) < oo for every compact set K in X. We give L^ifj,) the locally
convex topology defined by the seminorms / ->• li(\f\xi(), / e ^LO^)- w i t n

K a compact subset of X.

PROPOSITION 5. Let Xu X2 be locally compact Hausdorff spaces. Let m :
&{Xi) x 38(X2) ->• C be a Radon bimeasure. Suppose that for each n =
1, 2, . . . , / „ : X\ x X2 —>• C is an m-integrable function. If f e L
lim^oo fn = f in L^flml), and fnm(A x B) converges for every A e
B e 38{X2), then f is m-integrable and fm(A x B) = lim^oo fnm{A x B)
for every A e 3§{X{), B e

We now look at a class of functions which are integrable with respect to every
Radon bimeasure denned on certain product spaces. For Euclidean groups this
class is often associated with functional calculi for systems of operators [1, 15].
Let G be a locally compact abelian group with dual group F. If [i : 88(G) -» C
is a measure, then the Fourier-Stieltjes transform fi, of /u. is defined by

A(y) = / ( -£ , V) dfx{g), for all y e F.
JG

The total variation \n\(G) is denoted by ||^i||, and we have the estimate

THEOREM 6. Let G\,G2be locally compact abelian groups, letG — GtxG2

and let fx : 38{G) —>• C be a Radon measure. Suppose that m : ^S{T\) x
38(^2) -*• E is a Radon bimeasure with values in the Banach space E. Then jl
is m-integrable and sv(jlm) < 16sv(/n)||ju.||.

PROOF. For each g e G, we have (-g, •) e ^°°{T{) ® -Sf°°(r2), so by
Lemma 2 the function (—g, •} is integrable with respect to the Radon bimeasure
m, and sv((—g, -)m) < 16sv(m). Now for every compact product set K in
r = Vx x T2, for every $ e E', and every A e d8(Y{) x 3S(Y2),

{[{-g, -)m](K n A), f) = I (-g, y) d(m, $)K(y).
JKHA
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Because <m,£)/<-is a measure, the function g -> {[{—g,-)m](Kr\A),i-),g e G
is continuous. We now establish that the E-valued function g —>• [(—g, -)m](/4),
g G G is strongly \i-measurable for every set A e &{T\) x <^(F2); that is to
say, it is the limit /x-a.e. in E of a sequence of Zs-valued ^(F)-simple functions.

Suppose that a function / : G —> E is weakly continuous. Then / t o / " 1 is a
Radon measure for a weak topology cr(E, E') of E, which is Radon-equivalent
to the norm topology of E [21, Theorem 3, page 162], so there exist compact
subsets Kn,n = 1, 2 , . . . of G such that |/x o f~l\ (G\ IX=i #*) = 0- Thus,
/ has /^-essentially separable range in E and it is scalarly measurable, so it
is strongly /x-measurable [3, II. 1.2, page 42]. Therefore, it follows that the
function g ->• [(—g, -)m](K n A), g G G is strongly measurable for each
compact product set K in F, and each A e SSiXx) x &(T2).

Now let K2 be a compact subset of F2, and let A2 e <^(F2). The collection
of all sets A\ e ^ (F j ) such that the function

g - ^ [ { - g , - ) m ] ( A l x ( A 2 n K 2 ) ) , g e G

is strongly measurable is a monotone class J(\, because for each g e G the
function (—g, •) is integrable with respect to the Radon bimeasure m. Further-
more, Jt\ contains every set A n K with A e £${YX) and with K a compact
subset of Fj. Consequently, Jix = &{rx).

Similarly, for fixed Ax e ^ (FO, the collection of all sets A2 € ^(F 2 ) such
that the function

^ [ ( - g , - ) m ] ( ^ x A 2 ) , geG

is strongly measurable is a monotone class ^#2 containing every set AD K with
A G ^ (F 2 ) and with K a compact subset of F2. Consequently, Jt2 — 38(T2).

Therefore, the function g —>• [{—g, -)m] (A), g G G is strongly measurable
for each set A G ^ (FO x ^ (F 2 ) , and it is bounded by 16sv(/n).

