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ON SOME REGULARITY PROPERTIES FOR SOLUTIONS
OF NONLINEAR
PARABOLIC DIFFERENTIAL EQUATIONS

HARUO NAGASE

Introduction

Let G be a bounded domain in R” with coordinates x = (xy,...,r,) and let
its boundary S be of class C% We assume that the usual function spaces LI(G),
Wt(G) and W(G), 1 < g < oo, are known. We write the norm of L*(G) by
| |s and the adjoint number of g by ¢%, ie., ¢* = q¢/(q — 1).

For any positive number T we denote the open interval (0, T) by I, the
cylinder G X I'in R™' by @ and the norm of L7(Q) by || |..

Let X be a Banach space with the norm | |x. Let C(I, X) be the space of all
continuous functions v(¢); I— X Let us denote by L'(J, X), 1 < g < o and
L*(I, X) the set of all measurable functions v(t); I— X such that | vleux

1/q
= (fz L) |% dt) < 0 and | vlux = esssup|v(t) [x < | respectively. A
I

function v (¢) ; I— X is said to be strongly differentiable at f € I, if there exists
w(@) in X such that im| (@ + h) —u())/h — w(t) |y =0. Then we call
w(t) by the strong derivative of v(t) at t € I and we denote it by v,(f).

In this paper we make the assumption

(A1) 2+ 1D/(n+ 3) <p <2

Let us denote Wo+?(G) by V, its dual space by V* the pairing between V and
V* by <,> and the inner product of L*(G) by (,). Further, we write
0=1(0,...,00 ER"and Dv = (vy,),j=1,...,n, v, = (0/0x))v.

We define a nonlinear operator A(¢); V— V*, t € [ as follows:

(1) AWBv, w = 3 (@, t, Do),ws), v, weE V.
j=1
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Let us suppose that functions a;(x, t, n), 7 = 1,...,n, satisfy the assumption

(A2) ax, t,n) €C°(QX RN NCHR X (R"—{0})),
ai(x,t,0)=0,7=1,...,n,

and for (z, t) € Q, n € R" — {0}, £ € R",

> @/0n) a (x, t, ) EE = 7] lP?] €,

i,7=1

[@/0n) a;(x, t, )| =Alnlt2i,j=1,...n,
| (0/0x) a;j (x, t, ) |, | (@/0t) a; (x, t, )| S AlnlP~Y 7, k=1,...,n

Here 7 and A are some positive constants.
Now we consider the nonlinear parabolic differential equation

we LI, V)N CU, LX(G)), u, € L*(, LXG)),
(2) (), @) + AW u (1), ¢> = {f(t), ¢> forany ¢ € Vand ae. tE I,

u (‘ry 0) = uO(x)y

In this paper we suppose that f and #, in (2) satisfy the following assump-
tions (A.3) and (A.4) respectively:

(A.3) fe L*(I, WY*(G)) and f, € L*(I, L*(G)).

(A4) uo € Vand Duy, € L*(G). Further, there exists a function 2, in L*(G)
such that the equality

(3) (20, v) + <A uo, v> = {F(0), v
holds for all v € V, where f(0) = f(x, 0) € V*

Recently in [7] we showed the unique existence of solutions such that #; €
L~(I, L*(G)) and gave some a priori estimates for solutions of nonlinear para-
bolic variational inequalities, which contain the equation (2) in a special case,
when 2 < p. We can prove the unique existence of solutions of (2) by the similar
way as in [7] when the assumption (A.1) is satisfied also. The aim of this paper is
to show some regularity properties of solutions of (2) in such cases.

Before stating our results we introduce some notations

(4) k(s) =2s/(s+ 2 —p), m(s) = 2s/(s+ 4 — 2p) and
pe=2m+ 1)@ —1)/(n—1).
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Remark 1. It is easy to see that the followings hold:
(i) Hp =5 < po, then k£ (s) = sand p = k(s) < k(P.).
(it) If p < 2, then m(s) < k(s) < 2.

