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Water entry of an elastic conical shell
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The axisymmetric problem of a conical shell impact onto an inviscid and incompressible
liquid of infinite depth is studied. The shell is thin, and its deadrise angle is small. The
problem is inertia dominated. Gravity, surface tension and viscous effects are not taken
into account. The hydrodynamic loads acting on the shell and the shell displacements are
determined at the same time. The model by Scolan (J. Sound Vib., vol. 277, issue 1–2,
2004, pp. 163–203) is used to find the flow and hydrodynamic pressure caused by the shell
impact. This model is based on the Wagner theory of water impact, which was generalised to
axisymmetric problems of hydroelastic slamming. Dry and wet modes of the conical shell,
as well as the corresponding frequencies, are calculated. It is shown that a conical shell
can be approximated by a circular plate only for a very small deadrise angle. Deflections
and strains in the conical shell during the impact stage, when the wetted part of the shell
increases at high rate, as well as the hydrodynamic loads, are determined and analysed.

Key words: wave–structure interactions, general fluid mechanics

1. Introduction

Water impact of thin-walled structures is of practical importance in many applications.
Slamming of ships, ditching of aircraft and wave impacts onto offshore platforms are
examples of such applications. A structure is quickly wetted during water impact if the
curvature of the structure surface is small. As a result, the hydrodynamic loads over the
wetted area of the structure can be high enough to deform the structure and even to damage
it. One needs to know how the impact conditions are related to the magnitude of the
impact loads and to the level of stresses in the structure. This problem of hydroelasticity
is complicated because, in the most dangerous conditions, the structural deformations and
the loads should be determined at the same time, the contact region between the structural
surface and the liquid is unknown in advance and should be determined as part of the
solution, the flow is three-dimensional.
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1.1. Motivation
Hydrodynamic pressures during the impact are high and sensitive to the local details of
the impact conditions. The impact velocity is of course an important parameter but, as
far as the extreme localised impact pressures are of concern, the relative local geometry
between the fluid and the body surface has significant influence on the pressures. This can
be illustrated with the case of a two-dimensional wedge which impacts the initially flat
water surface with a constant speed V . The relative impact geometry is defined by a single
parameter which is the wedge deadrise angle β. For this problem with a small deadrise
angle, a well-known Wagner solution, see Wagner (1932), is appropriate to analyse the
pressure behaviour. Under the assumptions of the Wagner theory, it is possible to evaluate
the pressure distribution along the wetted part of the wedge analytically. The maximum
impact pressure is given then by the following expression,

pmax = 8ρV2

π2 tan2 β
, (1.1)

where ρ is the water density. The formula (1.1) shows that the maximum pressure
dramatically changes even for very small variations of the deadrise angle β. These extreme
pressures are usually of short duration, and the affected area is very small. Because
of this particular behaviour, it is often not practically possible to correctly estimate the
maximum values of the pressure, neither experimentally nor numerically. Indeed, in the
case of measurements, the measured pressure value will depend on the size of the pressure
gauge and experimental set-up, whereas in numerical simulations it will depend on the
mesh size and many other parameters of a numerical algorithm. A very high scatter
of measured maximum pressures during water impact was demonstrated in figure 4 of
Faltinsen (2000).

It is important to understand that, usually, the results, which are of practical interest, are
not the pressures but the structural responses in terms of stresses. In reality, the structural
responses are not much affected by localised pressures of short duration, because these
pressures are naturally filtered out by the structural dynamics. In order to simulate this
type of hydro-structure interactions numerically, fully coupled hydroelastic models are
required. Within these models the interaction between the structural dynamics and the
hydrodynamic loading is accounted for at each time step of the simulations. The time
scale of the structural response determines which physical effects should be included in
the model.

In order to illustrate this, the concept of the dynamic amplification factor (DAF) is
particularly useful. This factor is defined as the ratio between the real structural response
and its quasi-static counterpart. The quasi-static response is defined as the static response
of the structure to the hydrodynamic loading precalculated for rigid-body conditions,
which means that there is no coupling between the loading and the response. The DAF
critically depends on the ratio between the excitation time tw and the characteristic natural
period t1 of the structure in contact with the liquid. This is illustrated in figure 1 for the
case of impact of an elastic wedge onto flat water surface, where the analytical solution
under the Wagner assumptions for hydrodynamic part can be found in Khabakhpasheva
& Korobkin (2013). Three fundamentally different interaction regimes can be identified:
impulsive, dynamic and quasi-static. It can be seen that, in the impulsive regime,
significant reduction of the structural response with respect to the quasi-static regime
occurs which demonstrates that the localised extreme pressures of short duration are
filtered out by the structure. In between the impulsive and quasi-static interaction regime
there exists the dynamic interaction regime where the structural response can be amplified.
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Figure 1. DAF and the different interaction regimes for elastic wedge (from Malenica et al. 2022).

All this shows that the fully coupled hydroelastic models need to be used when dealing
with the hydro-structure interactions during severe hydrodynamic impacts.

In practical applications, the relative impact geometry is usually very complex, and
the three-dimensional conditions need to be modelled, which means that the solution
should be fully numerical. Some software providers as well as the research and academic
institutions, claim the possibility to perform this kind of simulations. However, to the
best of the authors’ knowledge, the consistent validation of these models has not yet
been provided. The word consistent means here that the theory behind the numerical
method is verified and validated for all the above-mentioned interaction regimes. Instead,
many comparisons of the numerical and the experimental results were published. The
conclusions of these comparisons are usually very enthusiastic even though the numerical
and experimental results are most often mixed in the cloud of points which are difficult
to properly interpret. At the same time, the conditions in which the experiments are
performed, in terms of interaction regimes, are usually not well identified. In the authors’
opinion, the best validation material is provided by the analytical solutions of the same
problems, when these solutions are available.

