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Abstract

The isoperimetric problem in the Euclidean plane is completely solved for bounded, convex
sets which are symmetric about the origin, and which contain no non-zero point of the integral
lattice.

Subject classification (Amer. Math. Soc. (MOS) 1970): 52 A 40, 52 A 10, 10 E 05.

Let S be a bounded convex set in El having area A(S) and perimeter P(S). Let SP
denote the set of all such sets which are symmetric in the origin O, and which
contain no non-zero point of the integral lattice. Write

= max A(S).

The existence of Ap[SP) is assured by a simple application of the Blaschke
selection theorem (see Eggleston (1963), p. 64).

THEOREM.

(a) //0<P<27r, then ApiSf) = P*/4TT.

(b) If2ir*ZP^4 + n, then A^ST) = 4-(8-P)2/4(4-7r).
(c) If 4 + 7T < P s$ 2 V(2) (4 + TT)/(1 + ̂ 3), then Ap{Sf) = 4 - [8(4 + n) -P2]/4(4 + n).
(d) 7/2V(2)(4+77-)/(l+V3)<P<2V(2)(l+V3), then

A^ST) = 4-PV(2)(l + V 3 ) -

(e) 7/2V(2)(l +pHP, then AP(SO = 4.
27
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28 J. R. Arkinstall and P. R. Scott [2]

The result in (a) is a restatement of the classical isoperimetric problem, since for
0^P^2IT, the circular disc having centre O and perimeter P is a member of Sf.
Minkowski's classical theorem (Minkowski (1896)) gives the upper bound 4 for
AP{SP). The result in (e) gives those values of P for which this bound is attained.

The proof of the theorem can be greatly simplified using Steiner symmetrization.
Let S be a given set, and / a given line in the plane. We construct a new set S'
which is symmetric about / as follows. For each line p orthogonal to /, replace the
segment pn S by a congruent segment of p having its mid point on /. Then S' is
the union of those translated segments. It is well known that Steiner symmetriza-
tion preserves convexity, area and central symmetry, does not increase perimeter,
and actually decreases perimeter unless £f is already symmetric in a line parallel to /.
(See, for example, Eggleston (1963), p. 90.) For SeS?, we use the notation d(S), 8S
for the diameter and boundary of S respectively. Let U be the convex hull of the
points ±(1, ± 1), and let Q be the convex hull of ±(2,0), ±(0,2) (Fig. 1).

(-2,0)

( -

/

\

(-1,

1,1)

/

\
- 1 )

/

\

(0, 2)

\

O

/

(1,

\

/
(1,

1)

\

/

- 1 )

(2,0)

(0,-2)
Fig. 1

LEMMA. Let SeS? be a set for which d(S)<4. Then there exists a set S'eS? which
satisfies the following

(a) S'^Q.
(b) S' is symmetric in the lines y = ±x.
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[3] Lattice point constraints 29

(c) ,4(5') = A(S), P(S')<P(S) andP(S') = P(S) only if S' = S.
(d) S'<= H, where He ifis a hexagon, and H = QnL where Lisa parallelogram,

symmetric in the lines y = ± x, with sides passing through the points ± (1,0),
±(0,1).

PROOF. We first show that S extends beyond Q in at most two quadrants of the
plane. Let q be a point of S~ Q in the first quadrant. By reflecting S in the line
y = x if necessary, we may assume that q lies in the second octant of the plane.
Now since q lies in the half-plane y~& 1, and (0,1) is not interior to S, it follows by
convexity that any point r of S~Q in the second quadrant must lie in the half-
plane y^ 1, and so in the fourth octant of the plane. Denoting the point (— 1,1) by
/•', we see that

A(A0qr)>A(&0qr')>L

Hence the parallelogram contained in S and having vertices ±q, ±r has area
greater than 4. This contradicts the bound on A(S) given by Minkowski's theorem.

By reflecting S in the y-axis if necessary, we may assume then that S does not
extend beyond Q in the second and fourth quadrants of the plane. In fact, since
d(S) < 4 and S is symmetric in O, S lies in the strip | JC—y | < 2.

We now obtain a new set S' by symmetrizing S in the line y = — x. The lines
y = x+\, y — x, y = x—l intercept the interior of S (and so the interior of S') in
segments of length at most ^2, 2^/2, ^2 respectively. Since S lies in the strip
\x—y\ <2 it follows that 5" contains no non-zero lattice points in its interior.