Our theorem is as follows:

THEOREM. Under the assumptions (A.1)—(A.4) it holds that for the unique solu-
tion u of (2)

(i) D*u € L**='(I", Li&=(G)), (Du), € L**='(G x 1),
(ii) D*u € L™= (G X I'),

where D = (uzz), (D) = (uz), 1 <4, jSm, I' = (a,b) and 0<a<
b<T

Remark 2. It is easy to see that k(po) =4(m + 1) — 1)/((n + 3)p — 4)
>p and m@.) =2m+ 1)@ — 1)/@p + n—3). Further, k() — 2 and
m(p.) — 2 as p— 2.

S. Campanato [3], F. de Thelin [4], ]. Naumann [8] and others showed the in-
terior integrability of the second order derivatives of solutions of nonlinear ellip-
tic differential equations and systems. Moreover, J.P. Raymond [9] proved the glob-
al integrability of the second order derivatives of solutions of nonlinear elliptic
differential systems. N.D. Alikakos-L.C. Evans [1], N.D. Alikakos-R. Rostamian {2],
E. DiBenedetto-A. Friedman [5] and others obtained some estimates and some in-
tegrability properties of the first order derivatives of solutions of nonlinear para-
bolic differential equations. But we have few results with respect to the integrabil-
ity of the second order derivatives of solutions of nonlinear parabolic differential
equations.

We attempt to extend the results in [9] to solutions of the nonlinear parabolic
differential equation (2).

This paper is constructed as follows. In Section 1 we prepare some prelimin-
ary lemmas without proofs. In Section 2 we show some lemmas which play impor-
tant roles in the proof of our theorem. Proofs of these lemmas are given by the
method of the difference quotient. The proof of our theorem is given in Section 4.

LemMAl.  Under the assumption (A.2) theve exists a positive constant 7o such
that
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M=

(1.1) (aj(x, t, n) — a;(x, t, n)) (M, — n)

1

zrn(nl+10 Dy — 7%

where (x, 1) € Q, n, " ER"and | n|+ |9 | *0.

~
Il

The above lemma was proved by P. Tolksdorf in [11, p.246, Lemma 2.3].
Let v be a function in a bounded domain £ in R™ and let us denote

e, = (0,.. .,O,i,O,. ..,0), 1 =1 = m. We define the difference quotient by
0fv(z) = (v(x + he) —v(x))/h, h 0.
The following lemma plays an important role in this paper:
LEmMMA 2 [6, p.168, Lemmas 7.23, 7.24]. (i) Let v € WH(2),1 < g < o0,
Then for any  C 2 C Q and | h| < dis(£2’, 02) the estimate
(1.2) | otv |L4(!J') = CI Uz, IL"(Q)

holds, where 082 is the boundary of £ and C is a positive constant which does not de-
pend on v and h.

(i) Let v € LY(R2) and let the inequality | 6!v g = C be valid for any h and
Q' C Q2 C Q such that | h| < dis(R’, 82). Then vy, € LU(2) and

(1.3) | Uy, |L4(!2') =C.
Next, let us prepare the reverse Holder’s inequality, see [10, p.8].

LEmMa 3. Let 0<7<1and vr*=v/(r—1). f FE L'(Q), FH € LY(Q)
and j;? | H(z) | ™ dxr < o, then it holds that

/r¥

(1.4) (fg!F(x)I'dx)wg (LIF(x)H(x)ldx)(j;lH(x) I dz)

Heve 82 is a bounded domain in R™.