The main purpose of this paper is to provide such analytical results for the
three-dimensional hydroelastic impact case, knowing that the two-dimensional results
were already given in Khabakhpasheva & Korobkin (2013). The model, which is proposed
here, allows for highly accurate analytical solution for the water-entry problem of an elastic
cone. These results can be directly used for the validation of the general three-dimensional
numerical models for all the interaction regimes: impulsive, dynamic and quasi-static.
This is particularly important, because the numerical parameters which are relevant for
numerical simulations (mesh size and type, time step, shape and size of the computational
domain, management of the free surface and others) are strongly dependent on the type of
the interaction regime.

1.2. Existing results and approaches
The flow caused by impact can be approximated as two-dimensional for elongated
structures using the strip method, see Logvinovich (1972). Then we arrive at
two-dimensional coupled problems of hydroelasticity, which can be solved either
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numerically (see, for example, Seng (2013) and Malenica et al. (2021)) or using the
normal mode method within the Wagner theory of water impact (see Khabakhpasheva
& Korobkin (2013) and Korobkin & Khabakhpasheva (2006)). Malenica et al. (2021)
performed numerical calculations of elastic wedge impact onto water surface by coupling
the OpenFOAM flow solver to a structural solver which uses a modal superposition
approach. The numerical solution was compared with the theoretical solution by the
Wagner model for different deadrise angles of the wedge and different impact speeds.
The comparison in terms of the maximum deflection and bending stresses was very
good, which justified the numerical solution and demonstrated that the Wagner model
provides accurate results for deadrise angles up to 25◦. The Wagner model of water
impact (see Wagner 1932) assumes that the penetration of the body into the liquid and
the elevation of the liquid free surface caused by the impact are small compared with
the dimensions of the wetted part of the body. This makes it possible to linearise the
boundary conditions on both the wetted part of the body and on the free surface and
impose these conditions on the initial level of the liquid before the impact. In this model,
the flow region is known but the contact line on its boundary, which separates the wetted
part of the body and the free surface of the liquid, is unknown in advance and should be
determined as part of the solution using the so-called Wagner condition. This condition
states that the elevation of the free surface at the contact line matches the position of
the entering body at this line. The Wagner condition leads to a transcendental equation
with respect to the radius of the contact region as a function of the penetration depth
for two-dimensional and axisymmetric bodies. The Wagner model of impact is well
investigated for two-dimensional problems with both rigid and elastic bodies.

Three-dimensional problems of hydroelastic impact are much more complicated than
the corresponding two-dimensional problems. Water entry of a wedge by hydroelastic
orthotropic plate theory was studied by Faltinsen (1999), where hydrodynamic loads
were evaluated by the strip theory within the two-dimensional Wagner model and the
coupling with the plate theory provided three-dimensional flow effects. Axisymmetric
problem of elastic cone impact onto a liquid half space was solved by Grigolyuk &
Gorshkov (1971) and Scolan (2004) within the axisymmetric Wagner model of water
impact. Grigolyuk & Gorshkov (1971) solved the problem using a nonlinear theory of
conical shells approximating the normal displacements of shell elements by quadratic
functions. The radius of the wetted part of the cone was approximated by that for a
rigid cone supported by an ‘equivalent’ spring. Inertia of the shell in the tangential
direction and the hydrodynamic loads in this direction were neglected. Scolan (2004)
approximated an elastic cone with small deadrise angle by a circular elastic plate clamped
at the edge and at the centre which corresponds to the tip of the cone. The structure was
simplified by Scolan (2004) but the three-dimensional hydrodynamic part of the problem
was solved in full details with proper evaluation of the wetted part of the cone at each time
instant. Three-dimensional hydroelastic impact onto a floating circular plate was studied
by Korobkin & Khabakhpasheva (2022), where the flow was three-dimensional, but the
wetted part of the structure was circular and did not change in time.

Axisymmetric problem of elastic cone impact on water was studied numerically and
theoretically using the model by Scolan (2004) and the dry modes of the corresponding
circular plate by Malenica et al. (2022). Describing difficulties with the hydrodynamic
solver, they wrote: ‘The OpenFoam based numerical CFD models of water impact do not
make any particular additional assumptions compared to the classical modeling of the fluid
flow in the presence of the free surface. However, the convergence issues and the mesh
requirements become much more critical now due to the large velocity of expansion of the
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wetted surface and the local sharp free-surface deformation close to the contact points. In
the present work the incompressible OpenFoam solver was used together with the Volume
of Fluid (VOF) method for free surface capturing’. The finite-element method (FEM)
was used to compute deformations of the elastic cone during the water impact. As to the
hydroelastic coupling, they mentioned that the fluid loads and local deflections should be
transferred between the flow and the structural solvers: ‘The strongly-coupled simulations
require these two-ways exchanges of loads and deflections to be performed iteratively
within each time step until a small tolerance of convergence criteria is satisfied’. Such
iterative methods with relaxation are not discussed in the present paper, but will be studied
and developed further in the future work of the authors. Numerical procedures, which are
based, for example, on OpenFoam and FEM coupling, can be used for general purposes
in practice. Development and validation of such procedures would benefit from having
highly accurate semi-analytical solutions of three-dimensional problems of hydroelastic
slamming.

