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Abstract. Incidence coalgebras of categories in the sense of Joni and Rota are stud-
ied, specifically cases where a monoidal product on the category turns these into (weak)
bialgebras. The overlap with the theory of combinatorial Hopf algebras and that of Hopf
quivers is discussed, and examples including trees, skew shapes, Milner’s bigraphs and
crossed modules are considered.
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1. Introduction. Incidence coalgebras of categories, defined in [18], have been
studied in several areas, notably Möbius inversion (see e.g., [21, 22, 23]) and combina-
torial Hopf algebras (see e.g., [9, 14, 15, 24]). The latter notion refers to Hopf algebras
with a vector space basis indexed by a family of combinatorial objects (e.g., graphs or inte-
ger partitions), but the precise definition varies in the literature. The product and coproduct
reflect unions and compositions of these objects; hence, the underlying coalgebra is (or is
closely related to) an incidence coalgebra of a category C.

In this case, one might wonder if the multiplication corresponds to a monoidal prod-
uct on C. This was explored by several authors, see [11] for a recent account. Here, we
characterise two classes of monoidal categories giving rise to pointed, respectively, weak
bialgebras:

THEOREM 1. If a monoidal product on a Möbius category C has the unique lifting of
factorisation (ULF) property, then its linearisation turns the incidence coalgbera of C into
a pointed bialgebra. This is a Hopf algebra provided that the monoid of objects is a group.
Similarly, if C is a locally finite strict 2-group, the monoidal product turns the incidence
coalgebra of C into a weak Hopf algebra.

See the main text for definitions.
A main goal of this paper is to discuss how several well-known examples of Hopf

algebras fit into this picture, including the Connes–Kreimer Hopf algebra of rooted trees
and symmetric functions. Milner’s bigraphs, a combinatorial structure employed in the-
oretical computer science, are considered as a new example. We discuss how the Hopf
algebraic techniques applied to the problem of renormalisation in physics could lead to
new approaches to bigraphical systems, for example, in studying reaction rules, and it is our
hope that there are other parallels to be drawn between bigraphical systems and physical
ones, for example, Dyson–Schwinger type equations for generating sub-bialgebras.

We also show that not all Hopf algebras of a combinatorial nature can be described
this way, even when the coalgebra structure is the incidence coalgebra of a category. As
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140 ULRICH KRÄHMER AND LUCIA ROTHERAY

an illustrative, and perhaps counterintuitive, example we investigate the Hopf quivers of
Cibils and Rosso:

THEOREM 2. If Q = (Q0, Q1) is a Hopf quiver, k a field and · : kQ × kQ → kQ, the
multiplication in the associated Hopf algebra kC as defined in [6], then · is the linear
extension of a monoidal product on Q if and only if Q1 = ∅.

The structure of the paper is as follows:
In Section 2, we recall some basic definitions, including that of an incidence coalgebra

of a category, Möbius categories and the ULF property of a functor.
In Section 3, we study monoidal Möbius categories whose monoidal product is a ULF

functor. We prove that these define bialgebras and discuss the examples mentioned above.
In Section 4, we recall the definition of a weak bialgebra and show that the monoidal

product in a 2-group satisfies a weak version of the ULF property, which leads to the last
statement in Theorem 1.

2. Definitions and notation. Throughout, all categories are assumed to be small
and all monoidal categories to be strict. We use C to denote both a category and its set of
morphisms, and C(x, y) the subset of morphisms from x to y. We denote the set of objects by
ObC and the set of identity morphisms by IdC. The identity morphism at x ∈ ObC is written
ix. The monoidal product is denoted · : C × C → C to reserve ⊗ for the tensor product of
vector spaces.

DEFINITION 1 (Decompositions and length). Given a morphism f ∈ C and n ∈ N, we
define the set

Nn( f ) := {(a1, . . . , an) ∈ C×n | a1 ◦ . . . ◦ an = f },
of n-decompositions of f , and let N̂n( f ) be the non-degenerate subset, that is, those
decompositions for which no ai is an identity morphism. Furthermore, we set

N̂( f ) :=
⋃
n∈N

N̂n( f ), �( f ) := sup{n | N̂n( f ) �= ∅},

and call �( f ) the length of f .

Note that by definition, Nn := ⋃
f ∈C Nn( f ) is the set of n-simplices in the nerve of the

category C. This leads to the more topological viewpoint of [11].

DEFINITION 2 (Locally finite and Möbius categories). A category C is called locally
finite, respectively, Möbius, if |N2( f )|, respectively |N̂( f )|, is finite for every f ∈ C.

These concepts appear under various names in the literature (in particular, locally finite
categories are also called finely finite, for example, by [23]); we follow the terminology of
Joni and Rota [18] and Leroux [22] (see also [21]). Evidently, a Möbius category does not
contain nontrivial isomorphisms or idempotents.

LEMMA 1. A category C is Möbius if and only if C is locally finite and every morphism
has finite length.

For the proof, see [22] or [21, Proposition 2.8].
Note that the sequence of sets

Cn := { f ∈ C | �( f ) ≤ n},
is a filtration of C, called the length filtration. If C is Möbius, then this filtration is exhaustive
and C is one-way, that is, C0 = IdC.
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The following definition is originally due to Joni and Rota [18]; we consider a variation
in which the coproduct is multiplied by a nonzero scalar, as this rescaling arises naturally
from the compatibility with the associative products discussed below:

DEFINITION 3 ((Scaled) incidence coalgebra of a category). Let C be a locally finite
category, k a field, kC the k-vector space spanned by the morphisms of C and λ ∈ k, λ �= 0.
The coassociative counital coalgebra structure on kC defined by the following formula is
called the (scaled) incidence coalgebra of C over k:

�( f ) := 1

λ

∑
(a,b)∈N2( f )

a ⊗ b, ε( f ) :=
{

λ, f ∈ IdC,

0, f /∈ IdC.