In this section we denote any sufficiently small open set in R” by U and U".
Let us assume that UC U” and UN S = ¢. We see that there exists a dif-
feomorphism g; R”— R" which satisfies the followings:
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g(U) =B, g(U") = B, 0<r<R,
gGNU)=BN{x,>0} g(GNU)=Br N {z,> 0},

where B, = {x € R”; | x| < p}. From now on we consider the problem only in
the case that

21) GGNU=BNA{z,>0,GNU =B N{x,>0},0<7r<R,
in order to simplify calculations. We can show all of results in this paper by
calculations with minor changes in the general case, see [9].
We denote x = (2, &), ' = (X1,...,&n-1) and D'v = (v5), 1 = j < n — 1.
In this section let us suppose that the assumptions (A.1)—(A.4) are satisfied.
And let us denote any solution of (2) by «.
Hereafter, we write by the same C all constants which do not depend on u,
%o, 2y and f.

Lemvma 4. IfUN S = @, then
(2.2) sup | D'u®) | ooy € M
and D'(Du) € (G N U) X I) with D'(Du) = (Uzg,), (i, 7) = n, n), 1 =

i, § < n. Here M is a positive constant depending on | Duo |2, | Df llp+ and || Du [|,.

Proof. Let {(x) be a Co’(Bg)-function such that 0 = { =1 and {=1 on
B,. For any sufficiently small | 2| we denote Alv = Atv(z, t) = v(x + hei, t)
—v(x, t), 1 > n. Taking ¢ = A7"({ A*u) as a test function in (2), we have

(2.3) (ui(t), A7 (L Atu) (1)) + <A u(t), A7"(C Atu) (2)?
= {f(B), ATMC Alu) (1))

Each term on the left-hand side of (2.3) is rewritten as follows:

(2.4) (u:(t), 47" (L Atu) (1)) = (Liw (D), C ATu(t))
= (1/2)(d/at) | L Atu(t) 3,

(2.5)  <AWMut), 47" (LA (t)) = i (a;(.,t, Duy, (A7"(C Atu))a (1))

S

(a,(.,t, Du), 47" (Coy Alu + C Alus,) (£))

j=1

~
[

I
M=

{(a;(.,t, Du), ATM(Cy Alu) (1) + (A1, (.8, Du), C Aus, (1))}

Il

j

From (2.3)—(2.5)
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(2.6) (1/2)(d/dt) | {2 Atu(t) 5 + {ZZ (Ata;(.,t, Du), C Atus (1))
j=1
= AP, CAUWD)Y — 3 (@t Du), A7 (G, Au) (1)),
j=1
For any t € I let us integrate (2.6) over (0, f). Then

(2.7) (1/2) | £ Aru(2) |3 + Anv.. [Ata,(.,., Du),  Atuzlq
1=1
= (1/2) | {2 Alu(0) 3 + [4Ff, C Alulg,
— 3 [a;(.,., D), AH(Co, M)l
j=1
Here we have denoted the inner product of L*(Q) by [, le, where @ = Q.

=G X% (0,0).

The second term on the left-hand side of (2.7) is rewritten in the form:

n

(2.8) Z (41a;(.ve, Du), € Musle, = 5 lay(a + hesy Du + her.)
— a;(x + hei,.,Du(x,.)), {(ug(x + he,,) = uz(x,))]a,
* Z la;(x + hei,.,Du(x,.)) = a;(x,..Dux,), {(uz(x + hey,.)
R

Each term on the right-hand side of (2.8) is estimated as follows:
(2.9)  the first term = 7’0_/; (| Du| + | Duy, 1)*~2| Duy; — Du|* € dz,
(2.10) | the second term | < C| k| j; | Du |*=*| Du,; — Du| { dz

< Clalf (Dul+|Dup )| Duss = Du| Cde

< (7/2) j; (| Dul + | Duni 1)*~2| Dun, — Du |2 € dz

2 »

+ Ch .fo,’D“' dz,
where dz = dxdt, us, = u(x + he,, t) and we have defined the integrand
(| Du| + | Dupi )72 | Dup; — Dul> to be zero on {(x,t) € Q;|Dul=

| Duy;| = 0}. In the above we have used Lemma 1, the assumption (A.2) and

Young's inequality.
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Using Lemma 2, Holder’s inequality and the assumption (A.2) again, each
term on the right-hand side of (2.7) is estimated as follows:

