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Abstract

Coffee is a relatively rich source of chlorogenic acids (CGA), which, as other polyphenols, have been postulated to exert preventive effects

against CVD and type 2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of

exerting beneficial effects in the large gut. Here, we utilise a stirred, anaerobic, pH-controlled, batch culture fermentation model of the

distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation

of coffee samples with the human faecal microbiota led to the rapid metabolism of CGA (4 h) and the production of dihydrocaffeic acid

and dihydroferulic acid, while caffeine remained unmetabolised. The coffee with the highest levels of CGA (P,0·05, relative to the other

coffees) induced a significant increase in the growth of Bifidobacterium spp. relative to the control vessel at 10 h after exposure (P,0·05).

Similarly, an equivalent quantity of CGA (80·8 mg, matched with that in high-CGA coffee) induced a significant increase in the growth of

Bifidobacterium spp. (P,0·05). CGA alone also induced a significant increase in the growth of the Clostridium coccoides–Eubacterium

rectale group (P,0·05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to

host health.
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The effects of dietary polyphenols on human health has

primarily focused on outcomes associated with CVD(1),

type 2 diabetes(2) and neurodegenerative disorders(3), through

the impact of derived metabolites on various cell populations

after absorption. Coffee is a good source of polyphenols, in

particular chlorogenic acids (CGA), with one cup delivering

between 15 and 325 mg(4), although coffee processing, in par-

ticular roasting, is known to dramatically reduce the levels of

CGA in coffee(5). However, CGA is poorly absorbed in the

upper gastrointestinal tract, with studies conducted in ileost-

omy patients suggesting that only about one-third of ingested

CGA is absorbed in the small intestine, with the remainder

entering the large gut unmetabolised(6,7). Further bacterial

metabolism occurs here(8,9), with most undergoing cleavage

of the ester link between quinic acid and caffeic acid. Released

caffeic acid may be absorbed intact or, more probably, further

metabolised to O-methylated, sulphated and glucuronidated

derivatives(10,11), as well as to dihydro metabolites such as

dihydrocaffeic acid and dihydroferulic acid and their corre-

sponding sulphates(11).

The colonic microbiota are thought to play a central role in

human health, with links emerging with respect to disorders

such as irritable bowel syndrome(12), travellers’ diarrhoea(13),

autism(14) and obesity(15).

As such, beneficial modulation of the gut bacteria may aid

in the prevention of such diseases(16).

Prebiotics resist digestion/absorption in the upper gastro-

intestinal tract, and selectively stimulate the growth and/or

activity of intestinal bacteria associated with health(17), leading

to a healthier lower gut(18).

Notably, many prebiotics increase the levels of bifido-

bacteria(19,20) that are known to prevent colonisation of

pathogens by competitive exclusion, to enhance epithelial

barrier integrity, regulate the immune system and have

an anti-inflammatory response (reviewed in Ng et al.(21)).

However, other bacterial groups, such as Clostridium

coccoides–Eubacterium rectale, may also act beneficially in

the large intestine to prevent the development of obesity and

other related diseases(22), and have been shown to increase

post-consumption of polyphenols, namely isoflavones(23).

Previous data have highlighted the potential of polyphenol-

containing foods/beverages, such as fruit, cocoa and wine, to

modulate the microbiota in a beneficial way(24–27). As a high

proportion of coffee CGA (55–67 %)(6,7) reach the colon
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unmetabolised, there is a potential for them to exert prebiotic-

like actions. In the present study, we exploit in vitro methods

to investigate the colonic metabolism of coffee CGA and the

subsequent effect of such metabolism on the growth of the

human colonic microbiota.

Materials and methods

Chemicals and reagents

5-Caffeoylquinic acid (5-CQA), caffeine, zinc acetate, potassium

ferrocyanide trihydrate, glacial acetic acid, sucrose, SDS, para-

formaldehyde and lysosyme were obtained from Sigma-Aldrich.

