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ON SOME REGULARITY PROPERTIES FOR SOLUTIONS

OF NONLINEAR

PARABOLIC DIFFERENTIAL EQUATIONS

HARUO NAGASE

Introduction

Let G be a bounded domain in Rn with coordinates x — (xίf . . . ,xn) and let

its boundary S be of class C2. We assume that the usual function spaces D(G),

Wh9(G) and Wo

hq(G), 1 < q < <*>t are known. We write the norm of D(G) by

I \q and the adjoint number of q by q*, i.e., q* = q/(q — 1).

For any positive number T we denote the open interval (0, T) by /, the

cylinder G X / in Rn+1 by Q and the norm of Lq(Q) by || \\q.

Let X be a Banach space with the norm | \χ. Let C ( / , X) be the space of all

continuous functions v(t); I—+X. Let us denote by Lq(I, X), 1 < q < °° , and

L°°(I,X) the set of all measurable functions v(t);I—*X such that | v \mi,x)

\l/Q . .

v(t) \χdtj < °° and v \L-U,X) — ess sup \ v(t) x < °°, respectively. A
* i

function v(t) I—+X is said to be strongly differentiable at t β /, if there exists

«;(/) in X such that lim | (u(t + h) - u(t))/h - w{t) \x = 0. Then we call

wit) by the strong derivaFive of υ{t) at t e / and we denote it by tf/(0

In this paper we make the assumption

(A.I) 2 ( n + l)/(n + 3) < p < 2.

=u,

Let us denote ^ ' ^ ( G ) by V, its dual space by K*, the pairing between Vand

K* by < , > and the inner product of L2(G) by ( , ). Further, we write

0 = (0, . . .,0) e Rn and 2)?; = (vXj), j = 1,.. .,w, ^ y = (d/dxj)v.

We define a nonlinear operator A(t); V^> V*, t €= /, as follows:

(1) <A(ί)^, M;> = Σ (aj(., t, Dv),wx), υ,
1
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50 HARUO NAGASE

Let us suppose that functions cij(x, t, η), j = 1,.. .,n, satisfy the assumption

(A.2) a}(x, t, η) e C° (Q x i?w) Π CX(Q x (Rn ~ ίθ})),

^ ( x , ί, o ) = o , y = i , . . . , w ,

and for (x, t) ^ Qt ή ^ Rn - {0}, ξ e i?w,

Σ ( 9 / 9 r?/) fly ( x , t, η) ξtξ} ^ γ \ η \ p ~ 2 1 ξ\2,

I ( 9 / 9 7?,) a , ( x , t , η ) \ ^ Λ \ η \p~2, i, j = 1 , . . . ,w,

fly ( x , ί, η ) I, I ( d / d t) cij ( x , t, η ) \ ύ Λ \ η p~\ j , ft = 1 , . . . , » .

Here 7 and /I are some positive constants.

Now we consider the nonlinear parabolic differential equation

(2)

u e /,"(/, y ) Π C(I, L2(G)), M/ e L2(/,

(Mί(ί), 0) + <A(ί) u (ί), 0> = </(0, 0> for any f e I/and a.e. f e /,

u (x, 0) = uo(x),

In this paper we suppose that / and u0 in (2) satisfy the following assump-

tions (A.3) and (A.4) respectively:

(A.3) / e Lp*(I, Wι p*(G)) and/, e L 2(/, L 2 (G)).

(A.4) Wo e Kand Du0 ^ L2(G). Further, there exists a function £0 in L2(G)

such that the equality

(3) (zo, t;)

holds for all υ e F, where /(0) = / ( j ; , 0) e F *

Recently in [7] we showed the unique existence of solutions such that ut €=

L°°(I, L2(G)) and gave some a priori estimates for solutions of nonlinear para-

bolic variational inequalities, which contain the equation (2) in a special case,

when 2 ^ p. We. can prove the unique existence of solutions of (2) by the similar

way as in [7] when the assumption (A.I) is satisfied also. The aim of this paper is

to show some regularity properties of solutions of (2) in such cases.