The method and ideas by Scolan (2004) were used to solve axisymmetric problem of
droplet impact onto an elastic plate, see Pegg, Purvis & Korobkin (2018), where a circular
plate was built in a rigid substrate. There are still no solutions of truly three-dimensional
impact problems for elastic bodies. The axisymmetric problem of rigid cone impact on
water was well studied since the pioneering paper by Courant, Shiffman & Spencer (1945),
where the self-similar problem of cone impact at a constant speed was studied numerically
for a cone with deadrise angle of 30◦, by using the numerical method by Wagner (1932)
and by several simplified approaches including correction of the wetted region caused by
the elevation of the free surface. See also the paper by Shiffman & Spencer (1951), where
updated theoretical results from the reports by Courant et al. (1945) were published. These
numerical and analytical results were confirmed experimentally by Baldwin (1971), see
also experimental results for rigid cone impact by Chuang & Milne (1971).

Three-dimensional problem of water impact by a rigid body within the Wagner model
was numerically solved by Donguy et al. (2001) using the boundary-element method.
The wetted part of the entering body was determined by iterations at each time instant.
The numerical results for elliptic paraboloid were compared with the analytical results
by Scolan & Korobkin (2001). Another numerical method to solve the three-dimensional
impact problem was proposed by Tassin et al. (2012).

Gazzola & de Lauzon (2008) applied the formulation of Wagner impact problems
as a variational inequality (see Korobkin (1982) and Gazzola et al. (2005)) to
three-dimensional hydroelastic slamming. The numerical results for elastic cone were
compared with the theoretical results by Scolan (2004). Note that the formulation of
Wagner impact problems as a variational inequality does not require calculations of the
position of the wetted part of the entering elastic body.

1.3. Structure of the paper
In the present study, the axisymmetric and hydroelastic Wagner problem of water impact
is applied to conical shells of small deadrise angle. The formulation of the problem in
dimensionless variables is given in § 2. An important parameter which decreases with
decrease of the deadrise angle and increase of the shell thickness is derived. It is shown
that a conical shell can be approximated by an equivalent circular plate only for extremely
small deadrise angles. Equations for dry and wet modes and their frequencies are derived
in § 3 using the modes of a clamped circular plate introduced by Scolan (2004). The
hydrodynamic pressure acting over the wetted part of the cone is given by a series
with improved convergence. Numerical results for wet and dry modes and frequencies,
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Figure 2. Sketch of an elastic cone penetrating liquid at constant speed.

deflections and strains in the cone during the impact stage, as well as hydrodynamic loads
are presented and compared with the results by others in § 4. It is shown that membrane
stresses might be as high as the bending stresses for some conditions of impact. The
hydrodynamic pressures acting on an elastic cone can be higher than the pressures acting
on the equivalent rigid cone for the same impact conditions. Finally, in § 5, the results
obtained are summarised and some directions for further work are outlined.

2. Formulation of the problem

The problem of elastic shell impact onto water surface is formulated in cylindrical
coordinates z, r, where z is the vertical coordinate and r is the radial coordinate, see
figure 2. Initially, t = 0, the liquid occupies the lower half-space z < 0 and the position
of the shell is described by the equation z = r tanβ, r < R cosβ, where β is the deadrise
angle of the cone and R is the length of the cone generator (Leissa 1973), which is called
length of the cone below. The shell is not stressed before impact. The tip of the shell and its
edge are clamped to a rigid structure. The cone touches the flat and horizontal free surface
of the liquid at a single point taken as the origin of the coordinate system.

The cone starts suddenly to penetrate the liquid vertically with a constant speed V
at t = 0. The flow caused by the impact is assumed potential and axisymmetric. The
deadrise angle of the cone β is assumed small, which makes it possible to approximate
the hydrodynamic loads acting on the impacting conical shell using the Wagner approach.
Gravity, surface tension and viscous effects are not taken into account in this approach
(Wagner 1932). Within the Wagner approach only the early stage of the impact is
considered, during which the vertical displacement of the cone is comparable with
the vertical dimension of the cone, R sinβ, and is much smaller than the horizontal
dimension of the wetted part of the cone, which is of the order of R cosβ. During the
early stage of impact, the flow region is approximated by the lower half-space z < 0, the
boundary conditions on the free surface, z = η(r, t), r > a(t), and on the wetted part of
the deformed cone, which is approximated as z = −Vt + r tanβ + w(x, t), r < a(t), are
linearised and imposed on the plane z = 0. Here x = r/ cosβ is the distance along the
cone generator measured from the tip of the cone, a(t) is the radius of the wetted part
of the deformed cone during the impact stage, when a(t) < R cosβ, and w(x, t) is the
normal elastic displacement of the shell elements caused by the impact loads. During the
next, penetration, stage, which starts when the cone is completely wetted but continues to
penetrate into the liquid, we have a(t) = R cosβ. This approximation of the hydrodynamic
problem of liquid impact is known also as a ‘flat-disc approximation’ because the wetted
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part of the impacting surface is approximated by a flat disc, radius of which increases with
time and should be determined as part of the solution.