Ethanol, HPLC grade; methanol, acetonitrile and hydrochloric

acid, liquid chromatography–MS (LC–MS) grade; formic acid,

acetonitrile, methanol and water were obtained from Fisher

Scientific. Peptone water, yeast extract, NaCl, dipotassium

phosphate, monopotassium phosphate, sodium bicarbonate,

magnesium sulphate heptahydrate, calcium chloride hexa-

hydrate, Tween-80, haemin, phylloquinone (vitamin K1),

L-cystine, bile salts, resazurin, PBS tablets were obtained from

Oxoid Limited. ProLongw Gold antifade reagent was obtained

from Invitrogen. Raftilose P95 FOS (a positive prebiotic control)

was purchased from Orafti. Oligonucleotide probes (EUB338/

II/III, CHIS150, LAB158, BAC303, EREC482 and BIF164)

were commercially synthesised and labelled with Cy3 by

MWG Biotech Limited. Aquasonicw 100 ultrasound gel was

purchased from Parker Laboratories Inc. Deionised water was

obtained using a Purite dispenser.

Coffee samples

Coffee was sourced commercially. Nescafé Green Blend,

Nescafé Gold Blend and Nescafé Original were weighed in

1·2 g portions to represent an estimated equivalent of one cup

of coffee, delivering 80·8, 33·9 and 33·8 mg CGA, respectively,

as reported previously(28). All coffee samples had a similar

content of energy (4 kJ), protein (0·1 g), carbohydrate (0·1 g),

fat (0 g) and fibre (0·1 g), although Nescafé Green Blend

contained 0·05 g fibre per cup. All the three coffee samples

contained similar levels of caffeine (53 (SEM 0·4) mg).

Batch culture

Faecal samples were collected from three healthy individuals

who had no known pre-existing gastrointestinal conditions,

but all of whom were regular coffee consumers on experimen-

tal days and were processed immediately. Individuals who

had ingested antibiotics or any other medicines known to

affect the gastrointestinal tract, those who were regular consu-

mers of pre- or probiotics, or who had taken part in a similar

study at the University of Reading within the last 6 months

were excluded from the study. Fibre or coffee intake was

not restricted before donating faecal samples. Faecal samples

were diluted at 1:10 (w/v) with anaerobic phosphate buffer

(0·1 M; pH 7·4) and homogenised using a stomacher (Seward

Stomacherw 80 Biomaster) for 2 min, and this faecal slurry

was used to inoculate batch culture vessels. Batch culture

vessels were prepared to mimic physico-chemical conditions

in the distal region of the human colon. These culture vessels

with a volume of 300 ml were sterilised and 135 ml of sterile

basal nutrient medium (peptone water (2 g/l), yeast extract

(2 g/l), NaCl (0·1 g/l), dipotassium phosphate (0·04 g/l), mono-

potassium phosphate (0·04 g/l), sodium bicarbonate (2 g/l),

magnesium sulphate heptahydrate (0·01 g/l), calcium chloride

hexahydrate (0·01 g/l), Tween-80 (2 ml/l), haemin (50 mg/l),

phylloquinone (vitamin K1, 10 ml/l), L-cysteine (0·5 g/l), bile

salts (0·5 g/l), resazurin (1 mg/l) and distilled water) were

added to each vessel. The medium was set up with a flow

of O2-free N2 gas (15 ml/min) for a minimum of 12 h in

order to achieve an anaerobic environment. Before inocu-

lation with the faecal material and coffee, the basal medium

was maintained at 378C and the pH was adjusted to pH 6·8

and was maintained between pH 6·7 and 6·9 using an Electro-

lab pH controller with feeds of 0·5 M-HCl and 0·5 M-NaOH, as

appropriate. The coffee samples were added and the pH was

allowed to adjust to the acceptable range. Finally, 15 ml of the

faecal slurry were added to each of the vessels and allowed to

run under the conditions as described for 24 h. During this

period, 3 ml samples were taken from each of the vessels at

0, 4, 10 and 24 h for fluorescent in situ hybridisation analysis

to assess quantitative changes in the gut microbiota, and

for LC–MS and HPLC analysis to assess the metabolism of

coffee polyphenols.

Bacterial enumeration

Samples taken from the batch culture vessels were added to

cold 4 % (v/v) paraformaldehyde and stored for 4 h at 48C to

fix the bacteria. Following this, fixed samples were centrifuged

at 1500 g for 15 min and washed twice with PBS (0·1 M; pH 7).

Afterwards, the remaining pellets were resuspended in a PBS

(99 %)–ethanol mixture (1:1, v/v) and stored at 2208C for

at least 1 h before fluorescent in situ hybridisation analysis.