We will combine such coalgebra structures on kC with the algebra structure defined
by a monoidal product on C:

LEMMA 2. If (C, ·, 1) is a monoidal category, k is a field and kC is the k-vector space
spanned by C, then (kC, ·, i1) is a unital associative k-algebra.

Next, we address the question of whether these algebra and coalgebra structures
define a bialgebra, that is, whether � and ε are algebra morphisms. We use the following
definitions:

DEFINITION 4 (n-to-1 surjection). A map φ : A → B is an n-to-1 surjection if the
preimage of every element of B has cardinality n.

DEFINITION 5 (Lifting of factorisations property). For n ∈ N, a functor F : C →D has
the n-to-1 lifting of factorisations property if the map

N2( f ) → N2(Ff )

(a, b) 
→ (Fa, Fb),

is an n-to-1 surjection for all f ∈ C.

This generalises the ULF property defined, for example, in [11, 12, 21]. For con-
sistency with the literature, we will use the name ULF rather than 1LF. The generalised
concept will be used in the final section of this paper in the construction of weak bialgebras.

LEMMA 3. If F : C →D has the ULF property, then F reflects identities, that is, Ff ∈
IdD ⇔ f ∈ IdC.

Proof. f ∈ IdC ⇒ Ff ∈ IdD holds as F is a functor. Ff ∈ IdD ⇒ f ∈ IdC follows from
the injectivity of the map N2( f ) → N2(Ff ).

3. Bialgebras from monoidal categories. In this section, we study monoidal
Möbius categories for which the monoidal product turns the incidence coalgebra into a
bialgebra.

DEFINITION 6 (Combinatorial category). A combinatorial category is a monoidal
Möbius category (C, ·, 1) whose product · : C × C → C has the ULF property.

THEOREM 3. Let C be a locally finite category, k a field, and (kC, ·, i1) and (kC, �, ε)

be the (co)algebras defined in Lemma 2 and Defintion 3, respectively (with λ = 1).
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(1) If C is a Möbius category, then the coalgebra kC is pointed, that is, its simple
subcoalgebras are one-dimensional as k-vector spaces.

(2) If C is a combinatorial category, then (kC, ·, i1, �, ε) is a k-bialgebra, that is, �

and ε are algebra morphisms.
(3) If C is a combinatorial category, then the (two-sided) ideal I � kC generated by

{ix − i1 | x is not invertible in (ObC, ·, 1)},
is a coideal, and the bialgebra kC/I is a pointed Hopf algebra.

For the proof, we will use the following results:

LEMMA 4. If k is a field, C is a k-coalgebra and {Cn}∞n=0 is a (exhaustive) filtration
of C, then any simple subcoalgebra of C is contained in C0.

LEMMA 5. If k is a field and B is a pointed k-bialgebra, then B is a Hopf algebra if
and only if the set of group-like elements of B is a group under multiplication.

LEMMA 6. Let f : C → D be a surjective coalgebra homomorphism. Any simple
subcoalgebra F ⊆ D is contained in f (E) for some simple subcoalgebra E ⊆ C.

See [27, Proposition 4.1.2, Lemma 7.6.3 and Proposition 4.1.7] for the proofs.

Proof of Theorem 3. (1) As C is Möbius, the length filtration is an exhaustive coal-
gebra filtration and C is one-way, so that kC0 is spanned by the monoid (IdC, ·, i1) ∼=
(ObC, ·, 1) whose elements are all group-like, �(ix) = ix ⊗ ix. This coalgebra is evi-
dently pointed, and by Lemma 4, all simple subcoalgebras of kC are contained in
kC0. Consequently, kC itself is pointed as well.

(2) As C is a Möbius category, the unit element i1 of the associative algebra (kC, ·) is
group-like, that is, �(i1) = i1 ⊗ i1, which means that � is unital. The ULF property
of the product · further ensures that the coproduct � is also multiplicative:

�( f · g) =
∑

(h1,h2)∈N2( f ·g)

h1 ⊗ h2

=
∑

(( f1,f2),(g1,g2))∈N2( f )×N2(g)

f1 · g1 ⊗ f2 · g2

= �( f ) · �(g).

Hence, � is a morphism of unital algebras. The unit element i1 is an identity
morphism, so ε(i1) = 1. As ULF functors reflect identities (Lemma 3), we have

ε( f · g) =
{

1, f · g ∈ IdC ⇔ f , g ∈ IdC
0 else

= ε( f )ε(g),

and hence ε is also a morphism of unital algebras.
(3) That I is a coideal follows from

�(ix − i1) = (ix − i1) ⊗ ix + i1 ⊗ (ix − i1),

and the multiplicativity of �. Denote by Q := kC/I the quotient bialgebra and by
q : kC → Q the quotient map. The length filtration on kC induces an exhaustive
filtration on Q, that is, Qn := q((kC)n). Any simple subcoalgebra of Q is the image
of a simple subcoalgebra of kC (Lemma 6) and therefore, as kC is pointed, has
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dimension 1. Hence, Q is pointed. The claim that Q is a Hopf algebra then follows
by application of Lemma 5.

DEFINITION 7 (Incidence bialgebra). We call (kC, ·, i1, �, ε) the incidence bialgebra
of the combinatorial category C over the field k.