By the properties of Steiner symmetrization, S'eS?, A(S') = A(S), and
P(S')^P(S) with equality only if S' = S. Since S' is both centrally symmetric in O
and symmetric in y = — x, it is symmetric in y = x. This symmetry of 5 together
with its convexity and the fact that ±(1,1) are not interior to 5', enables us to
deduce that S'<^Q. Further, S' does riot contain ±(1,0) or ±(0,1) as interior
points; hence S" is contained in a parallelogram whose sides pass through ± (1,0),
±(0,1), and whose diagonals lie along the lines y = ± x. Finally, S'^QnL = H,
and HeSf. This completes the proof of the lemma.

By reflecting S" in the j>-axis, if necessary, we may assume that dH has non-
negative slope at (0,1). Let the angles common to the hexagon //and the parallelo-
gram L measure 2>jt. We can then denote these figures explicitly by H(ifi), L(if/)
respectively, where £w<^<£7r (Fig. 2).
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30 J. R. Arkinstall and P. R. Scott [4]

(0,1)

Fig. 2

We now establish part (e) of the theorem.
Let SsSe be a set with A(S) = 4. We show that P(S)> 2 J(2)(l +^3) (a 7.73).

Let us assume that P(S) < 8. Then d(S) < 4, and by the above lemma, there exists a
set S'eSf where A(S') = 4, P(S')<P(S) and 5 ' is contained in a hexagon H{$).
In fact, since H(if/) has area 4, 5 ' = //(^>). The perimeter of H(ip) is easily verified to
be 4.y/2cosec^+2N/(2)(l— cot(^r)). By elementary calculus, this function assumes
its minimal value of 2 ̂ /(2) (1+^3) when tfi = Jw; that is, when H(0) is an equiangular
hexagon. Hence P(S)>P(S')>2^/(2)(1+^/3) as required.

It remains to be shown that for each value of P in this range, there is a set Se£?
having perimeter P and area 4. For P>8 we obtain 5 by suitably shearing the
square U parallel to the jc-axis. Also, over the interval in < <ji < \tr, the perimeter of
H(ifi) is a continuous function of >fi. Since H{frr) = U, we deduce that for each
value of P, 2 J(2) (1 + ̂ /3) < P < 8, there is a hexagon having perimeter P and area 4.
We conclude that for 2^(2)(1 +fi)<P, AP{&) = 4.

Let S e ^ be a set for which A(S) = A^) where P(S) =P<2^/(2)(1+^/3).
We show that 5 must satisfy the conditions of the set S" in the lemma (Section 2).

Since d(S)<4, by the above lemma there exists a set S'eS? for which
A(S') = A(S), P(5')<P(S), and such that S' is contained in a hexagon H(ifi) = //.
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Now define S(A) = XH+(l-X)S' (O<A<1). Then S"cS(A)c#, and since the
perimeter of 5(A) is a continuous function of A, there exists a set S* = 5(A*)
(0< A*< 1) for which P(S*) = P(S). If A>0, A(S*)>A(S') = A(S), contradicting
our choice of S. Hence A = 0, and S — S', as required.

Since H(<p) contains no non-zero lattice points in its interior, S is the set of
largest area and perimeter P contained in H(*fi). We use a result of Besicovitch
(1952) which characterizes S, and shows that

Besicovitch (1952), pp. 45-48, solves the problem of finding a convex set F with
given perimeter and largest possible area, where F is contained in a given bounded
closed convex set. In our case, where the given convex set is H(tfi), the required
set P is 'the sum point set' of all circles of some fixed radius r, contained in H{tfi).
In simple terms, the set F is the hexagon H(i/f) with its corners rounded off by
circular arcs of common radius. Since the two sides of H($), dQ n dH(ip), are not
longer than the four equal sides of H(ifi), this rounding can occur in one of only
two ways. Either each corner is rounded individually (as when the circular arcs
have small radius), or each of the short sides is rounded off completely by a single
circular arc. In the latter case, L(if/) has effectively been rounded at each comer,
using arcs of some common radius.

We formulate these cases together. A polygon G is rounded at each vertex by
arcs of fixed radius r, to form the rounded polygon Gr. We assume that r is small
enough for each side of G to contribute a line segment to Gr. We number the
vertices of G, and let 2 ^ be the internal angle at the ith vertex. It is now easily seen
that

(1) A(Gr) = A(G)-r*(Zcotil,i-7r) = A(G)-r*k(G) say,

(2) P(Gr) = P(G)-2rk(G).