For hybridisation, samples were vortexed for 5 s and diluted,

as appropriate, in a PBS–SDS solution (10 %, 1:1, v/v). The

samples were vortexed and 20ml were added to a well on a

six-well plate (Tekadon, Inc.). Plates were dried using a desk-

top plate incubator (Grant Boekel ISO20) for 15 min at 488C.

Samples prepared for LAB158 were further treated to make

bacterial cells more permeable to the probe. A 20ml lysosyme

solution (1 mg/ml sterile water) was applied to these wells,

which were further incubated at 378C for 15 min. Slides were

exposed to 50, 80 and 96 % (v/v) ethanol for 3 min each and

dried using a desktop incubator. Oligonucleotide probes

(50 ng/ml), labelled with the fluorescent dye Cy3, were used

to identify specific bacteria; they work by differentiating bac-

teria by targeting specific 16S rRNA sequences. The probes

used for enumerating specific bacteria were as follows:

BIF164 (for Bifidobacterium spp.)(29); BAC303 (for Bacteroides

spp.)(30); LAB158 (for Lactobacillus/Enterococcus spp.)(31);

EREC482 (for the C. coccoides–E. rectale group)(32); CHIS150

(for the C. histolyticum group); EUB338/II/III (for total

bacteria)(33). A 50ml probe solution (5ml of probe in 50ml

of hybridisation buffer (5 M-NaCl, 1 M-Tris–HCl, deionised

water, 10 % (w/v) SDS and formamide prepared according to
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the probe)) was added to each well. The wells were stored

in an airtight container at the appropriate temperature

(46 or 508C) for 4 h. The slides were then washed with

warm buffer (5 M-NaCl, 1 M-Tris–HCl (pH 8) and 0·5 M-EDTA

(pH 8)) for 15 min and then immediately plunged into cold

water. The slides were dried using compressed air before

5ml of antifade and a cover slip was applied. All slides were

stored for at least 8 h in the dark at 48C before microscopic

examination. For each well, bacterial counts were obtained

in fifteen different fields of view using a Nikon Eclipse E400

microscope.

Liquid chromatography–MSn

The coffee samples and the inoculated batch culture media were

analysed by LC–MSn using electrospray ionisation to identify

principal CGA and key CGA metabolites (in the media).

LC–MS analyses were performed using an Agilent 1200 Series

LC system (Agilent) equipped with a binary pump, a degasser,

an auto-sampler, a thermostat, a column heater, a photodiode

array detector and an Agilent 1100 Series LC/MSD mass trap

spectrometer. Separation of samples was achieved using a

Zorbax SB C18 column (2·1 £ 100 mm, 1·8mm; Agilent), and

LC conditions were as follows: injection volume, 10ml;

column temperature, 258C; binary mobile system, (A) 0·1 %

(w/v) of aqueous formic acid and (B) 0·1 % (w/v) of formic

acid in acetonitrile; flow rate, 0·2 ml/min. A series of linear

gradients was used for separation (min/%B): 0/0, 5/4, 40/25,

55/50 and 60/50. MS was performed in the negative-ion

mode (scan range, m/z 100–800 Da; source temperature,

3508C). All solvents used were of LC–MS grade. The eluent

was monitored by a photodiode array detector at 254, 280,

320, 370 and 520 nm, and spectra of products were obtained

over the 220–600 nm range. All data were analysed using

Bruker Daltonics Data Analysis 3.3.

HPLC

The coffee samples and the inoculated batch culture media were

analysed by HPLC to quantify CGA, using an Agilent 1100 Series

LC fitted with a C18 Nova Pakw column (250 £ 4·6 mm inner

diameter and 5mm particle size) and a C18 Nova Pakw guard

column (Waters Limited). The mobile phases consisted of

5 M-HCl (0·1 %) in 95 % water (phase A) and 5 % methanol, and

5 M-HCl (0·1 %) in 50 % acetonitrile and 50 % water (phase B)

pumped through the column at 0·7 ml/min. An aliquot (50ml)

of the sample was injected and separated using a gradient

system (min/%B): 0/5, 5/5, 40/50, 55/100, 59·9/100 and 60/5.