(2.11) (/2| Y2 A'u(0) 3 < Ch?| Du, I3,
(2.12) |[4%f, CAMu)q,| = Ch? | Dfllpx || Du
213) | S [a,... Du), A" (Coy A0 ],

=1

IA

'21 [ a;(.,., Du) ”p* ‘ ATH(C,, Atu) lmon
is

A

C | h | " Du Hg_l Zl (“ Cauay Alu ”p + ‘ Cx,- Af’D%| @n)
=

Ch? | Dully + Clh|Dulp™ | Lo ADu | 1oan

C

IA

IA

W Dull + Clal 1Dl T AlDu | oo,

because we can choose the function { such that |, |? = CC.

Accordingly, from (2.7)—(2.13) we deduce the inequality
(2.14)  A/2)[ 0 Atu(t) |3
+ (10/2) fQ (| Dul| + | Dup; 1)*=*| Dun, — Dul* C dz
< O (| Dullp + | Duo 3 + | DFIG® + CLALIDu [ C? AtDu | Loco.

Next setting 7= p/2, F= (¥ | A" Dul?, H= (| Du|+ | Duy,|)?=2 {427,

=20, and §,= {(z,t) € Q. C(| Du| + | Dun,|) = 0}, let us use Lemma 3.
Then

2/p 2/p
h p — h 2 ¥2/p\p/2
(2.15) <f@|AtDu| Cdz) <f@(|A,Du| ()2 de)
< ([, A Dul + 1 D =207 4t Du 02 az)-
(j;} {(] DMI + ‘ Duh,z l)p—zc<1~2/p)}(p/Z)*dz)—1/<p/2>*

= ( | Dul+ | Dup, [)?7%| At Du|” C dz C [ Dul|+ | Dun; )€
p )(2 pY/p Q Qt
4 .

In the above we have used the relations (p —2)(p/2)* =p and (1 — 2/p)

(p/2)* = 1. It is easy to see that the estimate (2.15) is valid if we replace Q. by
Q;. Consequently, from (2.14) and (2.15)
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1/p

(2.16) (f@tlAfDuibcdz)z’”gc,h2+czlh|(fm|A:lDul2cdz)

From now on we denote by C,, ¢ = 1,..., any positive constant which depends on
#o, f and u only.
By Young’s inequality again

2/p
2.17) (fQ |4 Dup Caz)” = Ct
Furthermore, by virtue of (2.14) and (2.17) we obtain the estimate

(2.18) | At (t) (V23 < Cih® for any t € 1.

Hence we arrive at (2.2) from Lemma 2 and (2.18).
Next, after setting ¢ = T in (2.17), let us Lemma 2 again. Then we see that
D'(Du) € (G N U) xXI). q.e.d.

Remark 3. If UNS= ¢, then sup [ Du(t) ILZ(GnU) < M and Dzu =
LGN U) X 1. !

Lemvia 5. Let Du € L5(G X J) with $,p S 5= pu, and J= (¢, d), 0 <
c<d=T If UNS*¢ thn D'Du) € L*(G N U) X J) and (Du), €
LG X ] foramy ]’ = (¢, d), ¢ < ¢ < d’' < d.

The proof of this lemma is similar to that of Lemma 4. However, for the com-
pleteness we give it.

Proof. At first let us integrate (2.6) over J. Then, denoting the inner product
of L*(Q)) by [, 1o, @ = G X J, we obtain the equality

219)  (1/2) ] 024M(@) i + 3 [A%a,(.,., Du), C Musle
7=1

= (1/2) | {2 Au(c) |3 + [Atf, C Atulg,
- z (a,(.,., Dw), A7(Ce Alw)] e,

By the same way as in (2.8)—(2.10) we have the inequality

(2.20) 3 [Ma(..., Du),  Atugle,
j=1
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> (70/2) fo (| Du| + | Duni)*2| Duns — Du|? ¢ dz — Ch*|| Du b

Next, from (2.18)
(2.21) | €2 Ahu(c) |2 £ Coh?.