REMARK 1. As well as the Hopf algebra Q := kC/I from Theorem 3 (3), one can take
further Hopf algebra quotients. For example in [19, Section 4.4.2], it is observed that the
quotient of kC by the bialgebra ideal generated by all relations ix − i1 (which contains I) is
a Hopf algebra. In Sections 3.3 and 3.4, we will see that some well-studied Hopf algebras,
namely those of symmetric functions and rooted trees, can be realised as quotient Hopf
algebras of a incidence bialgebras.

The remainder of this section is devoted to the discussion of some examples of
combinatorial categories and their incidence bialgebras.

3.1. Example: The thin case. If (M,�) is a preordered set, that is, � is a reflexive
and transitive binary relation on M , then

CM(y, x) :=
⎧⎨
⎩ {(x, y)} x � y

∅ x �� y
,

is a category with ObCM := M . So an element (x, y) ∈ CM ⊆ M × M is the (unique)
morphism y → x, and composition and identity morphisms are given by

(x, y) ◦ (y, z) := (x, z), ix = (x, x).

In this way, preorders correspond bijectively to thin categories (categories with at most one
morphism between any two given objects).

PROPOSITION 1. The category CM is locally finite if and only if all intervals

[x, y] := {z ∈ M | x � z � y},
are finite. It is Möbius if and only if it is locally finite and � is a partial ordering.

Proof. The first statement follows directly from the defintion. For the second, note that
CM is by definition Möbius if and only if for all x, y ∈ M , |[x, y]| < ∞ and there exists
�(x, y) ∈ N such that (with a ≺ b meaning a � b ∧ a �= b)

∀z1, . . . , zl ∈ M : x = z1 ≺ z2 ≺ . . . ≺ zl = y ⇒ l ≤ �(x, y).

If � is a partial ordering, then it is immediate that the elements zi in such chains are
pairwise distinct; hence, the length l of such chains is bounded by |[x, y]| < ∞. If � is
conversely not a partial ordering, then there exist x, y ∈ M with x ≺ y, y ≺ x, and in this
case, there are arbitrarily long chains of the form

x ≺ y ≺ x ≺ y ≺ . . .

Assume now that (M,�, ·) is a preordered monoid, that is,

x � y, z � t ⇒ x · z � y · t, (3.1)

that holds for all x, y, z, t ∈ M . This corresponds to CM becoming monoidal via

(x, y) · (z, t) := (x · z, y · t).
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The condition (3.1) also means that the set of all nonempty intervals [x, y] inherits a monoid
structure from M ; note that this is a quotient monoid of CM via

f = (x, y) 
→ [ f ] := [x, y].
By definition, we have

PROPOSITION 2. The monoidal product · on CM is ULF if and only if the map

(CM , ·, i1) → (N+, ·, 1), f 
→ |[ f ]|, (3.2)

is a monoid morphism to the multiplicative monoid of positive natural numbers.

3.2. Example: Quotients of monoids. When a preorder � is an equivalence rela-
tion, then the interval [x, y] is simply the equivalence class [x] of x (and of y); hence, CM

is locally finite if and only if all equivalence classes are finite. In this case, the incidence
coalgebra of CM is a direct sum of matrix coalgebras (and is in particular a cosemisimple
coalgebra),

kCM
∼=

⊕
[x]∈M/�

M|[x]|(k).

Note that CM is not Möbius unless � is =, as any (x, y) with x ≺ y is a nontrivial
ismorphism.

As a concrete example, consider the free monoid S in two generators 0, 1:

DEFINITION 8 (Monoid of paths). For n ∈ N, a path of length n is a word of length n
in the alphabet {0, 1}. We denote the set of all paths by S. For two paths q = q1 . . . qn and
p = p1 . . . pm ∈ S, we define the product q · p to be the word

q · p = q1 . . . qnp1 . . . pm.

We represent p ∈ S by a path in the real plane starting at (0, 0) and composed of hor-
izontal steps (1, 0) and vertical steps (0, 1). We take a horizontal step at each letter pi = 0
and a vertical step at each letter pi = 1:

101001 =

Now call two paths equivalent if they have the same length,

q1 · · · qm ∼ p1 · · · pn :⇔ m = n.

Then, (S, ∼) is a preordered monoid and kCS is the free algebra on four generators α =
(0, 0), β = (0, 1), γ = (1, 0) and δ = (1, 1). The map (3.2) is given by

(p1 · · · pn, q1 · · · qn) 
→ 2n,

so · is ULF. The coproduct of the generators is given by

�(α) = α ⊗ α + β ⊗ γ, �(β) = α ⊗ β + β ⊗ δ,

�(γ ) = γ ⊗ α + δ ⊗ γ, �(δ) = γ ⊗ β + δ ⊗ δ.

So kCS is a bialgebra (although CS is not Möbius), but it is not a Hopf algebra.
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3.3. Example: Partially ordered monoids. Recall that for a partially ordered
monoid, CM is Möbius and equal to the monoid of intervals in M . Any preorder � defines
an equivalnce relation x ∼ y :⇔ x � y ∧ y � x and induces a partial ordering on M/ ∼. If
M is a preordered monoid, then M/ ∼ becomes a partially ordered monoid. Hence, any
preordered monoid has a canonical reduced version which is partially ordered.

Incidence bialgebras of intervals in parially ordered monoids have been extensively
studied in the literature. Here, we will focus on the specific example of skew shapes and
discuss Hopf algebra quotients of their incidence bialgebra.