The eluent was monitored by a photodiode array detector at

254, 280, 320, 370 and 520 nm, and spectra of the products

were obtained over the 220–600 nm range. Quantification of

CGA was obtained at 320 nm. A standard curve was produced

using 5-CQA (00·1–0·6 mM), and a linear relationship was

obtained with a correlation coefficient of .0·98. Quantity was

expressed as 5-CQA and presented as an equivalent quantity

as that found in the human colon after ingestion of one cup

of coffee (assuming that two-thirds of CGA reach the colon).

All data were analysed using Agilent Chem Station software.

Statistical analysis

A paired Student’s t test was used to test for significant differ-

ences (P,0·05) in bacterial enumeration between the 0 and

10 h time points, using XLSTAT statistical analysis add-in for

Microsoft Excel 2010.

Results

Metabolism of chlorogenic acids by human faecal bacteria

In agreement with previous investigations(28), eight CGA were

identified in the faecal batch culture vessels inoculated with

800
600
400
200

800
600
400
200

1 2 3 4 5 6 7 8

(c)

(b)

8

(a)

(d)

1

2

3
4 5 6

7

800
600

A
b

so
rb

an
ce

 (
m

A
U

)

400
200

800
600
400
200

0 5 10 15 20

Time (min)

25 30 35 40 45

Fig. 1. HPLC chromatograms at 320 nm of Nescafé Green Blend vessel samples demonstrating the depletion of chlorogenic acids over time: (a) 0 h, (b) 4 h,

(c) 10 h and (d) 24 h. mAU, milli absorbance units; 1, 3-caffeoylquinic acid (3-CQA); 2, 5-CQA; 3, 4-CQA; 4, 5-feruloylquinic acid (5-FQA); 5, 4-FQA; 6, 3,4-diCQA;

7, 3,5-diFQA; 8, 4,5-FQA.
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coffee (Fig. 1). At 0 h, these were as follows: 5, 4 and 3 isomers

of CQA; 4 and 5 isomers of feruloylquinic acid; 3,4, 3,5 and

4,5 isomers of dicaffeoylquinic acid (diCQA; Fig. 1). Retention

times and fragmentation patterns for the identification of

CGA by LC–MSn are presented in Table 1. No CGA was

detected in the control vessel (without coffee inoculation).

All CGA underwent metabolism over the 24 h period of

incubation with the faecal microbiota (Fig. 1; Table 2), with

the majority of CGA being metabolised by 10 h of incubation.

Parallel to the loss of CGA, a number of new peaks appeared

over the 24 h period (peaks 2, 3 and 4; Fig. 2), which were

identified as dihydrocaffeic acid ([M 2 H]– m/z MS1: 180·9,

MS2: 136·8) (peak 2), dihydroferulic acid ([M 2 H]– m/z MS1:

194·8, MS2: 135·8) (peak 4) and an unknown compound

([M 2 H]– m/z MS1: 377·0, MS2: 202·2, 172·8) (peak 3).

Caffeine levels were similar in all the three coffee samples

(53 (SEM 0·4) mg) and remained unmetabolised throughout

the experiment (Fig. 2), suggesting the selective metabolism

of CGA by the microbiota. Pure CGA (5-CQA isomer,

80·8 mg) was also rapidly metabolised to dihydrocaffeic acid

([M 2 H]– m/z 180·9, 136·8) and the unknown compound

([M 2 H]– m/z MS1: 377·0, MS2: 202·2, 172·8) being identified

after incubation with the microbiota; however, dihydroferulic

acid was not observed.

Chlorogenic acids induce changes in bacterial groups

All coffee samples induced an increase in the growth of

total bacteria (Fig. 3), at a similar magnitude to that observed

with fructo-oligosaccharide (FOS), an established prebiotic,

although this was only significant for Nescafé Green Blend

and Nescafé Gold Blend (P,0·05), relative to the control

vessel. Nescafé Green Blend was the only coffee that

induced a significant increase in the growth of Bifidobacter-

ium spp., with a similar magnitude to that observed with

FOS (Fig. 3). All coffee samples failed to alter the growth

of Lactobacillus/Enterococcus spp. (unlike FOS) or the

C. histolyticum group (unlike FOS that induced a decrease)

(Fig. 3). However, two of the three coffee samples (Nescafé

Gold Blend and Nescafé Original) significantly increased the

growth of the C. coccoides–E. rectale group relative to the

control vessel, although FOS decreased the growth of this

bacterial group. Finally, Bacteroides spp. increased to a similar

magnitude in all the three coffee treatments, whereas a

decrease in the growth of these bacteria was observed in

response to FOS, albeit not significant (Fig. 3). Similar to

that observed with the coffee treatments, pure CGA (5-CQA)

increased the growth of Bifidobacterium spp. (P,0·05) and

the C. coccoides–E. rectale group (P,0·05) (Fig. 4), but

there were no significant changes in the growth of total

bacteria, Lactobacillus/Enterococcus spp., Bacteroides spp.