For every compact product set K contained in F and every £ e £', we have,
by Fubini's theorem for finite measures,

I {[{-g, -)m\{K n A), §} dn{g) = [ [({-g, .))K{m, $)K](K D A) d»(g)
JG JG

f ( [
KHA \JG
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The set function A -* fG([(-g, -)m]C4), §)d/z(g), A e SSiXx) x <^(F2) is
therefore bounded on the algebra generated by {^{Tx) x ^(P2)) n I . It is a
bimeasure, by dominated convergence, and it follows that /2 is (m, £)-integrable
and

(P.{m, f)) (A) = [ ([{-g, -)m](A),
JG

for every A e 3§(T\) X ^ (F 2 ) . A bounded strongly measurable Banach
space-valued function is Bochner integrable with respect to a finite measure,
so for every A G ̂ ( H ) X 3S(T2), the £-valued function g ->• [ ( -g , -JwiKA),
g e G is jti-integrable in £ . Therefore, jx is m-integrable and jlm(A) =
fG[(-g, •)m](A)dfx(g) for every A e # ( r , ) x

Suppose that G i = G2 — R. It is well known that the Fourier transform maps
the space of rapidly decreasing functions ^(IR2) on R2 into itself, and every
rapidly decreasing function is integrable. It follows that any rapidly decreasing
function can be represented as the Fourier-Stieltjes transform of a Borel measure.
In particular, rapidly decreasing functions are m -integrable for any Banach
space-valued Radon bimeasure on &(R) x 3S(W). This also follows from
Proposition 3, the representation ^(IR2) = S\R)®ny(R) [22, Theorem 51.6]
and the continuous inclusion of the (metrizable) lcs^(IR) ®n y(R) into the
normed space jSf°°(|R) 0* JSf °°(IR).

There are other directions in which the technique above could be applied. For
example, one could look at the integrals of functions/: Q -•.£fx>([R)<g>jr.£fc([R)
with respect to a finite measure /x on a a -algebra of subsets of Q.

If £ is a Banach space, and m is an J^(£)-valued bimeasure on 38($L) x
38{W), then it also follows the /2 is m-integrable, and s\(jlm) < 16sv(w)||/x||.

Part of the assumptions concerning a scalar Radon polymeasure m is that its
variation should be the restriction of a Radon measure. On W, this means that
m is associated with a distribution of order zero. We now turn to a consideration
of the nature of this association in the vector-valued setting.

Let m : 3§{X{) x B8{X2) ->• C be a Radon bimeasure. Suppose that 0 is a
function on X { x X2 which is zero off the compact product set K, and continuous
on K. According to Lemma 1, 4> is m-integrable and \<pm(A)\ < |m|(|0|) <
M(^)H0lloo for all A e 38{X{) x 3§(X2). A slight modification is needed in
the case that m : 3S(X{) x £8(X2) ->• E is a Radon bimeasure when E is infinite
dimensional, because we have not assumed that there exists a vector measure
mK : @{K) - • E such that (m,$)\mK) = (mK,H) foralU e E'.
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PROPOSITION 7. Let K be a compact product subset of X = X{ x X2. Let
p be a continuous seminorm on the sequentially complete Ics E. Let m :
38{XX) x @{X2) -> E be a Radon bimeasure.

Suppose that f is a function on Xi x X2 vanishing off K, and continuous
on K. Then f is m-integrable. Moreover, there exists 0Kp > 0 such that
p(gm(A)) < ^K,p\\g\\oofor all functions g vanishing off K and continuous on
K, and all A € 8(X{) x 3B{X2).

PROOF. For any compact product set C, let mc denote the £-valued Radon
polymeasure defined by mc(A) = m(A D C) for all A e 88(X{) x &(X2).

For each £ e E', the scalar-valued Radon bimeasure (mc,f) is additive.
Because |(/wc,£)|(C) = \{m,t-)\(C) < oo, it is the restriction to the semi-
algebra 8S{X\) x SS{X2) of a bounded additive set function on the algebra

x &{X2)\ generated by 3S(XX) x 3B(X2).
It follows that for any 9B{X\) x ^(X2)-simple function s, we have

(2) \(mc(s),S)\ < 4sup{|(w(AnC),|)| : A e [3S(X{) x ®{X2)\

A weakly bounded subset of E is bounded in the original topology of E, so

Pc,P = sup {p(m(A <lC)):Ae [ # ( * , ) x &{X2)\) < oo.