DEFINITION 9 (Partial ordering on paths). Let S be the monoid of paths from
Defintion 8. For a path p = p1 . . . pn ∈ S, we define the height of p as the integer h(p) :=∑

i pi and the width of p as the integer w(p) := n − h(p). For two paths q, p ∈ S with
h(p) = h(q) and w(p) = w(q), we define

q ≤ p :⇔
i∑

j=1

pj ≥
i∑

j=1

qj∀i = 1, . . . , n.

In this way, S becomes a partially ordered monoid.

DEFINITION 10 (Category of skew shapes). We denote by S := CS the monoidal
Möbius category defined by the partially ordered monoid (S, ≤, ·). A morphism (q, p) ∈ S
will be referred to as a skew shape.

The skew shape (q, p) will be represented by drawing all paths r ∈ [q, p].
EXAMPLE 1. If

r = 00101, q = 01010, p = 10100,

then the skew shapes

(r, q) ◦ (q, p) = (r, p), (q, p) · (r, q) = (q · r, p · q),

will be depicted as follows:

◦ =

· =

The graphical representation makes it evident that the monoid (S, ·) is free on the set

� := {(q, p) ∈ S |
i∑

j=1

pj >

i∑
j=1

qj∀i = 1, . . . , h(p) + w(p) − 1}.

In the above Example 1, we have (r, p) ∈ � and

(q, p) = α · α · β, (r, q) = β · α · α, α := (01, 10), β := (0, 0) ∈ �.

The category S is combinatorial, so by Theorem 3 there exists an incidence bialgebra
structure on the vector space kS .
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EXAMPLE 2. For the shape (r, q) as in Example 1, the coproduct in kS is given by

�

⎛
⎝

⎞
⎠ = ⊗ + ⊗

+ ⊗ + ⊗ .

REMARK 2 (Quotients of kS/I). By Theorem 3(3), the ideal I � kS generated by the
elements {(0, 0) − 1, (1, 1) − 1} is a coideal and kS/I is a Hopf algebra. There are three
further quotients of kS/I which are well-known Hopf algebras:

(1) The Hopf algebra of skew shapes [30] is the abelianisation of kS/I (i.e., the
quotient by the ideal generated by the elements {μ · ν − ν · μ | μ, ν ∈ kS/I}).

(2) The Hopf algebra k
 of symmetric functions: if for γ ∈ � \ {(0, 0), (1, 1)}, we let
sγ denote the (skew) Schur function on γ [14, Definitions 2.8,2.19], then the map

kS/I → k
, (γ1 + I) · · · (γm + I) 
→
m∏

i=1

sγi ,

is a surjective Hopf algebra homomorphism.

3.4. Example: Rooted forests and the Connes–Kreimer Hopf algebra. The
example we consider here is a combinatorial category that is not thin. Its incidence bial-
gebra has been studied by various authors recently (it appears explicitly in [9, 19, 20, 25]
and is used implicitly in [2, 28]) due to its close relation to the Connes–Kreimer Hopf
algebra [7].

DEFINITION 11 (Operadic rooted forest). An operadic rooted forest consists of:

(1) A finite poset ( f ,�) in which all half intervals (−∞, y] := {x ∈ f | x � y} are totally
ordered (the rooted forest). A minimal element is called a root, and the set of all
these is denoted by R( f ). For each x ∈ f , we call

C(x) := { y ∈ f | |[x, y]| = 2},
the set of children of x.

(2) A chosen set L( f ) ⊂ f of maximal elements called the set of leaves.

We denote by rf : L( f ) → R( f ) the unique map with rf (x)� x for all x ∈ L( f ).

DEFINITION 12 (Operadic planar rooted forest). An operadic planar rooted forest is
an operadic rooted forest with a total ordering of R( f ) and of each set C(x).

Operadic planar rooted forests can be visualised as planar graphs with vertex set f and
with the roots drawn at the top. The total orderings of R( f ) and of the C(x) are represented
by the order of the vertices from left to right. Leaves are drawn as white vertices, and all
other elements of f as black vertices.

EXAMPLE 3. The following planar graphs represent planar rooted forests with | f | =
3, |R( f )| = |L( f )| = 1 and |g| = 6, |R(g)| = 1, |L(g)| = 2:

f = •
• ◦

g = •
• • •

◦ ◦
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DEFINITION 13 (Category of operadic planar rooted forests). The set CRF(m, n) of
isomorphism classes of operadic planar rooted forests with n roots and m leaves is the set of
morphisms in a combinatorial category CRF with (ObCRF, ·) = (N, +). For f1 ∈ CRF(m, n)

and f2 ∈ CRF(p, m), f1 ◦ f2 is the forest obtained by identifying the roots of f2 with the leaves
of f1 as dictated by their total order. The monoidal product f1 · f2 is the ordered sum (non-
commutative disjoint union) in which all vertices (previously) in f2 are greater than all
vertices (previously) in f1.

EXAMPLE 4. With f , g as in Example 3, we have

f ◦ g = •
• •

• • •
◦ ◦

g ◦ ( f · f ) = •
• • •

• •
• ◦ • ◦

The category CRF is combinatorial, so by Theorem 3 there exists an incidence bialgebra
structure on the vector space kCRF .

EXAMPLE 5. For the forest f as in Example 3, the coproduct in kCRF is given by

Δ
( •
• ◦

)
= •
• ◦ ⊗ ◦ + •

◦ ◦ ⊗ • ◦ + ◦ ⊗ •
• ◦.