Further, by (2.13)

(222) | £ [0y D), 477 (G 4110
S Ch|Dully + Cl || Dulf | (s Al Dut|iscap.
Let us choose the function { such that | (g [*' £ C ¢ and let us remark the ine-
quality p = k(s), see Remark 1. Then, from (2.22)
(2.23) | 2 L4y D), 47 (G A1),
< Ch* | Dully + Clh| | Dulp=] L% Al Du|ixoian.

Combining (2.19)—(2.21), (2.23) with (2.12) , we see that

(2.24) fQ (| Du| + | Du,.|)*"2| Du,, — Du|? { dz
= Cn* (| Dul} + Co + | DFIED)
+ Clh!|| Du Hﬁ"‘ ] gV Al Du IL"‘S’(QJ}-

Setting # = k(s)/2, F = (¥*9 | A Dul?, H= (| Dul| + | Duy. [)o-2 ga-wke
Q=0Q,and Q,={(x, 1) € Q; £(| Du| + | Dus;|) * 0}, let us use Lemma 3
again. Then

2/k(s)

(2.25) (fg,l | A* Dy |¥® Cdz)mm = (fé; (| A" Du |? g2/xykor2 dz)
= <f@ (| Du| + | Duy; [)p=2 {2k | Ab Dy 2L dz>-
(fgh {(| Du| + | Duy,; )22 -2k} o/ dz>‘1/<k‘s>/2>*
= (fo/ (| Du| + | Duy, Dp“zlA?DMIZCdz)
(fg, ( Dul + |Dus; 1)* Cdz)‘H’VS_

In the above we have used the relations (p — 2) (k(s)/2)* = s and (1 — 2/k(s)) -
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(k(s)/2)* = 1. It is easy to see that the estimate (2.25) is valid also if we replace
Qs by Q.
From (2.24) and (2.25)

(2.26) (fQ]M;z Du [F® Cdz)mm
= (Csh® + Col |1 0 A7 Du IL"(S)(Q”)(IQ,l Du|® Cdz)cz—p)/s

By Young's inequality again

e2n 14t Du cdz)”" S W(CH 0 Dul ity + Cal 0 Du| D).

Using Lemma 2, we finish the proof for the first part of this lemma.

Next we show the second part of this lemma. Its proof is similar to those of
Lemma 4 and the first part of this lemma. Let £(¢) be a Ci°(Z)-function such that
0=<E=1,&=1o0nJ and supp &€ = J. For any sufficiently small | % | we denote

ho=Aw(x,t) =v(x, t+h) —v(x, t). Taking ¢ = A" (£Atu) as a test
function in (2), we have

(2.28) (u, (), AT"(§ Atu) (1)) + A u(t), A7"(§ Atu) (£))
= {f (), A7H(E Atu) (1))

Let us integrate (2.28) over I. Then
(2.29) [, 47 (& 410] + [ CADu (), 474 M) (0
= [f, 47" (€ Atw)],

where we have denoted the inner product in L2(Q) by [ . ].
By simple calculations

[, AT"(E Alw)]
T
= [atu, §atl= (/2| [ @sdn | & atu) st — (b, & At}

= (1/2){| V2 Abu 3142 — [Alu, & Alul}
= — (1/2)[Atu, & Atul,

because £(0) = &(T) = 0. Therefore, from Lemma 2
(2.30) | Lue, AT"(E Atw)] | < CH | 3.

We rewrite the second term on the left~-hand side of (2.29) into the form
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(2.31) fI CAWu(ty, AT"(EAM) (1)) dt = ij la,(.,.,.Du), (47" (& Atu)),]

M=

[Afa,(.,.,Du), & Atu,,].