Within the Wagner approach, the hydrodynamic pressure is given by the linearised
Bernoulli equation (see Howison, Ockendon & Wilson (1991)) and the boundary-value
problem for the velocity potential ϕ(r, z, t) reads (see Scolan 2004)

∇2ϕ = 0 (z < 0), (2.1)

ϕ = 0 (z = 0, r > a(t)), ϕz = −V + wt(x, t) (z = 0, r < a(t)), (2.2a,b)

p(r, z, t) = −ρϕt(r, z, t), (2.3)

where ρ is the liquid density. The elastic displacements in the normal, w(x, t), and
tangential, u(x, t), directions with respect to the initial shape of the cone, see (2), are
governed by the most complete linear equations of the conical shell (see Soedel (2004)
and Leissa (1973))

ρshwtt + D∇4w + 12D tan2 β

x2h2

(
w + 1

tanβ
[u + νxux]

)
= p(x, 0, t), (2.4)

ρshutt − K
(

uxx + 1
x

ux − 1
x2 u

)
− K tanβ

x2 [νxwx − w] = 0, (0 < x < R), (2.5)

K = 12
h2 D, D = Eh3

12(1 − ν2)
, (2.6a,b)

with the edge

w = wx = u = 0 (x = 0,R), (2.7)

and initial

w(x, 0) = wt(x, 0) = u(x, 0) = ut(x, 0) = 0, (2.8)

conditions. Here ρs, E and ν are the density, Young module and Poisson ratio of the
shell material and h is the shell thickness. Note that x = r/ cosβ ≈ r in (2.2a,b) for small
deadrise angle β. In contrast to notation in Soedel (2004) and Leissa (1973), the normal
displacement w(x, t) is positive upwards and the tangential displacement u(x, t) is positive
if a shell element is displaced towards the tip of the cone.

The problem (2.1)–(2.8) was solved by Scolan (2004) neglecting the tangential
displacement u(x, t) and the third term on the left-hand side of shell equation (2.4).
This approximation implies that the conical shell was modelled as a circular elastic plate
clamped at the edge, x = R, and at the centre, x = 0. We shall derive the conditions when
this approximation by Scolan (2004) is acceptable.

The problem (2.1)–(2.8) in the dimensionless variables denoted with a tilde,

x = Rx̃, r = Rr̃, z = Rz̃, t = Tsct̃, w = VTscw̃(x̃, t̃), u = VTsc tanβũ(x̃, t̃),
(2.9a–f )

ϕ = VRϕ̃(r̃, z̃, t), p = ρV2p̃(r̃, z̃, t̃)/ sin β, a = Rã, Tsc = R sinβ/V, (2.10a–d)
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takes the form (a tilde is dropped in the following)

∇2ϕ = 0 (z < 0), (2.11)

ϕ(r, 0, t) = 0 (r > a(t)), ϕz(r, 0, t) = −1 + wt(x, t) (r < a(t)), (2.12a,b)

αwtt + ∇4w + δ

x2 (w + νxux + u) = −αγϕt(r, 0, t) (0 < x < 1), (2.13)

uxx + 1
x

ux − 1
x2 u + 1

x2 (νxwx − w) = εαutt (0 < x < 1), (2.14)

w = wx = u = 0 (x = 0, 1), w = wt = u = ut = 0 (t = 0). (2.15a,b)

The dimensionless parameters in (2.13) and (2.14) are

α = 12(1 − ν2)

(
VR

cph sinβ

)2

, γ = ρR
ρsh

, δ = 12 tan2 β
R2

h2 , ε = 1
12

(
h
R

)2

,

(2.16a–d)
where cp = √

E/ρs, is known as the speed of pressure waves in a shell material.
We assume that the impact conditions are such that α = O(1). For shells, we have ε �

1 and γ < 1. As to the parameter δ, we have tanβ � 1 within the Wagner model of
water impact, and R/h � 1 for thin-walled shells, with their product being large or small
depending on the characteristics of the cone. Therefore, we can neglect the term εαutt in
(2.14), as it was done by Grigolyuk & Gorshkov (1971), but should keep the term with δ. In
the study by Scolan (2004), the term with δ was neglected for the parameters R = 0.128 m,
the deadrise angle β in the range from 6◦ to 20◦, and the shell thickness h being from 0.5
to 15 mm. The minimum value of δ for these parameters is 8.7 which is achieved for the
most stiff shell with h = 15 mm and β = 6◦. The maximum value δ = 101 921 is achieved
for h = 0.5 mm and β = 20◦.

For the parameters used by Malenica et al. (2022), E = 2.1 × 1011 Pa, ρs =
7850 kg m−3, h = 0.01 m, R = 1 m, β = 10◦, and ν = 0.3, ρ = 1000 kg m−3 and V =
2 m s−1, we have δ = 3730.9445, ε = 8.33 × 10−6, cp = 5172.2 m s−1, γ = 12.74, α =
0.5412 and αγ = 6.895. We conclude that the parameter δ is not small for small deadrise
angles and, therefore, the term with δ in (2.13) should be retained.