Before stating our results we introduce some notations

(4) ft(s) = 2s/(s + 2 - p), m(s) = 2s/(s + 4 - 2p) and

p~ = 2(n + l)(p- l)/(w - 1).
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DIFFERENTIAL EQUATIONS 5 1

Remark 1. It is easy to see that the followings hold:

(i) Up ύ s<poo, then k (s) ^ s and p ^ k(s) < Λ (/>«).

(ii) If p < 2, then w(s) < Λ(s) < 2.

Our theorem is as follows:

THEOREM. Under the assumptions (A.I)—(A.4) it holds that for the unique solu-

tion u of (2)

(i) D2u e Lk{p~\Γ, L^iG)), (Du)t e LkiM(G x 7'),

(ii) D2u^Lm{p~]{G x 70,

Z)2M = (w*^), (7)«)ί = (uXjt), 1 ^ i, j ^ n, Γ = (a,b) and 0 < a <

b<T.

Remark 2. It is easy to see that k{p*>) = 4(w + ϊ)(p - l)/((w + 3)̂ ? - 4)

> ^ and mipoo) =2(n + l)(p- l)/(2p + n - 3). Further, /c(/)J -> 2 and

m(poo) -^2 as/?-^2.

S. Campanato [3], F. de Thelin [4], J. Naumann [8] and others showed the in-

terior integrability of the second order derivatives of solutions of nonlinear ellip-

tic differential equations and systems. Moreover, J.P. Raymond [9] proved the glob-

al integrability of the second order derivatives of solutions of nonlinear elliptic

differential systems. N.D. Alikakos-L.C. Evans [1], N.D. Alikakos-R. Rostamian [2],

E. DiBenedetto-A. Friedman [5] and others obtained some estimates and some in-

tegrability properties of the first order derivatives of solutions of nonlinear para-

bolic differential equations. But we have few results with respect to the integrabil-

ity of the second order derivatives of solutions of nonlinear parabolic differential

equations.

We attempt to extend the results in [9] to solutions of the nonlinear parabolic

differential equation (2).

This paper is constructed as follows. In Section 1 we prepare some prelimin-

ary lemmas without proofs. In Section 2 we show some lemmas which play impor-

tant roles in the proof of our theorem. Proofs of these lemmas are given by the

method of the difference quotient. The proof of our theorem is given in Section 4.

1.

that

LEMMA 1. Under the assumption (A.2) there exists a positive constant γ0 such
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52 HARUO NAGASE

n

(1.1) Σ (aj(x, t, η) - aj(x, t,

where (x, t) e Q, η, ηf e Rn and \ η \ + | η' | Φ 0.

The above lemma was proved by P. Tolksdorf in [11, p.246, Lemma 2.3].

Let ί/ be a function in a bounded domain Ω in Rm and let us denote

et = (0, . . .,0,1,0,.. .,0), 1 ^ i ύ m. We define the difference quotient by

δϊv(x) = (v(x + het) - v(x))/h, H O .

The following lemma plays an important role in this paper:

LEMMA 2 [6, p.168, Lemmas 7.23, 7.24]. (i) Let υ <= WlΛ(Ω), 1 < q < oo.

Then for any Ωr c i7 c β and\h\ < dis(β' , 9fl) ^ estimate

(1.2) I δff U?(̂ ) ^ C I tk, Lϊω)

β is the boundary of Ω and C is a positive constant which does not de-

pend on v and h.

(ii) Let υ G Lq(Ω) and let the inequality \ δ^υ \LHΩΊ = C be valid for any h and

Ω' c Ωf c Ω such that \h\< distfl', 9fl). Ttot ^, e L^fl') and

(1.3) \υXi\LHΩΊ ^ C.

Next, let us prepare the reverse Holder's inequality, see [10, p.8].