or the C. histolyticum group, although it did induce a substan-

tial decrease in the growth of the latter (Fig. 4). No significant

changes were observed between the coffee treatments for

any of the bacteria assessed.

Discussion

Prebiotics in the form of indigestible polysaccharides, predomi-

nantly inulin-type fructans(34) and galacto-oligosaccharides(35),

have been widely studied for their ability to positively modu-

late the profile of the human colonic microbiota. However,

Table 1. Negative-ion MS2 fragmentation data for identification of chlorogenic acids in coffee at 0 h

MS1 MS2

Compounds Retention time Parent ion Base peak (m/z) Secondary peaks (m/z)

3-CQA 15·3 353·0 190·7 178·9 134·8
4-CQA 23·1 353·0 172·7 178·7 190·7 134·8
5-CQA 21·9 352·8 190·7
4-FQA 32·1 367·1 178·9 190·7
5-FQA 30·0 367·2 190·7 172·8
3,4-diCQA 38·9 515·0 352·9 172·7
3,5-diCQA 40·2 515·0 352·9
4,5-diCQA 42·3 515·0 352·9

CQA, caffeoylquinic acid; FQA, feruloylquinic acid.

Table 2. Chlorogenic acids (CGA) in Nescafé Green Blend, Nescafé Gold Blend and Nescafé Original
at 0, 4, 10 and 24 h

(Mean values with their standard errors)

Nescafé Green Blend Nescafé Gold Blend Nescafé Original

Time (h) Mean* SEM %† Mean SEM % Mean SEM %

0 75·44 8·13 100·00 25·00 2·04 100·00 27·18 4·38 100·00
4 5·00 3·99 6·63 2·49 1·54 9·95 4·07 3·40 14·99
10 1·87 1·68 2·47 0·37 0·22 1·49 0·56 0·34 2·05
24 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00 0·00

* mg CGA in the vessel (150 ml).
† % of CGA remaining in the vessel in comparison with that at 0 h.
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there are various other food components that reach the colon

largely unmetabolised from the upper gastrointestinal tract,

including polyphenols, which are known to undergo only lim-

ited absorption in the small intestine(24–26). A regular coffee

consumer may consume up to 1 g CGA/d, with approximately

51–67 % of these being estimated to reach the colon(6,7). As

such, coffee-derived CGA may represent a potential candidate

for inducing a ‘non-polysaccharide’-based prebiotic effect.

In support of this, we show that coffee, equivalent to an

oral dose of one cup (1·2 g instant powder), increases the

growth of total bacteria to a similar magnitude to that

observed with FOS. These changes were accompanied by

the rapid and complete (by 24 h) metabolism of CGA and

5-CQA. Notably, exposure of coffee to the microbiota led

to the detection of two metabolites, dihydrocaffeic acid and

dihydroferulic acid(11), along with another unidentified meta-

bolite. These metabolites were also detected following

exposure to pure 5-CQA, although dihydroferulic acid was

not produced in high amounts, perhaps because it is entirely

or partially derived from an alternative CGA or a different

CQA isomer.

All coffee samples increased the growth of Bifidobacterium

spp., although the Nescafé Green blend coffee, which con-

tained the highest amounts of CGA, was the only one to

induce this growth significantly (P,0·05). In support of

CGA being the mediating compounds for these effects,

an equivalent amount of 5-CQA (the most abundant CGA in

coffee) also induced a significant increase in the growth

of Bifidobacterium spp. Such increases in growth are bio-

logically relevant as Bifidobacterium spp. have long been

associated with positive health outcomes in the gut, through

an enhancement of saccharolytic metabolism(36), the pro-

duction of organic fatty acids such as acetate and lactate,

and their inherent anti-pathogenic capabilities(37). Further-

more, some species of Bifidobacterium have been noted for

their ability to inhibit the proliferation of colon cancer

cells(38), particularly in elderly individuals(39,40). Our data are

in agreement with similar experiments using anthocyanins(41)
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formation of chlorogenic acid metabolites and the continued presence of caffeine. mAU, milli absorbance units. 1, Caffeine; 2, dihydrocaffeic acid; 3, unknown

compound; 4, dihydroferulic acid.