1

~
il

By the same way as in (2.8)—(2.10) the right-hand side of (2.31) is estimated from

below as follows:
(2.32) é [Ata,(.,.,Du), & Afu,)

= (/) [ A Dul + | Dus )| Dus — D& dz — Cn* | D,
where u,, = u(x, t + h).

Moreover, the right-hand side of (2.29) is estimated from Lemma 2.
Namely,

(2.33) U, A7t Al | = [ Latf, e Atul | = Ch2 | fill e e

From (2.29)—(2.33) it yields that
(2.34) fQ (| Duns | + | D )*~2 | Duy, — Du|? € dz = Co®.

Employing the same calculations as in (2.25), we arrive at the following esti-
mate from (2.34):

2/k(s)
(2.35) ([ 4t Dl eaz)™ = Coe e Dule.
By Lemma 2 we finish the proof of this lemma. g.e.d.

Remark 4. Suppose that the same conditions as in Lemma 5 are satisfied. If
UNS= ¢, then D*u € L*((G N U) X J). This is shown by the same way as
in the above proof.

Leania 6. Lel Du € L3(G X J) with s, p £ 5SS po, and J = (¢, d), 0 = ¢
<AdET IFUNS % ¢, then D>u € L™ (G N U) X ]).

Proof. 1t holds that w,,, € L*' (G N U) X [) for any (i, j) = (n, n) from

Lemma 5 and m(s) < k(s) from Remark 1. Then let us show that uy,. & L

(G N Uy X ]) only.
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By virtue of Lemma 5 and Nikodym'’s theorem the following equality holds in
the usual sense a.e. @:

(2.36) (0/0nwan(x,t, Du)ug,, = ux, t) — f(x, 1)

n
- Z (O/B.rj)aj(x, t, Du) - Z (6/6 ni)aj(xy t, Du)uxixi‘
j=1 i,0) = (n,n)
It is valid that #z., = 0 a.e. N with N = {(z, t) € Q; | Du| = 0}. Hence it
is enough for us to estimate #z,,, on Q\N. After multiplying (2.36) by #z,4,, let us
use the assumption (A.2). Then

IDulp_Zluxﬂxnlz = cluznxnl (| M:l +|fl + Z:ll (a/axj)all
j=

+ X 1@/0n)a,| |ty ]) ae. Q\N.

(1,9 % (n,n)

Therefore, using the assumption (A.2) again, we have

(237) | thgpay | = CADu? e | + | Du P | fl + 1 Dul + 2 fsgg,|).
1,5y *(n,n)

It is evident that (2.37) holds ae. N also. Let us consider each term on the
right-hand side of (2.37). If follows that both |Du[*?|u,| and | Du|*.
| f| belong to L™®(G X J), because Du € L° (G X J), u, € L*(Q) and fE
L*(Q). From Lemma 5 again #sq € LGN U) X J) for any (i,7) %
(n,n). Further, let us remark that inequalities m(s) < k(s) = s hold under the
conditions of this lemma, see Remark 1. Thus, the assertion of this lemma is estab-
lished q.e.d.

In this section we prove our theorem. We use the lemmas in Section 2 and
employ the method of the iteration used in [9] where ]J.-P. Raymond considered
solutions of nonlinear elliptic differetial equations. After it we give some remarks.

Proof of our theorem. Because Du € L*(G X I), it follows that D*u €
L™ (G X I) from Lemma 6 and (Du); € L*®(G X J;) from Lemma 5 with J, =
(ay, b)), a1 =a/2, b= '+ T)/2, where 0 < a <a<b< b <T

Therefore, it holds that Du € W'®(G x J) from m (p) < k(p) = p.
Accordingly, by Sobolev’s theorem
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3.1) Duel’(GXJ),pp=m+1)m@p)/(m+1—m@))
=2+ Dp/An—Dp+2m+ 12— p)}.