LEMMA 3. Let 0 < r < 1 and r* = r/(r - 1). If F ^ Lr(Ω), FH e j

Γ I rr/ x * j /
(TV\n i #7 I T ] ίiΎ <^ OO t]ίίpi/] it hπ1ή<? tViπt

%) Ω

(1.4) ( Γ |F(x) |rrfx)1/r ^ ( Γ |F(x)i/(j:) I ώ:)( Γ l^(^) K*^)'^*.
\Jfl / \ J Ω I\JΩ f

Here Ω is a bounded domain in Rm.

2.

In this section we denote any sufficiently small open set in Rn by U and U'.

Let us assume that U c JJr and U Γ\ S ̂  φ. We see that there exists a dif-

feomorphism g; Rn—* Rn which satisfies the followings:
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DIFFERENTIAL EQUATIONS 5 3

g(U) =Br,g(U') =BR,0<r<R,

g(G n u) = By n {xn > o}, g(G n c/o = 5 * π {xw > o},

where Bp — {x ^ Rn; \ x\ < p}. From now on we consider the problem only in

the case that

(2.1) G Π U= By Π t > 0 } , G Π £/' = β* ΓΊ {.rw > 0}, O < r< R,

in order to simplify calculations. We can show all of results in this paper by

calculations with minor changes in the general case, see [9].

We denote x — (x\ xn), xr — (xi,... ,xn-i) and Dfv = (vXj), 1 ^ j ^ n — 1.

In this section let us suppose that the assumptions (A.I)—(A.4) are satisfied.

And let us denote any solution of (2) by u.

Hereafter, we write by the same C all constants which do not depend on u,

u0, Zo and /

LEMMA 4. // U Π S =*F φ, then

(2.2) suplD'wtf) \L2(Gnu) ^ M

I

and D'{Du) e LP((G Π U) x I) with D'(Du) = (uXiX}), (i, j) # (w, w), 1 ^

i, j ^ n. Here M is a positive constant depending on \ Duo I2, || Df\\p* and \\ Du \\p.

Proof. Let ζ(x) be a G?(BR)-function such that 0 ^ ζ ^ 1 and ζ = 1 on

Br. For any sufficiently small | h \ we denote 4*ι; = Δϊv(x, t) = υ(x + hd , 0

— v(x, t), i *F n. Taking φ = Δih(ζΔiU) as a test function in (2), we have

(2.3) (ut(t), Δτh(ζΔϊu)(t)) + <A(t)u(t), Δ;h(ζΔϊu)(t)>

Each term on the left-hand side of (2.3) is rewritten as follows:

(2.4) («,(*), Δτk(ζΔfu)(t)) = (Δiut(t), ζΔϊu(t))
= (l/2)(d/dt)\ζ1/2Δh(t)\l

(2.5) <A(t)u(t), Δτ"(ζΔ>!u)(Φ = t (a,U, Du), (ΔTh(ζΔ'ίu))xt(t))

= Σ (a,(.,t, Du), ΔiH^ΔΊu + ζΔίux,)(t))

= Σ ί(aj(.,t, Du), Δ7h(ζzlΔ!u)(t)) + {Δh,a,{;t, Du), ζΔiux,{t))).

From (2.3)-(2.5)
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54 HARUO NAGASE

(2.6) (l/2)(d/dt) I ζU2ΔΊu(t) |I + Σ (ΔfaU, Du),

= <Δtf(t), ζΔίu(t)> - Σ (a,U,

For any t & I let us integrate (2.6) over (0, t). Then

(2.7) (1/2) I C/2Δ»u(t) | | + Σ U?*,(.,.,

= (1/2) I ζ1/z4f«(0) I! + [Δϊf, ζΔ*u]Qt

- Σ[ai(.,.,Du),Δτh(ζx,Δ
l!u)]Q,.

Here we have denoted the inner product of L2(Qt) by [, ] ρt, where ft = Q(o,t)

= G x (0, ί).