Equation (2.14), where the right-hand side is approximated by zero for small ε, can be
integrated with account for the edge conditions u(0, t) = u(1, t) = 0 with the result

u(x, t) = Cx + 1 − ν

2
x
∫ x

0
w(x0, t)

dx0

x2
0

− 1 + ν

2x

∫ x

0
w(x0, t) dx0, (2.17)

C = −1 − ν

2

∫ 1

0
w(x0, t)

dx0

x2
0

+ 1 + ν

2

∫ 1

0
w(x0, t) dx0. (2.18)

The physical strains on the inner and outer surfaces of the conical shell are given by

εxx(x, t) = εsc

(√
δ

3
∂u
∂x

∓ ∂2w
∂x2

)
, εθθ (x, t) = εsc

1
x

(√
δ

3
(u + w)∓ ∂w

∂x

)
, (2.19a,b)

where u(x, t), w(x, t) and x are dimensionless variables, and εsc = h sinβ/(2R). Here
εxx(x, t) is the relative elongation of a shell element along the cone generator, εθθ (x, t) is
the relative elongation of a shell element in the angular azimuthal direction, see figure 3,
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εxx (x, t)

εθθ (x, t)

(b)(a)

Figure 3. Sketch of radial (a) and azimuthal (b) strains.

minus/plus in (2.19a,b) stand for the inner/outer surface of the shell. The strains can be
decomposed also as

εxx(x, t) = ε(m)xx (x, t)∓ ε(b)xx (x, t), εθθ (x, t) = ε
(m)
θθ (x, t)∓ ε

(b)
θθ (x, t), (2.20a,b)

where the superscript (m) stands for membrane strains and the superscript (b) for bending
strains (see Soedel 2004).

We are searching the solution of the hydrodynamic problem (2.1)–(2.3) with square-root
singularity of the flow velocity and the pressure at the contact line, where the boundary
conditions (2.2a,b) change their type (see Howison et al. (1991), Scolan & Korobkin
(2001) and Scolan (2004)). The flow is not singular at the tip of the cone, x = 0, but the
strains are singular there. The displacements of the conical shell should be such that the
potential energy of the deformed shell is finite during the cone entry into the liquid. This
condition provides w(x, t) = O(x2 log x) as x → 0. Note that ∇2(x2 log x) = 0. Therefore,
the strains εxx(x, t) and εθθ are of order O(log x) as x → 0.

3. Solution by the normal mode method

The coupled problem of hydroelasticity (2.1)–(2.16a–d) can be solved using the dry modes
of the conical shell. A dry mode consists of normal and tangential displacements of the
shell elements. Then (2.13) with account for (2.17) and (2.18) can be reduced to simple
harmonic oscillator equations for the amplitude of each dry mode with their right-hand
sides being projections of the hydrodynamic loads onto the modes. In the present approach,
the tangential displacement u(x, t) is related to the normal displacement w(x, t) by (2.17)
and (2.18). These relations together with (2.13) provide an integro-differential equation
for the function w(x, t) which is solved by using the modes introduced by Scolan (2004),
which are the dry modes of a circular elastic plate clamped at the centre and at the edge.
These dry modes correspond to the shell equation (2.13), where δ = 0 and γ = 0. The
same idea is expected to be practical in the hydroelastic slamming problems for complex
structures, where normal modes of an elastic plate with the same edge conditions and
internal supports are used instead of the modes of the actual structure. This idea was
used by Korobkin, Khabakhpasheva & Shishmarev (2023) to determine wet modes and
the corresponding added-mass matrices for complex two-dimensional elastic structures in
contact with liquid.

The Scolan’s modes, ψn(r), are solutions of the eigenvalue problem,

∇4ψn = λ4
nψn (0 < r < 1), ψn = ψ ′

n = 0 (r = 0, 1), (3.1a,b)

where λn are the corresponding eigenvalues, 0 < λn < λn+1 and n ≥ 1. The modes are
orthogonal, ∫ 1

0
ψn(r)ψm(r)r dr = δnm, (3.2)
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and have the form

ψn(r) = An

{
Cn[J0(λnr)− I0(λnr)] − Y0(λnr)− 2

π
K0(λnr)

}
(3.3)

Cn = Y0(λn)+ (2/π)K0(λn)

J0(λn)− I0(λn)
, (3.4)

see Scolan (2004) for the details and the dispersion relation for the eigenvalues λn. Here
δnn = 1 and δnm = 0 for n /= m. The coefficients An are determined numerically using
the condition (3.2) for m = n. The modes behave as ψn(r) ∼ (Anλ

2
n/π)r

2 log r for r → 0,
which corresponds to the expected behaviour of the normal deflection near the tip of the
cone, see Leissa (1973).

The normal deflection of the conical shell and the velocity potential are sought in the
form of the series,

w(r, t) =
∞∑

n=1

bn(t)ψn(r), (3.5)

ϕ(r, z, t) = ϕ0(r, z, a)+
∞∑

n=1

ḃn(t)ϕn(r, z, a), (3.6)

where the potentials ϕn(r, z, a) are the solutions of the boundary problem (2.1)–(2.2a,b)
with the condition on the wetted part of the cone, where r < a(t), being replaced by
ϕ0z(r, 0, a) = −1 and ϕnz(r, 0, a) = ψn(r) for n ≥ 1. The potential ϕ0(r, z, a) is the
potential of the flow caused by entry of the rigid cone into the liquid half-space. The
potentials ϕn(r, z, a) are independent of time at the penetration stage, when the cone is
completely wetted, a(t) = 1, but continues to penetrate the liquid at the constant speed
vibrating elastically.