Taking the supremum of both sides of equation (2) as £ ranges over the polar
set [x e E : p(x) < 1}°, we have

(3) P(m(xcs)) = p(mc(s)) < 4/3c,P\\xc*IL-

According to Lemma 2, the product fi (g) f2 of bounded Borel measurable
functions f\ and f2 (on Xi and X2, respectively) is integrable. Moreover, from
the proof it follows that if sk, k — 1 ,2 , . . . are ^ (X^-s imple functions and
tk, k — 1 ,2 , . . . are ^(X2)-simple functions such that sk —*• f and tk —>• g
uniformly as k —> oo, then for every A G 88(Xi) x 3§{X2), the equality (/] <g>
f2).m(A) — lim^oolim^ooGs'* (8> tj).m(A) holds. The estimate (3) therefore
extends to all finite linear combinations of such / i <g> f2.

For each j = 1,2 let 7Tj: : X ->• X; be the natural projection map. Let
A" = £ i x ^ 2 be a compact product set. Let 3>K be the family of all finite
linear combinations of functions of the form (gi o n\){g2 o ^2) : K —>• C with
gi : A"i -> C and g2 : K2 -+ <L bounded and continuous functions. By the
Stone-Weierstrass theorem, @K is dense in C(K).
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Now suppose that g : X —> C vanishes off K and g\K is continuous. There
exist functions gj• : X -> C such that gj vanishes off K, gj\K e @K, for all
j = 1,2,..., and gj ->• g uniformly on K as j ->• oo. By the estimate
( 3 ) , p(m(XA(gk ~ gj))) < 4pK.p\\gi< ~ « / l l o o for a l l k , j = 1 , 2 , . . . , f o r a n y
continuous seminorm p on £, and any set A e S8(X{) x &§(X2), so it follows
that g is m-integrable, and p(m(g)) < ^ p H g U ^ for every k = 1, 2 , . . . .

REMARK 3. It follows from the above proposition, and the principle of uni-
form boundedness, that a Radon polymeasure on M" with values in the space
Jfs(F) of bounded linear operators on a Banach space F is necessarily a distri-
bution of order zero, in the sense that any smooth function of compact support is
m-integrable, and for every compact subset KofR", there exists fiK > 0 such
that

for all smooth functions / on R" with compact support contained in K.

The next result gives a condition for the integrability of a function in terms
of distributions of order zero.

PROPOSITION 8. Let Xx, X2 be locally compact spaces and let X = X: x X2.
Let m : 3B(X\) x &{X2) ->• E be a Radon bimeasure with values in the Ics E.

Then a function f : X —• C is m-integrable if and only if for each <p e
CC(X), the function f<p is m-integrable, and there exists a Radon bimeasure
uf : @{Xx) x 3B(X2) -> E such that

Uf(<P) = I f<t>dm
Jx

forall4>eCc(X).

PROOF. Suppose first that a Radon bimeasure uf exists satisfying M/(0) =
fx fcpdm for all (p e CC(X). Let § e E'. Let K be a compact product subset of
X. Because X is locally compact, we can find 4> e CC(X) such that 0(x) = 1 for
all x € K. By assumption, the function /</> is m -integrable, which implies that
the restriction (/</>)*• of f<p to the compact set K is integrable with respect to the
measure {m, %)K. But (f4>)K — fa, so it follows that fK \fK\d\{m, t-)K\ < oo.

Now suppose that K is the closure of a relatively compact open set U.
Because

> = f f1rd(m,$) = f fKylrd(m,t-)K
Jx JK
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e CC(X) with supp le U, it follows that (uf£)K(A) = JAfKd{m£)K

for all Borel subsets A of U. Here we have appealed to the fact that two Borel
measures [i and v on a locally compact space are equal, if /i(V0 = v{yfr) for
every continuous function ty with compact support. In particular,

(uf(L), | ) = (uf, $)K(L) = [ fK d(m, $)K = [ fL d{m, £)t
JL JL

for any compact product subset LofU. Because any compact product subset L
of X is contained in some relatively compact open set U, we have (uf(L), | ) =
fL ftd{m, %)L. This equality is true for any £ e E1, so / is m-integrable, and
uf = fm.