The second term on the left-hand side of (2.7) is rewritten in the form:

(2.8) ζ^fwjg, = Σ [flyfcr + heh.,Du(x + A^

,.)), ζ(uXj(x+ hetf.) - uXi(x,.))]Qt

het,.,Du(x,.)) - aj(x,.,Du(x,.)), ζ(uXj(x + heif.)
n

Σ
y=i

Each term on the right-hand side of (2.8) is estimated as follows:

(2.9) the first term ^ γ0 f (\Du\ + \ Duh t \)p~2 \ Duh f - Du | 2 ζ ds,

(2.10) I the second term | ^ C \ h \ f \ Du \p~ι \ Duh , - Du\ζdz
J Qt

£C\h\[ (I Ite I + I DuhΛ \y~l I DuhΛ - Du\ζdz

^ (ro/2) f (\Du\ + \ DuhΛ I)*"21 Z?«*,, - Du | 2 ζίfe
*^ Qt

+ Ch2 f I Z)w I* dz,

where dz = dxdt, uh,t = u(x + het, t) and we have defined the integrand

(\Du\ + \Duh,i\)p-2\Duh,i ~ Du\2 to be zero on {(x, t) <Ξ Qt; \'Du\ =

Duhj | = 0 ) . In the above we have used Lemma 1, the assumption (A.2) and

Young's inequality.
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Using Lemma 2, Holder's inequality and the assumption (A.2) again, each

term on the right-hand side of (2.7) is estimated as follows:

(2.11) (1/2) I ζ1/2Λ?w(0) | | ^ Ch2\Du0\l

(2.12) \[Δ1f, ζΔ^u]Q,\ ϊS Ch21 Df 14 Du \\p,

(2.13) I Σ [a,(.,., Du),Δτh{ζxlΔ
h,u)]Q,

n

— 2-u | | ί ?yv . j . j LJU) | |^* I IA<I yί^xj/lfU) \LP(Qt)

£C\h\\\Du IIΓ1 Σ (II ζxm Δh,u I + I ζxι Δ
h,Du \ υ m )

^ Ch21| Du III + C I h I ||Z>« IIΓ 11 ζ ^ 4 ? Z ) M I ̂ (Qrt

^ Ch2 \\Du\\$ + C\ h\ \\Du Hi"11 ζ1/p ΔiDu \ Lp<Qt),

because we can choose the function ζ such that | ζXj \p ^ C ζ.

Accordingly, from (2.7)—(2.13) we deduce the inequality

(2.14) (1/2) I ζ1/2Δtu(t) | |

+ ( r o / 2 ) Γ (I Du I + I Z)M Λ f ί I ) ' " 2 1 D u h Λ - D u \ 2 ζ dz
J Qt

ύ Ch2 (II Du % + I D u , II + II D f l t ) + C\h\ \\Du I Γ 1 1 ζ1/p ΔΊDu LΠQt)-

Next setting r = />/2, F = ζ2 / / ) | A\ Du

Ω=Qt and Q, = i(x,t) e Q ί f ζ ( | Z ) « | +

\p~2 r(l-2/p)!= (\Du\ + \ DuhJ

h,ι I) ^ 0} , let us use Lemma 3.

Then

=(/.« Du |(2.15) ((AΔ1DU\P

^(fjDu\ +

( f {(\Du\+\ Duht\)p-2Cι~2/p)Yp/2)*dzyV{

\JQι

(2-p)/p \JQ,

dz
2/ρ

1/tp/2)*

dz

(Γ Duk.t\)
pQ

In the above we have used the relations (p — 2)(β/2)* — p and (1 —2/p)

ip/2)* = 1. It is easy to see that the estimate (2.15) is valid if we replace Qt by

Qt. Consequently, from (2.14) and (2.15)
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a \2
\ΔiDu\pζdz) C2\h\[J \ΔίDu\2ζdz) .

From now on we denote by Ct, i— 1 , . . . , any positive constant which depends on

Uo, f and u only.

By Young's inequality again

(2.17) α \ 2/ί
I Δ) Du \" ζ dz) ^ C3h

2.

Furthermore, by virtue of (2.14) and (2.17) we obtain the estimate

(2.18) Δϊu(t) ζ 1 / 2 \l ̂  C4h
2 for any t e / .

Hence we arrive at (2.2) from Lemma 2 and (2.18).