Solving equation (2) for r, and substituting in equation (1) gives

(3) A{Gr) = A(G) - [P(G) -

When Gr is obtained from G by rounding, equation (3) enables us to find the
maximum value of A(Gr) when P(Gr) is a given constant. Our problem is com-
plicated by the fact that G = H(tfi) or G = L(^) are themselves dependent on a
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32 J. R. Arkinstall and P. R. Scott [6]

parameter ip. To find the maximum value of A(Gr) we need to examine the deriva-
tive A(Gr) with respect to ^ :

(4)
dA{Gr) dA(G) 2[P(G)-P(Gr)] dP(G) [P{G)-P{Gr)f dk(G)

# 4k(G) # 4[k(G)Y

Let ip be given. According to Besicovitch's construction, there will be a certain
value P0(if>) of the perimeter for which Hfiifi) and Lr(ifi) coincide. For P<P0(ip), it
will not be possible to construct H^ifi), there being insufficient perimeter to reach
the sides of H(ip) through ±(1,1). For P>P0(<fi), LJtfi) will contain +(1,1) as
interior points, and will thus no longer be a member of SP.

We show that

where G = IJifi).
Let Gr be the rounded parallelogram with perimeter P0(tp). Then the points

±(1,1) lie on the boundary 3Gr, the diameter of Gr lies along the line y = x, and
d(Gr) = 2^/2. We calculate d(Gr) using the construction of Fig. 3.

Fig. 3
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We note that the parallelogram G has diameter 2 sin (fir—if/)-sectft, and that the
similar parallelogram G' is obtained from G by an enlargement of scale factor
1—rsec(>/i—£«•). Now

d(Gr) = 2 r+2s in ( f i r -

(5) = 2r(l - s

Equating this to 2^/2, solving for r, and substituting in (2) gives the above value for
P0(I[I), for frr^ifKbr. P0(in), by definition, equals j(2)(2+n), making P0(ip)
continuous on [|TT, \n\. It may be demonstrated that P0(£w) is the least value which
P0(ip) takes. A particular value of interest is P0(in) = 2>/(2)(4+7r)

7

We now apply the results of Section 5 to our problem.

Case 1. Suppose G = H($). By straightforward calculation we find that

P(G) = 2 V(2) (2 cosec if> +1 - cot ft,

k(G) =

> 0, since P(G) > 2 ̂ (2) (1 + ^3).

Substituting in equation (4) and setting P(Gr) = P,

dA(Gr) [ P(G)-P ] f _ .

| J V
] f _ . dPjfi) (P(G)-P\ dk(G)]
J L V # W(2)A:(G)/ # J

P(G)-P

= 2r (1 - 2 cos 0) cosec2 ̂ (r - ^2).

Clearly r—j2<0, since circles of radius ^2 cannot be contained in G. Since we
are assuming 2n^P^ 2^/(2) (1+^/3), the first term is non-negative for all ^, and
zero only when i/i = \n. Finally, 1—2 cos ip(±n < ip < ^TT) is an increasing function of
ip with a zero at ^ = \n. Hence for any value of P, A(Gr) assumes its maximal
value when and only when </> = \n.
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Case 2. Suppose now tha t G = L{$). Setting a = tantfi+cotifi we find that

P(G) = 2 ^(2) (cosec tp+sec «

Hence from equation (4), setting P(Gr) = P,

dA(Gr) da\ P(G)-P 2V(2)(a+l) IP(G)-PM
# L 2k(G) a*(a+2)* + \ 2k(G) \ J*

Solving this quadratic expression in [P(G)—P~\/2k(G), and simplifying gives

Now da/dtp = cosec2^(tan2^—1)^0 for lrr^ip<^7r, with equality only if
ip = \TT. The term 1/2[A:(G)]2 is obviously positive. A simple calculation shows that
^(2)(a+2)ia-*<2 with equality only for ip = frr. Since P>2TT, the term
[P—i/(2)(a+2)*a~i77-] is non-negative, and zero only when P = 2n and ip = far.
Finally, for J7r<^<|7r, >/(2)a*(a+2)~* is an increasing function of tp, assuming its
minimum value of 1 when tp = JTT. Hence, if

IfP>4+ir, then />->/(2)a*(a+2)-*(4+iT) is a decreasing function of ip, with a
zero sX>p = T, corresponding to the root of

(6) P = V(2)a*(fl+2)-*(4+7r).