Now suppose that / is m-integrable. Let <j> be a continuous function on X with
support contained in the compact product set K. Let £ e £'. It follows from
the argument before Proposition 7 that {fm, %)(<pxc) = JKnc<t>d(fm, %)K for
each compact product set C. However, (fm, i-)K = fxim, £)*• so that

[ 4>fKd(m£)K=f (cPf)K d{m,^)K = I\<t>f)cd{m,$)c,
une June Jc

which proves that f4> is m-integrable, and fm(4>) = m(f<j)).

Suppose that we define the support, suppm, of a Radon polymeasure m :
x"=1&(Xj) ->• C to be the support of \m\, where |m| is the unique extension of
the variation of m to a Radon measure on the Borel a-algebra of X = ]~]"=i Xj-
In other words, suppm is the smallest closed set whose complement is m-null.
If K = supp m is compact, then it is clear that the Radon polymeasure m is
actually the restriction to x"=1^(X7-) of a scalar Radon measure on 38{X). This
follows from the estimate |m(/\)| < \m\(A D K), which is true for all A in the
algebra generated by x"=l&(Xj).

Suppose now that the product X is locally compact and CC(X) denotes the
space of continuous functions with compact support in X. If t/ is any open
subset of X such that m(f) = 0 for any / e CC(X) with supp/ c U, then
suppm c Uc. To see this, take a compact subset K of U. Then for any
/ G CC(X) with support in K, mK(f) = m( / ) = 0, where m*- is the unique
Radon measure on 38{X) such that mK(A) -m(AnK) for all A e x?=1

It follows that |m|(/O = Im^K/O = 0. Therefore,

= sup[\m\(K):KcU} = 0,
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proving that suppm c Uc. If U is any open subset of X such that \m\(U) = 0,
thenforany/ e CC(X) with supp/ c {/, it is clear that \m(f)\ < |w|( | / | ) = 0.
Combining the two inclusions establishes the following result.

LEMMA 9. Let X — Y\"j=l Xj be the product of locally compact Hausdorff
spaces Xu ..., Xn and let m : Y.nj=x38{Xj) -> C be a Radon polymeasure.
Then

(4) suppw = f]{Uc : m(f) = 0 for any f e CC(X) with supp/ c [/}.

REMARK 4. A similar argument applies if CC(X) is replaced by other spaces.
For example, if X is a product of smooth finite dimensional manifolds, then
CC(X) can be replaced by the space of smooth functions with compact support
defined on X.

For a Radon polymeasure m : x"=l&(Xj) ->• E with values in a lcs E, we
define suppw = (~)^E, supp (m,%). The equality (4) holds in this case too.

It follows from Proposition 7 and Lemma 8, that if £ is a sequentially
complete lcs and m : x"=l&(R) ->• E is a Radon polymeasure, then the
assignment / -> / r /dm, / e C~(1R") is a distribution of order zero (in E)
whose support is precisely supp/n.

The final result illustrates the point that Radon polymeasures differ from
genuine measures on the product space only because of their "behaviour at
infinity". We say that a lcs E contains a copy of c0 if and only if there exists
a closed subspace F of E and an isometric isomorphism of c0 onto F with its
relative topology. Spaces which do not have this property include all weakly
sequentially complete spaces (hence reflexive spaces) and others; see [10], for
example.

PROPOSITION 10. Let Xu X2 be Hausdorff topological spaces and let X =
X[ x X2. Let E be a sequentially complete lcs which does not contain a copy of
c0- If m : 38(X{) x £${X2) —*• E is a Radon bimeasure with compact support,
then m is the restriction to 3B(X{) x &(X2) of an E-valued Radon measure on

PROOF. Let A" be a compact product set containing the support of m. Let
C(K) denote the collection of all continuous functions on K. Let 3>K denote
the linear space of all finite linear combinations of continuous product functions
on K. By the Stone-Weierstrass theorem, <&K is dense in C(K). According to
Lemma 2, every function / e @K is m-integrable.
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For every £ e £ ' we have | (/n, £) | (K) < oo, so m is weakly bounded on the
algebra [K n (^(XO x &(X2))] generated by {K n A : A e ^ (X, ) x ^(X2)}.
Then /w is bounded in £ on [K Pi C^(Xi) x ^(X2))] . It follows that for every
neighbourhood J7 of zero in £, sup?6(/o |(m, £)!(£") < oo. Define a linear map
<D : ®K ->• £ by <D(/) = m( / ) for all / e ®K-