Next, after setting t = T in (2.17), let us Lemma 2 again. Then we see that

D'(Du) ^LP((G Π U) x / ) . q.e.d.

Remark 3. If U Π S = φ, then sup | Du(t) \IMG<MJ) ^ M and Z)2^

Π ί / ) x / ) . 7

LEMMA 5. Let Du <Ξ U{G x / ) with s, p ίί s ίί poo, and J = (c, d), 0 ^

c<d^T. If U C\ S* φ, then D'(Du) e LA ( S )((G Π U) x / ) and (DM), €=

Ifc(s)(G x 70 /or an3;7r = (c7, d*), c < c' < d' < d.

The proof of this lemma is similar to that of Lemma 4. However, for the com-

pleteness we give it.

Proof At first let us integrate (2.6) over J. Then, denoting the inner product

of L2(Qj) by [ , ]Qj, QJ = G X J, we obtain the equality

(2.19) (1/2) I ζ1/2Δϊu(d) \l + Σ Mfo(.,., DM), ζ^NJg/

= (1/2)

By the same way as in (2.8)—(2.10) we have the inequality

(2.20) Σ U?0/(.,.,
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^ (ro/2) f (\Du\ +
J QiQj

Next, from (2.18)

(2.21)

Further, by (2.13)

M - Du\2ζdz- Ch2I

ζ1/zΔ1u(c) |I ^ C4/ί2.

(2.22) I Σ [tf C , Du), Δ;h(ζj;jΔ
l!u)]t

S Ch21| Du \\pp + C I h I || Du I Γ 1 1 ζXj Δ
h

t Du

Let us choose the function ζ such that ^ C ζ and let us remark the ine-

quality^ ^ k(s), see Remark 1. Then, from (2.22)

(2.23) I Σ [tf,(.,., Du), Δτh(ζXjΔfu)]Qj

ύ Ch21| Du % + C I /z I || £>** IIΓ11 ζι/k{s) Δ) Du

Combining (2.19)-(2.21), (2.23) with (2.12) , we see that

(2.24) Γ Du I +
Λ J ) ^ - 2 1 Z)« A f - ζ

+ C \h I}" 1 ζ 1 7 * < s > Δf Du U> ( β , ) .

Setting r = A(s)/2, F = ζ2ms) \ ΔΊ Du\2, H = (\ Du\ + \ Du>., \)p~2 ζ ( 1 - 2 / * ( s ) ) ,

Ω = Qj and 0/ = {(*, 0 e Q7; ζ ( | DM | + | Z)«Λ,, |) =¥ 0}, let us use Lemma 3

again. Then

α . . \2/k(s) / Γ

Λ \ΔΪDu\k{s) ζdz) =( L (\ΔiDu
QJ ' \ J QJ

^ ( Γ (I Z)M I + I £>MA>ί \)p'2 ζ<i-2/*<*» I /If £>«

2 £2//fc(s)\Λ(s)/2
2/A(s)

\2ζ2/kω dz

( Γ

(X,

+ y-2

».. I)' " 2

In the above we have used the relations (p — 2) (/c(s)/2)* = 5 and (1 — 2/k(s))
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(k(s)/2)* = 1. It is easy to see that the estimate (2.25) is valid also if we replace

Qj by Qj.

From (2.24) and (2.25)

2/Us)

\Δ*ίDu\k{s) Idz]
QJ

(2-p)/s

\Du\sCdz)
Qi

I Δ1 Du \Hs) ζ dz)
Qj '

^ (C5h
2 + C β I A I I ζ 1 / i ( s > A)Du\LKHQJ))( f \ D u \ s ζ d z

\JQJ

By Young's inequality again

α \2/A(5)

}ι I Δ! Du | t ( s ) ζ dz) < h\CΊ I ζ 1 / s Du I l7tw + Ca I ζ1/s Du | W^).

Using Lemma 2, we finish the proof for the first part of this lemma.