REMARK 3. Theorem 3(3) yields a Hopf algebra kCRF/I . Visually, this deletes all
identities, that is, trees with no black vertices. As for the category of skew shapes, prob-
ably the most studied Hopf algebra associated to rooted trees (the Connes–Kreimer Hopf
algebra) is a further quotient.

DEFINITION 14 (Core). The core of a planar rooted forest f is the planar rooted forest
core( f ) := f \ L( f ) (with the induced relations �, ≤ and L(core( f )) := ∅).

EXAMPLE 6. With f , g as in Example 3, we have

core( f ) = •
•

core(g) = •
• •

• • •

In particular, note that for any in ∈ IdCRF , core(in) = i1 = ∅. Let HP denote the Hopf
algebra of planar rooted trees [9]. This is a non-commutative version of the Connes–
Kreimer Hopf algebra HCK of rooted trees [7] and can be viewed as a further quotient
of kCRF/I by the ideal generated by all elements of the form { f − g | core( f ) = core(g)}.
See [20, Section 7] for further discussion.

3.5. Example: A toy model for bigraphs. Bigraphs (see [17, 26, 29]) are com-
binatorial objects originally developed in theoretical computer science to model mobile
computation. Bigraphs, as defined by Milner, describe the morphisms of a monoidal pre-
category [26, Section 2.2-2.3], that is, a monoidal category in which not all compositions
or monoidal products are defined. We work with a restricted definition of bigraphs, which
allows us to define a combinatorial category. This toy model admits the basic bigraph
operations (composition, reactions and reductions) but does not include all features. For
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example, we only consider private names for bigraphs and essentially work in the support
quotient of Milner’s pre-category.

As the name suggests, a bigraph consists of two graphs. The first is almost an operadic
planar rooted tree, but the ordering of the internal vertices is lost:

DEFINITION 15 (Place graph). A place graph is an operadic rooted forest f together
with total orderings of its roots and leaves that are compatible in the sense that the root
map rf : L( f ) → R( f ) is non-decreasing.

In the bigraph literature, the leaves of a place graph are called sites.

DEFINITION 16 (Link graph). A link graph is a triple (P, X , Y ) of finite disjoint sets,
together with total orders of X and Y and an equivalence relation ∼ on P ∪ X ∪ Y . Each
equivalence class must contain at least two elements and cannot be entirely contained in X
or Y .

The elements of P, X and Y are called ports, inner names and outer names, respec-
tively.

DEFINITION 17 (Bigraph). A bigraph g = (gp, gl, ρ) consists of

(1) A place graph gp.
(2) A link graph gl = (P, X , Y , ∼).
(3) A map ρ : P → gp \ (L(gp) ∪ R(gp)).

The pairs (|L(gp)|, |X |) and (|R(gp)|, |Y |) are called the inner and outer interfaces of g.

We visualise bigraphs as follows: roots and sites are represented by boxes in the plane,
vertices by circles and ports by dots. The place graph structure � is indicated by nesting,
the map ρ by placing a port directly on its associated vertex and the equivalence relation
∼ by lines joining equivalent elements.

EXAMPLE 7. The bigraph with data

gp = {r0, v0, s0, s1}, R(gp) = {r0}, L(gp) = {s0, s1}, s0 ≺ r0, s1 ≺ v0 ≺ r0,

X = {x0, x1}, Y = ∅, P = {p0, p1}, x0 ∼ p0, x1 ∼ p1, ρ(p0) = ρ(p1) = v0

will be drawn as:

.

DEFINITION 18 (Category of bigraphs). We consider a category CB with ObCB = N ×
N and CB((m, x), (n, y)) the set of isomorphism classes of bigraphs with inner and outer
interfaces (m, x) and (n, y), respectively. The composition of two bigraphs g = (gp, gl, ρg)

and f = ( fp, fl, ρf ) is given as follows:

(1) The composition of the place graphs is defined analogously to that of operadic
planar rooted trees, but one also deletes the roots of fp. So the set underlying gp ◦ fp
is (gp∪̇fp) \ (R( fp)∪̇L(gp)).
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(2) The composition of the two link graphs gl = (P1, X1, Y1, ∼1) and fl =
(P2, X2, Y2, ∼2) is given by gl ◦ fl := (P1 ⊕ P2, X1, Y2, ∼), where ⊕ is the ordinal
sum and ∼ is generated by ∼1 and ∼2 (including x ∼ y if x ∈ X1 ∪ P1, y ∈ P2 ∪ Y2

and x ∼1 z ∼2 y for some z ∈ Y1 = X2).
(3) The ports stay assigned to the same vertices as before by the map ρg∪̇ρf .

The monoidal product of g and f is given componentwise by ordered unions.

We denote the identity at the interface (m, x) by im,x. The monoid (IdCB, ·) is freely

generated by the set {i0,1, i1,0} =
⎧⎨
⎩ ,

⎫⎬
⎭.

EXAMPLE 8 (Composition and product). Consider the bigraphs

f = , g =

f ′ = , g′ = .

We have

f ◦ g = ,

f ′ · g′ = ,

g′ · f ′ = .

This category is combinatorial. So, by Theorem 3, it defines an incidence bialgebra kCB.
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EXAMPLE 9 (Coproduct in kCB). For the bigraph f ′ from the previous example, the
coproduct in kCB is given by

�( f ′) = f ′ ⊗ i2,2 + i1,0 ⊗ f ′ + ⊗ .

REMARK 4. We hope that the Hopf algebraic techniques used to study CRT and HCK

will provide new approaches to studying bigraphical systems. In particular, one possible
application is in the study of reaction rules. Put simply, a reaction rule is a map r : CB → CB

which removes a certain subset of bigraphs by mapping them to simpler ones. These rules
are not necessarily compatible with the composition, that is, in general, we have r(g ◦ f ) �=
r(g) ◦ r( f ).