3.1. Impact stage
It is convenient to introduce a function

q(r, t) = wt(r, t)+ γ ϕ(r, 0, t) (r < a(t)), q(r, t) = wt(r, t) (a(t) < r < 1),
(3.7a,b)

and present it, in the interval 0 < r < 1, by the series

q(r, t) =
∞∑

n=1

qn(t)ψn(r). (3.8)

Equations (3.5), (3.7a,b) and the orthogonality condition (3.2) provide the coefficients
qn(t),

qn = dbn

dt
+ γ

∞∑
m=1

dbm

dt
Smn(a)+ γ fn(a), (3.9)

fn(a) =
∫ a

0
ϕ0(r, 0, a)ψn(r)r dr, Smn(a) =

∫ a

0
ϕm(r, 0, a)ψn(r)r dr. (3.10a,b)

The symmetric matrix S(a) with the elements Snm(a) given by (3.10a,b) is known as the
added-mass matrix of a circular elastic plate of radius 1, which is in contact with the liquid
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Water entry of an elastic conical shell

only over the region r < a. This matrix was derived by Scolan (2004). The solution of the
hydrodynamic problem,

∇2ϕn = 0 (z < 0), ϕn = 0 (z = 0, r > a), ϕnz = ψn(r) (z = 0, r < a),
(3.11a–c)

where n ≥ 0 and ψ0(r) = −1, reads

ϕn(r, 0, a) = a
∫ a

r

χn(ξ/a) dξ√
ξ2 − r2

, χn(μ) = 2
π

∫ μ

0

σψn(aσ) dσ√
μ2 − σ 2

. (3.12a,b)

The solution (3.12a,b) is convenient to present as

χn(μ) = 2
π
μQn(aμ), ϕn(r, 0, a) = 2

π

∫ a

r

ξQn(ξ) dξ√
ξ2 − r2

,

Qn(ξ) =
∫ π/2

0
ψn(ξ sin θ) sin θ dθ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.13)

Then it is easy to show that

Q0(ξ) = −1, ϕ0(r, 0, a) = − 2
π

√
a2 − r2, (3.14a,b)

where 0 < r < a, and

Snm(a) = 2
π

∫ a

0
x2Qn(x)Qm(x) dx. (3.15)

The functions Qn(a) and Snm(a) are oscillating in the interval 0 ≤ a ≤ 1. The calculations
revealed that the derivative Q′

n(a) changes its sign n times in this interval. In each
subinterval, where Q′

n(a) has a certain sign, the function Qn(a) can be approximately
presented by 25 points. In total, the function Qn(a) is presented by 25n points with distance
1/(25n) between the points. The derivatives of the added-mass elements, S′

nm(a) =
(2/π)a2Qn(a)Qm(a), and Snm(a) as well, are also oscillating. The elements Snm(a) for
m ≤ n can be approximately presented with 25n points, which are the same as for Qn(a).
Between these points, the functions Qn(a) and Snm(a) are approximated linearly. By using
this approximations, the functions Qn(a) and Snm(a) are precalculated numerically for a
from zero to one with step 0.002 for 1 ≤ n ≤ m ≤ 20. The added-mass matrix is constant
S(1) at the penetration stage, when the elastic cone is completely wetted.

Equation (2.13) for the normal displacement w(r, t) of the shell elements can be written
now as

∂q
∂t

= − 1
α

{
∇4w + δ

r2 (w + νrur + u)
}
. (3.16)

Substituting (3.8), (3.5), (2.17) and (2.18) into (3.16), multiplying both sides of the equation
by rψm(r), and integrating the result with respect to r from r = 0 to r = 1 with account
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for (3.1a,b), we obtain

dqm

dt
= − 1

α

{
λ4

mbm + δ

∞∑
n=1

bn(t)Tmn

}
, (3.17)

where

Tmn = 1
2
(1 + ν)2

∫ 1

0
ψn(r) dr

∫ 1

0
ψm(r) dr + (1 − ν2)

{∫ 1

0
ψm(r)ψn(r)

dr
r

−1
2

∫ 1

0
ψm(r)

∫ r

0
ψn(r0)dr0

dr
r2 − 1

2

∫ 1

0
ψn(r)

∫ r

0
ψm(r0)dr0

dr
r2

}
. (3.18)

The matrix T with the elements Tnm given by (3.18) is symmetric and depends only on the
Poisson ratio ν of the shell material. This matrix is precalculated numerically using the
orthonormal functions (3.3).

Equations (3.9) and (3.17) and the initial conditions (2.8) can be written in the matrix
form,

db
dt

= (I + γS(a))−1(q − γ f (a))
dq
dt

= − 1
α
(D + δT)b,

b(0) = 0, q(0) = 0,

⎫⎬
⎭ (3.19)

where D = diag(λ4
1, λ

4
2, λ

4
3, . . .) is a diagonal matrix, b(t) = (b1, b2, b3, . . .)

T, q(t) =
(q1, q2, q3, . . .)

T and f (a) = ( f1, f2, f3, . . .)T.
The radius a(t) of the wetted part of the cone during the impact stage is calculated using

the Wagner condition that the elevation of the liquid free surface is equal to the vertical
coordinate of the deformed surface of the cone at r = a(t). This condition was reduced
by Scolan (2004) to the equation, which in the dimensionless variables (2.10a–d) has the
form

a(t) = 4
π

(
t −

∞∑
n=1

bn(t)Qn(a)

)
. (3.20)

The system (3.19) and (3.20) is integrated in time up to a time instant t∗, when a(t∗) = 1.
Note that the dimensionless duration of the impact stage for a rigid cone is equal to π/4.
Indeed, for a rigid cone, we should set bn = 0 in (3.20), which gives a(t) = 4t/π and
a = 1 at t = π/4.