Next we show the second part of this lemma. Its proof is similar to those of

Lemma 4 and the first part of this lemma. Let ξ(t) be a Co3(I)-function such that

O^ξislfξ—lonJ' and supp ζ — J. For any sufficiently small | h \ we denote

Δϊv = Δfv(x, t) = v(x, t+ h) — v(x, t). Taking φ = Aτh{ξΔh

tu) as a test

function in (2), we have

(2.28) (ut(t),Δτh(ξΔϊu)(t)) + <A(t)u(t), Δτh(ξΔϊu)(t)>

= <f(t)yΔτh(ξΔϊu)(t)>.

Let us integrate (2.28) over /. Then

(2.29) {ut,Δτh(ξΔ1u)] + J{ (A(t)u(t), Δτh(ξΔfu)(t)> dt

= [f,Aτh{ξΔ1u)],

where we have denoted the inner product in L2(Q) by f . ].

By simple calculations

[ut,Δjh{ξΔ1u)]

= [Δlut, ξ Δϊu] = (1 /2) (fo

T (d/dt) | ξ1/2Δϊu \\dt- [Δh

tu, ξ' Δfu]}

= (l/2){[\ξ1/2Δl!u\lYtZ$- [ΔΊu, ξ'Δtύϊ)

= - (1/2) [d?M, ξ'Δίu],

because ζ(0) = ξ(T) = 0. Therefore, from Lemma 2

(2.30) I [ut,Δ7h(ξΔίu)]\ ύCh2\\ut\\l

We rewrite the second term on the left-hand side of (2.29) into the form
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(2.31) f (A(t)u(t), Δτh(ξΔh

tu){Φ dt = Σ [a,{.,.,Du), (Δ7h(ξ Δϊu))X}]
J I ] = l

= Σ

By the same way as in (2.8)—(2.10) the right-hand side of (2.31) is estimated from

below as follows:

(2.32) Σ W?α,(.,.,Z)w), ξΔΐuJ

^ ( 7 o / 2 ) f (\Du\ + \ Duh.t \)p~21 DuhΛ - Du\2ξdz- Ch2 \\ Du \\p

p,

where uh,t ~ u(x, t + h).

Moreover, the right-hand side of (2.29) is estimated from Lemma 2.

Namely,

(2.33) [f,Δ7h(ξΔΐu)]\ = | [Δΐf,ξΔϊu]\ ύ Ch2\\ft\\2\\ut\\2.

From (2.29)-(2.33) it yields that

(2.34) f (\Duht
\)p~2 \Duht- Du |2 ξ dz ύ C9h

2.

Employing the same calculations as in (2.25), we arrive at the following esti-

mate from (2.34):

/ Γ \2/k(s)

(2.35) [jQ\ΔiDu\k{s)ξdz) ^Cwh
2\\ξUsDufs-

p.

By Lemma 2 we finish the proof of this lemma. q.e.d.

Remark 4. Suppose that the same conditions as in Lemma 5 are satisfied. If

U Π S = φ, then D2u e Lhis)((G Π U) X / ) . This is shown by the same way as

in the above proof.

LEMMA, 6. Let Du e LS(G x / ) with s, p ύ s ^ p^ and J = (c, d), 0 < c

< d ^ T. If U Π 5 # φ, then D2u e Lm{s)((G Π U) x / ) .

/ It holds that ux.Xj e Lk(s)((G Π J7) X / ) for any (ί, ) ^F («, «) from

Lemma δ and m(s) < k(s) from Remark 1. Then let us show that uXγιχn G L m ( s )

((G Π ί/) X / ) only.
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By virtue of Lemma 5 and Nikodym's theorem the following equality holds in

the usual sense a.e. Q:

(2.36) (d/dηΛ)aH(x, t, Du)uXnXn = ut(x, t) -f(x, t)

n

— Σ (d/dxj)aj(x, t, Du) — Σ {d/dηι)aj{x1 t, Du)uXiXr

j=l ii,])*(n,n)

It is valid that uXnPCn = 0 a.e. N with N = {(x, t) ^ Q; \ Du\ = 0). Hence it

is enough for us to estimate uXnXn on Q\N. After multiplying (2.36) by uXnXn, let us

use the assumption (A.2). Then

Du \p'2 C I u X n X n \ ( \ u t \ + \f\ (d/dx,)a, I

(d/dηi)a)\\uXiXl\)a.e.Q\N.