EXAMPLE 10. Consider the reaction rule for a version of CB in which vertices can be
labelled by {A, B, C}:


→ ,

where the grey boxes f ,g denote any substructure. This rule demands that the A and B
vertices in the initial graph are siblings (i.e., in some set C(x)). This means that r maps the
graphs

, ,

to

, .

The second graph shows no reaction even though the bigraph does contain the relevant
subgraph.

The coproduct allows us to see such blocked reactions. For our example, define the
new map

r′ := (id ⊗ rM◦)� : kCB → kCB ⊗ kCB,

where

M := + + + . . . .
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Applying this, we have

r′

⎛
⎜⎜⎝

⎞
⎟⎟⎠ = . . . + ⊗ r

⎛
⎜⎝M2 ◦

⎞
⎟⎠ + . . .)

= ⊗ . . . + + . . .

where i ∈ N is determined by the interfaces of f and g.

3.6. A notable non-example: Hopf quivers. We now consider an example of an
incidence coalgebra which admits a multiplication making it a Hopf algebra but is not
(generally) an example of our construction.

Let Q = (Q0, Q1) be a quiver, k be a field and CQ be the category of all paths in Q,
which is locally finite. By definition, the coalgebra kCQ is the path coalgebra kQ of the
quiver.

Cibils and Rosso [6] (see also [5]) showed that a graded Hopf algebra structure on kQ
endows Q0 with a group and kQ1 with a kQ0-Hopf bimodule structure. This in turn gives
rise to what Cibils and Rosso call ramification data.

DEFINITION 19 (Ramification data). Let G be a group. By ramification data for G, we
mean a sum r = ∑

C∈C rCC for C the set of conjugacy classes of G and all rC ∈ N.

DEFINITION 20 (Hopf quiver). Let G be a group and r some ramification data for
G. The quiver with Q0 = G and rC arrows from g to cg for each g, c ∈ G, where C is the
conjugacy class containing c, is called the Hopf quiver determined by (G, r).

THEOREM 4. The path coalgebra kQ of a quiver Q admits graded Hopf algebra
structures if and only if Q is a Hopf quiver.

To be more precise, for a Hopf quiver Q, there is a canonical Hopf algebra structure on
kQ, with kQ1

∼= ⊕
C∈C rCkC ⊗ kQ0 as vector space. The kQ0-bimodule structure is given

by

x(c ⊗ g)y = xcx−1 ⊗ xgy,

and the kQ0-bicomodule structure is given by

c ⊗ g 
→ cg ⊗ (c ⊗ g) ⊗ g.

The group structure on Q0 and the kQ0-bimodule structure on kQ1 define the algebra
structure on kQ in lowest degrees, which is extended universally to all of kQ, see [6,
Theorem 3.8]. However, given a Hopf quiver, there are in general also Hopf algebra struc-
tures on kQ compatible with r that are different from the canonical one. The choice is in
the kQ0-bimodule structure of kQ1 which amounts to a choice of an nC-dimensional rep-
resentation of the centraliser of an element c ∈ C. The extension of the product to paths is
then unique.

Huang and Torecillas [16] proved that a quiver path coalgebra kQ always admits
graded bialgebra structures. The results of Green and Solberg [13] are also closely related,
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but different in that they study path algebras rather than path coalgebras. Here, we focus
on the Hopf algebra setting as considered in [6].

Our key aim is to stress that the product in a quiver Hopf algebra kQ is not a linear
extension of a monoidal product on CQ unless Q1 = ∅. To do this, we classify all monoidal
structures on path categories of quivers whose vertices form a group under · :

LEMMA 7. Assume that the path category CQ of a quiver is monoidal such that (Q0, ·)
forms a group. Then:

(1) The monoidal product defines commuting left and right Q0-actions on Q1.
(2) The path length � is a grading with respect to both · and ◦.
(3) Either Q1 is empty, or there exists an element z ∈ Z(Q0) such that Q1 contains for

each a ∈ Q0 exactly one arrow fa : a → z · a.

Proof. If Q1 = ∅, there is nothing to prove, so we assume Q1 �= ∅.

1. To begin with, we prove that for any identity morphism ia, a ∈ Q0, and any arrow
f : b → c ∈ Q1, we have ia · f , f · ia ∈ Q1. Indeed, we have

ia · f = g1 ◦ . . . ◦ gn,

for unique arrows gi ∈ Q1, and then

f = ia−1 · (g1 ◦ . . . ◦ gn) = (ia−1 · g1) ◦ . . . ◦ (ia−1 · gn),

where we used that ia · ia−1 = ia·a−1 = i1 and that · is a monoidal product. It is impos-
sible that ia−1 · gi = ib for some b ∈ Q0, as we would then have gi = ia · ib = ia·b. So
the right-hand side of the above equation is a path of length at least n, while the
left-hand side has length 1, hence n = 1. Analogously, one proves f · ia ∈ Q1. That ·
defines commuting actions is immediate.

2. For any arrow f , let s( f ), t( f ) denote its source and target vertices, respectively. As
· is a monoidal product, we have for any two arrows f , g:

f · g = (it( f ) · g) ◦ ( f · is(g)) = ( f · it(g)) ◦ (is( f ) · g). (3.3)

By what has been shown already, this is a path of length 2. Continuing inductively,
one proves that �( f · g) = �( f ) + �(g) for all paths f , g ∈ CQ.