3.2. Penetration stage and wet/dry modes
For t > t∗, when the shell is completely wetted but continues to penetrate into the liquid,
we set a = 1, f = f (1), S = S(1) and continue numerical integration of the system (2.3)
in time using the matching conditions,

b(t∗ + 0) = b(t∗ − 0), q(t∗ + 0) = q(t∗ − 0), (3.21a,b)

where b(t∗ − 0) and q(t∗ − 0) are the solutions of the initial problem (3.19) at the end of
the impact stage.
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Water entry of an elastic conical shell

It is convenient to introduce a new unknown vector g(t) = q(t)− γ f (1). Then the
system (3.19) at the penetration stage and the matching conditions (3.21a,b) read

db
dt

= (I + γS(1))−1g,
dg
dt

= − 1
α
(D + δT)b,

b(t∗ + 0) = b(t∗ − 0), g(t∗ + 0) = q(t∗ − 0)− γ f (1).

⎫⎬
⎭ (3.22)

The homogeneous system (3.22) of ordinary differential equations without the matching
conditions at t = t∗ has a periodic solution b(t) = B cos(Ωt), where the constant vector B
is a solution of the system

((I + γS(1))−1(D + δT)− μI)B = 0. (3.23)

Non-zero solutions of the system (3.23) with symmetric matrix (I + γS(1))−1(D + δT)

exist only if μ = αΩ2 is an eigenvalue of this matrix. The eigenvalues are numbered in
such a way that μ(w)n < μ

(w)
n+1 where n ≥ 1 and the superscript w stands for wet conditions.

The eigenvalues depend on parameters γ and δ and are independent of the shell rigidity
and speed of the impact. The corresponding solutions B(w)n of the system (3.23) for μ =
μ
(w)
n provide the so-called wet modes,

W(w)
n (r) =

∞∑
j=1

B(w)nj ψj(r), (3.24)

of the completely wetted conical shell. Note that the determinant of the matrix of system
(3.23) at μ = μ

(w)
n is zero. To find the vector B(w)n , we truncate the system retaining

(Nmod − 1) equation and setting B(w)n,j = 0 for j > Nmod and B(w)n,Nmod
= 1. Finally, the vector

B(w)n is rescaled in such a way that B(w)n,n = 1. The wet modes W(w)
n (r) are orthogonal but

not orthonormal, ∫ 1

0
W(w)

n (r)W(w)
m (r)r dr = η2

nδnm, (3.25)

where η2
n = (B(w)n B(w)n ). The wet modes of partially wetted cone are different from the

modes of the totally wetted cone and are not considered in the present analysis.
The dimensionless angular frequency Ω(w)

n of the wet nth mode W(w)
n (r) is equal to

Ω
(w)
n = (μ

(w)
n /α)1/2. The corresponding dimensional angular frequency of the nth wet

mode is equal to ω(w)n = Ω
(w)
n /Tsc = (μ

(w)
n /α)1/2/Tsc = [μ(w)n D/(ρshR4)]1/2. The ratio

of the duration of the impact stage T(im), which is equal to π/4Tsc for constant impact
speed and rigid cone, to the period of the first wet mode, T(w)1 = 2π/ω

(w)
1 , is equal to

T(im)
T(w)1

= 1
8
Ω
(w)
1 = 1

8

√
μ
(w)
1
α
. (3.26)

This ratio is inverse proportional to the impact speed V , see the definition of the parameter
α in (2.16a–d). The smallest eigenvalue μ(w)1 of the matrix in (3.23), which appears in
(3.26), depends on the deadrise angle β, length of the cone R and thickness h of the shell
through the parameter δ and on the density of the shell material ρs and the density of the
liquid ρ through the parameter γ and is independent of the shell rigidity.
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The time ratio (3.26) is used to identify the regime of the hydroelastic impact (see
Faltinsen (1999, 2000) and Malenica et al. (2021, 2022)). If the ratio is large, this is
the impact duration is much longer than the period of the lowest wet mode, then the
elastic behaviour of en elastic structure during water impact is well described by the
so-called quasi-static decoupled approximation. Within this approximation, one calculates
the hydrodynamic pressures acting on an equivalent rigid cone and then applies these
pressures to the elastic structure without account for the structural inertia, see § 1.1. For
small time ratio (3.26), see figure 1, the impact duration T(im) is short and the maximum
deflections and stresses occur at the penetration stage, where the lowest wet modes W(w)

n (r)
provide main contributions, see Korobkin & Khabakhpasheva (2006).

By using the wet modes W(w)
n (r), the equations (3.22) can be explicitly integrated.

During the penetration stage, the deflection of the conical shell can be presented as the
series with respect to wet modes:

w(r, t) =
∞∑

n=1

Cn(t)W(w)
n (r), (3.27)

instead of the series (3.5), which is with respect to the simplified modes. The coefficients
Cn(t) are related to the coefficients bn(t) in (3.5) by

b = B
(w)C, (3.28)

where C(t) = (C1,C2,C3, . . .)
T and the columns of the matrix B(w) are the vectors Bn

(w).
Then the system (3.22) leads to the following equations for the coefficients Cn(t), n ≤ 1,

d2Cn

dt2
+ (Ωnηn)

2Cn = 0 (t > t∗). (3.29)

The matching conditions (3.21a,b) provide

Cn(t∗ + 0) = (B(w))Tb(t∗ − 0), (3.30)

dCn

dt
(t∗ + 0) = (B(w))T(I + γS(1))−1g(t∗ − 0). (3.31)