Thus for 2TT<P<4+7T, J4(G>) assumes its maximum value at tp=*±n. For
4 + 7 T ^ P ^ 2 > / ( 2 ) ( 1 + ^ 3 ) , ^(Gr) assumes its maximum value when \p — T.

We can now establish part (b) of the theorem. Suppose

By Section 6, G must be a parallelogram. Hence A(Gr) assumes its maximum when
G = L&n), and

Suppose tha t 4 + T T < P < 2 ^ ( 2 ) ( 1 + ^ / 3 ) . F r o m Section 7 we know tha t the
function A(GT(ip)) assumes its maximum when G = L(T) or when G
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However, we do not yet know whether the rounded polygons Gr can be formed for
P in the given range.

Let G = L(T). For P>4+w, the angle Tis determined by (6):

P = V(2)(4+7r)fl»(a+2)-* = V(2)(4+7r)(sinr+cosr)-1.

From (2), the radius by which LJ£T) is rounded is given by

r = (P(G)-P)[2k(G)]-\

Substituting for P(G), k(G), and then for P we obtain

(7) r = P/(8+2v) = [̂ (2) (sin T+ cos T)]~l.

From (5), the diameter of Gr is given by

d(Gr) = 2r(l-secr)+V(2)(l+tanD

= ^(2) (1 + 2 sin T) (sin T+ cos 71)"1

If d(Gr)>2j2, L£T) contains ±(1,1) as interior points. We find that for
\tt < TsS \n, d(Gr) > 2 ̂ 2 if and only if T> Jw. From (7), this occurs precisely when

The area of L£T) can be found from (3) by substituting in the value of P from (6).
A short calculation gives

Again, directly from (3) we have

= 4 - [2V(2)(1 +V3)-P]2/4(2V(3)-*r).

Graphically, these two area functions of P are represented by parabolas, the
first upright, and the second inverted. A lengthy but elementary calculation shows
that these parabolas touch when P = 2 /̂(2) (4+7r)/(l+x/3). It follows that
A{LXT))>A{H^\ii)), with equality only when P = 2^/(2)(4+^/(1+^3). Since we
have just shown that the construction of L^T) is valid for P < 2 ̂ (2) (4+TT)/(1+^/3)
we have established part (c) of the theorem.

Suppose now that 2V(2)(4+w)/(l+N/3)<P^2^(2)(l+N/3). As we note in
Section 6, P0(£TT) = 2>/(2)(4+7r)/(H->/3) and so HJ&n) can be constructed for P
in this range. However, LJiT) is now disallowed, as ±(1,1) are interior points.
Substituting the value of r given by (2) in expression (5), we see that the diameter
d(U>l>)) is a continuous function of *ft for \n ^ i/t < \n. It follows that for values of >fi
lying in a certain open interval about T, the rounded parallelogram Lr{^i) having
perimeter P will contain ± (1,1) as interior points. Also, the function A(L£iji)) is a
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continuous function of if> with a single (maximum) turning point at*f> = T. Hence
the maximum allowable value of A{LJ^i)) will be assumed for a rounded parallelo-
gram Lr(tfi) which has ±(1,1) as boundary points. But now LXnji) coincides with
HAip), and of all such rounded hexagons of perimeter P, HJ^TT) has the largest area.
Since HX\if) can be constructed, we have established part (d) of the theorem.

This completes the proof of the theorem.

Consider now the problem of finding

where 0^/J<;2. The existence of such a maximum is guaranteed by Blaschke's
selection theorem. When j8 = 0, the solution of this problem is given by Minkow-
ski's theorem. When jS = 2, we have the classical unconstrained isoperimetric
problem.

For given /}, let S*eSf be the set for which h(fi) is attained. S* must have the
largest area of all sets of perimeter P(S*). Hence S* must be one of the sets S for
which A(S) = A^Sf) in the above theorem. In particular, by calculating the ratios

we are able to confirm the conjecture of Scott (1974):

THEOREM. h(l) = 2(2+A/TT)-1, attained when S is the square with rounded comers,
ifr), having r 2 ( 2 ^ ) !
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