3. We also conclude from (3.3) that

s( f ) · t(g) = t( f ) · s(g) ⇒ t(g) · s(g)−1 = s( f )−1 · t( f ) =: z ∈ Q0

is constant (independent of f ). So

t( f ) = s( f ) · z = z · s( f ),

and any arrow f ∈ Q1 with source a has the same target z · a = a · z.
Given any arrow f : a → a · z and b ∈ Q0, there exists ib · f : b · a → z · b · a. This

means that the same number of arrows go out of each vertex and that z is in the
centre of Q0.

Finally, assume there are two arrows f , g with source 1 (the unit element of Q0)
and consider again (3.3):

f · g = (iz · g) ◦ f = ( f · iz) ◦ g.

We deduce that f = g.
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If Q1 = ∅, then CQ = {ia : a ∈ Q0} is just a group. The monoidal prouct is the group
multiplication and this is ULF. The Hopf algebra kCQ is the group algebra of Q0 and is
combinatorial.

If Q1 �= ∅, there are two sub-cases: z = 1 and z �= 1. In the first case, each vertex a ∈ Q0

has a unique arrow fa : a → a. In the second case, each vertex a has one incoming arrow
fz−1·a : z−1a → a and one outgoing arrow fa : a → za.

In both cases, any morphism in CQ can be uniquely expressed as

fzn·a ◦ . . . ◦ fa, a ∈ Q0, n ∈ N,

to be interpreted as ia when n = 0. The monoidal product is given by

( fzn·a ◦ . . . ◦ fa) · ( fzl ·b ◦ . . . ◦ fb) = fzn+l ·a·b ◦ . . . ◦ fa·b. (3.4)

This product is evidently not ULF, so we obtain:

THEOREM 5. Given a Hopf quiver Q, the quiver Hopf algebra kQ is a case of
Theorem 3 if and only if Q1 = ∅

REMARK 5 (Another non-example). In [8], Crossley defines several Hopf algebra
structures on the vector space k〈S〉 spanned by words on a set S. In two of them, the coal-
gebra structure is an incidence coalgebra (on the free monoidal category with one object
and a morphism for each s ∈ S). However, just like the quiver Hopf algebras of Cibils and
Rosso, these two Hopf algebras are not examples of our construction, as in both cases,
〈S〉 · 〈S〉� 〈S〉.

4. Weak Hopf algebras from monoidal categories. In this final section, we discuss
the weak analogue of Theorem 3.

DEFINITION 21 (2-group). A strict 2-group is a strict monoidal groupoid in which
every object is invertible, that is, in which we have ∀x ∈ ObC∃y ∈ ObC : x · y = 1 = y · x.

LEMMA 8. Let C be a strict 2-group. Then for any f ∈ C, there exists f̄ ∈ C such that
f̄ · f = i1 = f · f̄ .

Proof. Take f̄ = it( f ) · f −1 · is( f ), where t( f ) and s( f ) denote the inverses in (ObC, ·).

Strict 2-groups are the objects of a subcategory of Grpd, where we keep only the
functors of groupoids which preserve the group structure of C with respect to ·.

DEFINITION 22 (Source subgroup). In any 2-group (C, ·, 1), we define the source
subgroup

s−1(1) :=
⋃

x∈ObC
C(1, x),

which contains all morphisms with source 1. This is a normal subgroup of (C, ·).
LEMMA 9. A 2-group (C, ·, 1) is locally finite if and only if |s−1(1)| is finite. In this

case, the monoidal product has the |s−1(1)|-LF property as defined in Definition 5.
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Proof. Multiplication by ix defines a bijection C(1, y) → C(x, xy) for all x, y ∈ ObC.
As C is a groupoid, we have

N2( f ) = {( f ◦ g−1, g) | s(g) = s( f )}
⇒ |N2( f )| = |{g | s(g) = s( f )}| = |s−1(1)|,

for all f ∈ C, and the map N2( f ) × N2(g) → N2( f · g) from Definition 5 has inverse

N2( f · g) � (x, y) 
→ {((x, y), (x̄ · a, ȳ · b)) | (x, y) ∈ N2( f )}.
REMARK 6. The second part of this lemma implies that a 2-group C is a Möbius

category if and only if C = IdC.

The |s−1(1)|-LF property is sufficient to define compatible algebra and coalgebra
structures on kC using the scaled version of the incidence coalgebra (Definition 3). As
it is less well known than the defintion of of a Hopf algebra, we recall here the definition
of a weak Hopf algebra, following [3]:

DEFINITION 23 (Weak Hopf algebra). Let k be a field. A weak k-Hopf algebra is a
tuple (A, μ, 1, �, ε, S) satisfying:

(A1) (A, μ, 1) is an associative unital k-algebra:
(A2) (A, �, ε) is a coassociative counital k-coalgebra
(A3) The coproduct is multiplicative: �(ab) = �(a)�(b)

(A4) The counit is weakly multiplicative:

ε(ab) = ε(a1(1))ε(1(2)b) = ε(a1(2))ε(1(1)b),

(A5) The unit is weakly comultiplicative:

(�(1) ⊗ 1)(1 ⊗ �(1)) = �2(1) = (1 ⊗ �(1))(�(1) ⊗ 1),

(A6) S : A → A is a k-linear map (called the antipode) which satisfies

S(a) = S(a(1))a(2)S(a(3))

S(a(1))a(2) = ε(1(1)a)1(2)

a(1)S(a(2)) = 1(2)ε(a1(2)).