If /? is a continuous seminorm on £, set f/p = {x e E : p(x) < 1}. Then
P ( * ( / ) ) < supNU. |(w, £} | ( /O | | / | |OO for every / e S>K. Here || • |L is the sup
norm on C(K). By virtue of the sequential completeness of E, there exists a
unique continuous linear extension <t> : C(K) -> £ of <1>. Because £ contains
no copy of c0, there exists a unique £-valued Radon measure mK : 3S{K) -> £
such that « * ( / ) = 4»(/) for all / e C(/sT), [16].

For all / G 9K and f e £', ( m ^ ( / ) , | ) = <m(/),f> = ( m . ^ C / ) from
which it follows that (mK(f),%) = {m,%)K(f) for all / e C(^T), so that
(mHA),?) = (m,^)K(A) for all A e &(K). In particular, (mK(A),$) =
(m, $)K(A), = (m(A), | ) for all A e 38{XX) x 38{X2).

If A e &(Xx) x ^ (X 2 ) , then A\K is the union of pairwise disjoint sets
Vj e &(XX) x ^ (X 2 ) , j = 1, . . . ,«, all disjoint from K. Because K contains
the support of m, |m(Vy)| < |m|(V,) < \m\{Kc) = 0, for all j = 1 , . . . , n. The
additivity of m ensures that

m(A) = m(A n K) + ) m(Vj) = m(A n K) = mK(A Pi AT),

where B -+ mK(B H K), B e 38{X) is an £-valued Radon measure on X.

REMARK 5. The requirement that £ contains no copy of c0 is essential. In-
deed, let £ = c0 and X = Xi x X2, where X, = [—n, n], j = 1,2. For each
integers > 1, let fn{xx) = «X[o,«-'](^i), *i e Xu and gn(x2) = e"'nA:2, x2 e X2.
Define a set function v : &{X) -> £°° by

v(C) = I / fn(xi)gn(x2) dxxdx2

It follows from the integrability (with respect to Lebesgue measure on X) of
the function^ = T^=l £„/« ®gn, whenever^ = {£n}™=l e I1, that (v(C), ?) =
/ c ^(^n x2)c?Xi^x2, for all C € ^ ( X ) . This shows that v is a-additive for the
weak*-topology cr(l°°, I1) on £°°, and hence, the range of the set function v is a
bounded subset of l°°.
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Now suppose that A and B are Borel sets in [—n, n]. Let XB denote the Fourier
transform of XB- It follows that \v(A x B)n\ < |xs(«)|, for all n — 1, 2 , . . . ,
and hence, v(A x B) e c0 by the Riemann-Lebesgue lemma. Accordingly, the
range of the restriction of v to the algebra \_SS(X{) x &){X2)] is contained in the
subspace c0 of I00, and it is bounded there.

The restriction m of v to ^ (Xi ) x &(X2) is a compactly supported Radon
bimeasure in c0 which is a-addiitive on [£%(XX) x &(X2)], and it has bounded
range in c0. However, the claim is that m is not the restriction of an E-valued
measure on 88(X). To see this, assume the contrary, that is, suppose that the
range of v on 28(X) is contained in c0. Then, for any sequence of Borel sets
Er c [—7r, 7r], r = 1,2,.. . , decreasing to the empty set, it would follow
that linWooSupdMEr x F ) ^ : F e @([-n,n])} = 0 [18, II Section 1
Lemma 3].

Now for the sets Er = [0, r" ' ]andFr = {x2 € X2 : Re(gr(x2)) = cos(rx2) >
1/V2}, r — 1, 2 , . . . , it follows that / £ / n ( x i ) ^ i = 1, for all n > r, so we
have (for r fixed)

||m(£r x /v)||oo = sup

> sup / gn
JF,

(x2) dx2

/ gn
Jfr

(x2) dx2

t>r(x2)dx2

for each r — 1, 2 , . . . , where k is the Lebesgue measure on [—n, n]. Since
linv^oo A(Fr) = 7r/2, the range of v on 3§(X) cannot be contained in CQ.
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