Therefore, using the assumption (A.2) again, we have

(2.37) I uXnXn \2~p \ u t \ + \ D u \2~p \f\ + \ D u \ + Σ uXiXj

It is evident that (2.37) holds a.e. N also. Let us consider each term on the

right-hand side of (2.37). If follows that both | Du \2~p \ ut \ and \ Du\2~p.

I/I belong to Lm(s)(GxJ), because Du ̂  Ls (G x / ) , ut e L2(Q) and / e

L2(Q). From Lemma 5 again uXιXj e Lkis)((G Π U) x / ) for any ( * ' , ; ) #

(n,n). Further, let us remark that inequalities m(s) < k(s) ^ s hold under the

conditions of this lemma, see Remark 1. Thus, the assertion of this lemma is estab-

lished q.e.d.

3.

In this section we prove our theorem. We use the lemmas in Section 2 and

employ the method of the iteration used in [9] where J.-P. Raymond considered

solutions of nonlinear elliptic differetial equations. After it we give some remarks.

Proof of our theorem. Because Du ̂  LP(G X / ) , it follows that D2u ^

Lm{p)(G X /) from Lemma 6 and {Du)t e Lk{p\G x JO from Lemma 5 with /i =

(fli, W , 0i = 072, 6i = (V + T)/2, where 0 < a' < a < b < V < T.

Therefore, it holds that Du e WUm{p)(G X JO from m (p) < kip) = p.

Accordingly, by Sobolev's theorem

https://doi.org/10.1017/S0027763000004219 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004219


DIFFERENTIAL EQUATIONS 6 1

(3.1) Du e LHG x / i ) , pi = (n + 1) *»(/>)/(» + 1 ~ m(p))

l)p/{(n- 1) p + 2 (w + 1 ) ( 2 - / > ) } .

Here let us remark that inequalities p = pi < p™ hold from the assumption (A.I).

By virtue of (3.1), Lemma 5 and Remark 4 we conclude that

(3.2) D2u €= Lk(pι}(Jι, Lt&t (G)), (JDw)* e= L*<Ί>(G x / 2 ) ,

where /2 = (α2, b2), a2 — {ar 4- a\)/2 and δ2 = (6' + b\)/2. Moreover, from

Lemma 6, (3.1), (3.2) and inequalities m(pι) < k(pι) < pi

(3.3) D2u e L

Consequently

(3.4) £ > ^ e P F L m ( ^ ( G x / 2 ) .

Therefore, by Sobolev's theorem again

(3.5) Du^LHG x Λ).

where

p2= (n+ l)m(pι)/(n + 1

1) (2 -

Now let us consider the function h(s) ~ 2(n + l)s/{(n — l)s + 2(n + 1) -

(2 — p)} . By simple calculations we see that (i) h(s) is a monotone increasing

function of 5, 0 ^ s, (ii) if 0 < s ^ p^ then s ^ ή(s) ^ hip*,) = />«, (iii) if

2(w + l)/(w + 3) ^p <2, then p ^ p~ and p lί h(p) = pi £ p~.

After repeating processes from (3.1) to (3.5) inductively, we conclude that

(3.6) DutΞLpi(G x / > ) . ; = 3,4,...,.

Here {/>;•}£=3 and {/;)Γ=3 a r e defined as follows: for 7 = 3,4,...,

(3.7) Pi = 2(» + 1 ) Λ - I / { ( M - 1 ) A - I + 2(2 - i » ( n + 1)},

(3.8) /; = (αy, 6,), α, = (β,_! + flO/2 and δ, = (6,_i +

From (3.7) and (3.8) it is easy to see that pj—*poo, α,^> α' and bj~* V as ;'—* °°.

Then, from (3.6)

(3.9) £tt€=L*-(G x / " ) , / " = (β', ft').