REMARK 7. Under the assumption of axioms (A1), (A2) and (A3), the version of
axiom (A4) given here is equivalent to the formulation in [3]:

ε(abc) = ε(ab(1))ε(b(2)c) = ε(ab(2))ε(b(1)c).

We can now state the central theorem of this section:

THEOREM 6. Let (C, ·, 1) be a locally finite 2-group, k a field of characteristic zero
and kC the k-vector space spanned by the morphisms of C. If (kC, �, ε) is the scaled
incidence coalgebra of kC with λ = |s−1(1)| (Definition 3), then (kC, ·, i1, �, ε, S) is a
weak Hopf algebra with antipode S( f ) = f̄ −1.

Proof. (A1) and (A2) are immediate by Theorems 2 and 3. (A3) then follows by
Lemma 9 and (A4) by Lemma 8. For (A5), we observe that

N2(i1) × N2(i1) → N3(i1)

((a, b); (c, d)) 
→ (a, b · c, d),
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defines a bijection and that b ◦ c = b · c = c · b for s(b) = t(c) = 1. (A6) can be verified by
a short computation.

4.1. Example: Relations on groups. Here, we present the analogy to Section 3.1:
let ∼ be a reflexive transitive relation on a group G which is compatible with the multi-
plication as in (3.1) and consider the category C with ObC = G, C(h, g) = {(h, g) | g ∼ h}.
This category is a locally finite 2-group iff ∼ is an equivalence relation and the equivalence
classes are finite.

By Theorem 6, kC admits a weak incidence Hopf algebra structure with a coproduct
which runs through equivalence classes:

�(h, g) = 1

|N |
∑

g∼f ∼h

(h, f ) ⊗ ( f , g),

where N = {g ∈ G | g ∼ 1}. In the case that ∼ is equality, the weak Hopf algebra obtained
is the group algebra kG. This can be alternatively stated in the following way: let G be a
group and N � G a normal subgroup. Define a 2-group C by ObC = G and

|C(g, h)| =
{

1, ∃z ∈ N : h = zg

0, else
.

Then, kC admits a weak incidence Hopf algebra if and only if |N | is finite.

4.2. Example: Automorphism 2-groups. Let C = (ObC, Mor1C, Mor2C) be a strict
2-category. Then, for each x ∈ ObC, there exists a strict 2-group AUT(x) whose objects are
the automorphisms of x as an object of C and whose morphisms are the 2-isomorphisms
between these. The product of two objects f , f ′ in AUT(x) is given by their composition in
C and the unit object is ix. The composition of morphisms in AUT(x) is given by the vertical
composition of 2-morphisms in C, and the product of morphisms in AUT(x) is given by the
horizontal composition in C. According to Theorem 6, kAUT(x) admits a weak incidence
Hopf algebra structure iff { f ∈ Mor1C | f ∼ ix} is finite.

This example overlaps with Example 4.1. Consider the 2-category Grp, whose objects
are groups, 1-morphisms are group homomorphisms and 2-morphisms are given by inner
automorphisms in the target group, that is, for f1, f2 : G → H , there exists φh : f1 → f2 iff
there exists h ∈ H such that f1 = fh ◦ f2, where fh is the morphism in Inn(H) given by
conjugation by h. If G is an object in Grp, ObAUT(G) := Aut(G), the usual group of
automorphisms of G, and AUT(G) (the set of morphisms) contains an arrow between any
pair of autmorphisms which are related by an inner automorphism of G. Hence, kAUT(G)

admits a weak Hopf algebra structure iff Inn(G) is finite.

4.3. Crossed modules. Here, we will reformulate the result of Theorem 6 in the
language of crossed modules.

DEFINITION 24 (Crossed module). A crossed module (G, H, τ, α) consists of:

(1) Groups G, H
(2) A group action α : G × H → H
(3) A group homomorphism τ : H → G.

such that α and τ satisfy
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τ(α(g, h)) = gτ(h)g−1

α(τ(h), h′) = hh′h−1.

Crossed modules form the objects of a category whose morphisms ( f1, f2) :
(G, H, τ, α) → (G′, H ′, τ ′, α′) consist of pairs of group homomorphisms f1 : G → G′ and
f2 : H → H ′ such that τ ′f2 = f1τ .

THEOREM 7 (Brown and Spencer). The categories of strict 2-groups and crossed
modules are equivalent.

For the original statement and proof, see [4], and for further exploration, see[1, 10].
Given a 2-group (C, ·, 1), the corresponding crossed module (G, H, α, τ ) is defined

as follows: set G = ObC, H = s−1(1), α(g, h) = ig · h · ig−1 and τ(h) = t(h).
Conversely, given a crossed module (G, H, α, τ ), the corresponding strict 2-group

(C, ·, 1) has ObC = G, C = H �α G, s(h, g) = g and t(h, g) = τ(h)g. Composition of
morphisms is given by (h′, τ (h)g) ◦ (h, g) = (h′h, g).

This equivalence gives us the following:

COROLLARY 1 (to Theorem 6). Let (G, H, τ, α) be a crossed module, k a field and
k(H × G) the free k-module on the set H × G. Then k(H × G) admits the following weak
Hopf algebra structure iff |H | is finite:

(h, g) · (h′, g′) = (hα(g, h′), gg′)

�(h, g) =
∑

h′h′′=h

(h′′, τ (h′)g) ⊗ (h′, g)

S(h, g) = (
α(g−1, h−1)−1, g−1

)
.

If τ : H → G is injective, we are in the case of Example 4.1, that is, H is isomorphic
to a normal subgroup of G.
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