C. E. Mills et al.1224

B
ri

ti
sh

Jo
u
rn

al
o
f

N
u
tr

it
io

n
https://doi.org/10.1017/S0007114514003948  Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/S0007114514003948


and (þ)-catechin(24), and with human intervention studies

using flavanol-rich cocoa(25) and coffee(42) interventions. In

support of our findings with respect to bacterial levels, the

rapid metabolism of CGA upon exposure to the microbiota

suggests that specific bacterial groups are capable of meta-

bolising CGA. Indeed, Bifidobacterium spp. have previously

been reported to exert esterase activity and, thus, would be

capable of cleaving the caffeic acid moiety from its quinic

acid counterpart(43).

In contrast, neither the coffee treatments nor 5-CQA affected

the growth of Lactobacillus/Enterococcus spp., highlighting

the difference between them and classical polysaccharide

prebiotics. Previous investigations with polyphenols suggest

that increases in the growth of Lactobacillus/Enterococcus

spp. are possible with anthocyanins(41) and high-flavanol

cocoa(44), although our data are consistent with previous

coffee data(42). Furthermore, in contrast to the changes

in bacterial growth after exposure to FOS, all the three

coffee treatments induced an increase in the growth of the

C. coccoides–E. rectale group. Although these increases in

growth proved to be not significant after exposure to Nescafé

Green Blend due to a large variation, numbers of this bacterial

group increased by approximately 0·4 log, greater than that

observed with the other coffee treatments containing lower

amounts of CGA. In support of this change, pure 5-CQA

induced a significant increase in the growth of this bacterial

group (P,0·05), relative to the control vessel. E. rectale are

known to possess butyrogenic potential. Butyrate is con-

sidered to have anti-inflammatory effects, as well as an ability

to modulate the immune system and protect against oxidative

stress(45), and unlike other clostridia (C. coccoides (XIA

cluster) analysed here, it also possess the ability to ferment

polysaccharides and disaccharides(46) and, therefore, may

well have the ability to metabolise CGA. The C. coccoides–

E. rectale group, as a whole, has been observed to be

reduced in patients with ulcerative colitis, and increasing the

colonisation is considered to be beneficial to this bacterial

group specifically(47). An increase in the growth of this

bacterial group has previously been observed in response

to (þ)-catechin and (–)-epicatechin(24) and in vivo after an

intervention with cocoa flavanols(25).

The increase in the growth of Bacteroides spp. observed

after exposure of the microbiota to coffee may be relevant

to human health as this genus is known to be capable of

fermenting polysaccharides to yield organic acids(48). As all

the three coffee treatments increased the growth of this

bacterial group to a similar magnitude, the changes may

result due to other components than CGA, as 5-CQA had no

significant influence on the growth of this bacterial group,

in a similar manner to that observed with FOS. Similar

observations were observed with respect to the growth of

C. histolyticum, a bacterial group considered to be patho-

genic, which did not alter in response to coffee treatment,

but significantly decreased following exposure to 5-CQA.

Previous data suggest that polyphenols consistently induce

a decrease in the growth of the C. histolyticum group, for

example malvadin-3-glucoside, enocianin (and gallic acid)(41)

as well as the flavanols (–)-epicatechin and (þ)-catechin(24),

although in vivo flavanols have been shown to induce the

growth of this bacterial group(25).

In summary, our data suggest that coffee intake may be

beneficial to the host via the potential of CGA (and potentially

other coffee components) to selectively modulate the colonic

microbiota. However, we accept that this is a preliminary

investigation that is limited by a small donor number and

although a robust model for the distal region of the colon,

limitations of such investigations still prevail. A full colonic

model, including pre-digestion of the coffee, would increase
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the validity of the work. Further in vivo work in this field is

necessary to confirm these findings, although the present

data provide an initial insight into the potential of CGA to

act as a potential ‘prebiotic’ in the human large intestine.
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