By virtue of (3.9), Remark 4, Lemmas 5 and 6 it holds that
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(3.10) D2u €= Lk{p~\Γ, Lk^t} (G)), (/)«)* e L A ( ω ( G x / ' ) ,

(3.11) D2u ^ Lm{p°°] (G x / " ) .

In this way we complete the proof of our theorem. q.e.d.

Remark 5. (i) In the above proof we see that.if n = 1, then />«, = °° and

ft (poo) = ro (/>,») = 2.

(ii) The inequality pi ^ p holds in the proof of our theorem when the assump-

tion (A.I) fails. In such case we have the following corollary from Remark 4, Lem-

mas 5 and 6 in place of our theorem:

COROLLARY. Let 2n/(n + 2) < p ύ 2(n + l)/(n + 3). Under the assumptions

(A.2)—(A.4) there exists a unique solution u of (2) such that

(i) D2u e ! / ( / , Lfoc (G)), (Z)«)f e P ( G x /')

(ii) D2U<Ξ L2p/(4-p)(Q).

Remark 6. By easy calculations we can show that all assertions of our

theorem are valid even if we replace the nonlinear operator A(t) by the following

nonlinear operator Aι(t) with a lower order term:

<Ai(t)v, w> = <A(t)v, w> + (βo(.,f, «), w) t;, w e 1/.

Here the function flo(#, ί, z) satisfies the assumption

(A.5) ao(x, t, z) e C°(Q x i?1) Π C\Q x (i?1 - {0})) and for (*, ί) e

0, z e i?1 - {0},

(d/dz)ao(x, t, z) ^ /Co U | α ,

Λ:, t, z) | ^ Γ | z | β + 1 , k=

with some positive constants Ko and Γ, where 0 ^ a if w = 1, and 0 ^ α <

wp/(w ~ P) - 2 if 2 ^ w. Moreover, if 0 ^ α < ( w + l ) ( / > - l)/(w + 1 - p)

— 1, we can replace the inequality {d/dz)a$(x, t, z) ^ /c0 | 2 \a by the inequality

(d/dz)ao(x, t, z) ^ 0.

REFERENCES

[ 1 ] N. D. Alikakos-L. C. Evans, Continuity of the gradient for weak solutions of a de-
generate parabolic equation, J. Math. Pures AppL, 62 (1983), 253 — 268.

[ 2 ] -R. Rostamian, Gradient estimates for degenerate diffusion equations I, Math.

https://doi.org/10.1017/S0027763000004219 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004219


DIFFERENTIAL EQUATIONS 6 3

Ann., 259(1982), 53-70.
[ 3 ] S. Campanato, Holder continuity of the solution of some non-linear elliptic systems,

Adv. Math., 48(1983), 16-43.
[ 4 ] F. de Thelin, Local regularity properties for the solutions of a nonlinear partial

differential equation, Nonlinear Analy. T. M. A., 6 -8 (1982), 839-844.
[ 5 ] E. DiBenedetto-A. Friedman, Regularity of solutions of nonlinear degenerate para-

bolic systems, J. reine angew. Math., 349 (1984), 83-128.
[ 6 ] D. Gilbarg-N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,

Springer G. M. W. 224, 1977.
[ 7 ] H. Nagase, On an application of Roth's method to nonlinear parabolic variational

inequalities, Funk. Ekvac, 32-2 (1989), 273-299.
[ 8 ] J. Naumann, Interior integral estimates on weak solutions of certain degenerate

elliptic systems, Ann. Mat. Pura AppL, (IV), CLVI (1990), 113-125.
[ 9 ] J.-P. Raymond, Regularity globale des solutions de systems elliptiques non

lineaires, Rev. Mat. Univ. Comp. Madrid, 2-2/3 (1989), 241-270.
[10] S. L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Amer.

Math. Soc, Providence, RI, 1963.
[11] P. Tolksdorf, Everywhere-regularity for some quasilinear systems with lack of

ellipticity, Ann. Mat. Pura AppL, (4) 134 (1983), 241-266.

Suzuka College of Thechnogy
510-02 Suzuka
Japan

https://doi.org/10.1017/S0027763000004219 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004219