Here let us remark that inequalities p = p; < p. hold from the assumption (A.1).
By virtue of (3.1), Lemma 5 and Remark 4 we conclude that

(3.2) D*u € L (], LI (G)), (Du), &€ L (G X Jy),

where Jo = (a, b)), az = (@’ + @1)/2 and b, = (b' + b1)/2. Moreover, from
Lemma 6, (3.1), (3.2) and inequalities m(pr) < k(p1) < p

(3.3) D *m € L") (G X J)), (Du), € LK (G X J,) C L™*(G X J,).
Consequently

(3.4) Dy € W (G X J,).
Therefore, by Sobolev’s theorem again

(3.5) Du € L'(G X ]).

where
pr= m+ Dm@p)/(n+ 1 — m(p)
=2+ Dp/{(n—Dpy +2(n + 1)(2 — p)}.

Now let us consider the function A(s) =2n + 1)s/{n — s+ 2(n+ 1) -
(2 — p)). By simple calculations we see that (i) k(s) is a monotone increasing
function of s, 0 =5, (i) if 0<5s =P, then s = h(s) = h(Pe) = P, (iii) if
2+ 1)/(n+3) Sp<2 thenp £ pwand p £ h(p) = p1 = pon.

After repeating processes from (3.1) to (3.5) inductively, we conclude that

(3.6) Due G xJ).j=34,...,.

Here {p;}i=s and {J,}7s are defined as follows: for j = 3,4, .. .,

(3.7) pi =20+ Dpy/{(n=1)pms + 22 — p)(n + D},
(3.8) = (a;, b), a,= (a,-, + a’)/2 and b; = (b, + b')/2.

From (3.7) and (3.8) it is easy to see that p;— pw, @,— @’ and b; — b" as j— .
Then, from (3.6)

(3.9) Du s D'=(GxI"),1"= (a', b).

By virtue of (3.9), Remark 4, Lemmas 5 and 6 it holds that
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(3.10) D*u € L= (1", LI (G)), (Du), € L**=(G x I'),
(3.11) Dy € "0 (G X I7).
In this way we complete the proof of our theorem. q.e.d.

Remark 5. (i) In the above proof we see that if # = 1, then p. = ©© and
k@e) = m(p=) = 2.

(ii) The inequality p1 = p holds in the proof of our theorem when the assump-
tion (A.1) fails. In such case we have the following corollary from Remark 4, Lem-
mas 5 and 6 in place of our theorem:

COrROLLARY. Let 2un/(n + 2) < p = 2(m + 1)/(n + 3). Under the assumptions
(A.2)—(A.4) theve exists a unique solution u of (2) such that
(i) Duwe P, L (G)), (Du), € L*(G X I')
(ll) Dzu = LZIJ/(A—P)(Q)‘

Remark 6. By easy calculations we can show that all assertions of our
theorem are valid even if we replace the nonlinear operator A(f) by the following
nonlinear operator A;(¢#) with a lower order term:

<Al(t)vy w> = <A(t)vy w> + (a()(~yt, U), w) v, wE V'
Here the function ao(x, £, z) satisfies the assumption

(AD) ao(x, t,2) € CUAQ X RHY N CHQ X (R~ {0})) and for (x,1) €
Q, z € R — {0},

|ao(z, t, 2) | = I'|z|**,

(0/02)ao(z, t, 2) = kol 2],

| (a/at)aO('r; ty Z) |y I (a/axk)a()(xy ty Z) |§ Fl zla+1y k = 1.9- . -,ny
with some positive constants ko and I, where 0 S a if # =1, and 0 S a <
np/(m—p) —2 if 2=<mn Moreover, f 0=a<m+D@P—1)/n+1—p)

— 1, we can replace the inequality (0/02)ao(x, t, 2) = ko| z|% by the inequality
(0/02)ay(x, t, z) 2 0.
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