Therefore, the formulae, n ≥ 1,

Cn(t) = Cn(t∗ + 0) cos[Ωnηn(t − t∗)] + dCn

dt
(t∗ + 0)

1
Ωnηn

sin[Ωnηn(t − t∗)], (3.32)

yield explicit solution of the initial problem (3.29)–(3.31) for the penetration stage.
If the elastic cone is not in contact with water, then its natural oscillations are also

described by the system (3.23) but now with γ = 0. The corresponding eigenvalues μ(d)n
and solutions B(d)n are denoted with superscript (d) and calculated in the same way as for
the wet modes. The corresponding dimensional angular frequency of the nth dry mode is
equal to ω(d)n = Ω

(d)
n /Tsc = (μ

(d)
n /α)1/2/Tsc = [μ(d)n D/(ρshR4)]1/2, where μ(d)n depends

only on the parameter δ. Note that the ratios ω(w)n /ω
(d)
n are independent of the shell rigidity.

The dry modes of an elastic conical shell are not used in the present algorithm.
They are calculated together with the corresponding natural frequencies as part of the
numerical solution of the hydroelastic fully nonlinear slamming problems (see Malenica
et al. 2022) within the modal approach. In this approach the displacements of an
elastic shell are sought as a combination of the dry modes of the shell with unknown
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Water entry of an elastic conical shell

time-dependent coefficients. The matrix equation of structural dynamics with respect to
these coefficients is much simpler than the original finite-element equation. This matrix
equation is solved together with the discretised equations of computational fluid dynamics
using an iterative algorithm with an under-relaxation scheme. It is known that iterations do
not converge without such a scheme for hydroelastic problems with a strong added-mass
effect (see Seng, Jensen & Malenica (2014) and Causin, Gerbeau & Nobile (2005)). One
of the options for numerical solving of hydroelastic slamming problem is to ‘. . . subtract
an added mass force from both sides of the [structural] equation. . . Then the [structural]
acceleration is obtained by dividing the resulting force by the sum of a [structural] mass
and a first approximation of the added-mass [matrix]’, see the ‘Fluid–structure coupled
analysis’ in Sun & Faltinsen (2006). We suggest to use the added-mass matrix calculated
within the Wagner model of hydroelastic slamming as the ‘first approximation of the
added-mass matrix’ mentioned by Sun & Faltinsen (2006). This added-mass matrix for
dry modes of the structure can be obtained using the added-mass (3.15) for simplified
structure and the solutions B(d)n , μ(d)n of the system (3.23) for γ = 0. Such a combination
of numerical and analytical approaches is under investigation at present.

3.3. Hydrodynamic loads
The present approach, where the system (3.19) is integrated in time during the impact
stage with a(t) < 1 and the system (3.22) is integrated in time during the penetration
stage with a(t) = 1, does not require explicit evaluation of the hydrodynamic loads.
The loads are difficult to compute and measure in problems of hydrodynamic slamming
(see Faltinsen (1999, 2000) and Malenica et al. (2022)). The pressure p(x, 0, t) can be
reconstructed from the equation for the normal displacements of the shell elements (2.13).
In the dimensionless variables (2.10a–d), we have p(r, 0, t) = −ϕt(r, 0, t). Substituting
the series for the normal displacements (3.5) into the dimensionless shell equation (2.13),
and using (3.7a,b) and (3.16), we find

p(r, 0, t) =
∞∑

n=1

pn(t)ψn(r), (3.33)

pn(t) = 1
γ

d2bn

dt2
+ 1
αγ

{
λ4

nbn + δ

∞∑
m=1

bm(t)Tnm

}
. (3.34)

Note that 0 < r < 1 in (3.33), and p(r, 0, t) = 0, where a(t) < r < 1 during the impact
stage. The second derivatives d2bn/dt2 in (3.33) are calculated for the impact stage using
the system

(I + γS(a))
d2b
dt2

= dq
dt

+ γ
da
dt

{
2a2

π
Q − S

′(a)
db
dt

}
, (3.35)

which is obtained by differentiation (3.19) with respect to time. Here da/dt = 0 at the
penetration stage. Note that (3.10a,b), (3.13) and (3.14a,b) give

f ′
n(a) = −2a2

π
Qn(a). (3.36)

In (3.35), the derivatives db/dt and dq/dt are calculated using (3.19), the derivative da/dt
is obtained by differentiation (3.20) with respect to time,
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da
dt

= 1 − Q(a) · db/dt
π/4 + Q′(a) · b

, (3.37)

where Q(a) = (Q1(a),Q2(a),Q3(a), . . .)T, Q′(a) = (Q′
1(a),Q′

2(a),Q′
3(a), . . .)

T and
Qn(a) are given by (3.13), and

Q′
n(ξ) =

∫ π/2

0
ψ ′

n(ξ sin θ) sin2 θ dθ, S′
nm(a) = 2

π
a2Qn(a)Qm(a). (3.38a,b)

On the other hand, the linearised Bernoulli equation, p(r, 0, t) = −ϕt(r, 0, t), the series
(3.5) for the velocity potential, and the formulae (3.13), (3.14a,b) and (3.37) provide

p(r, 0, t) = B(t)√
a2 − r2

−
∞∑

n=1

d2bn

dt2
ϕn(r, 0, a), (3.39)

B(t) = 2
π

aȧ

(
1 −

∞∑
n=1

dbn

dt
Qn(a)

)
. (3.40)

Equations (3.13) yield that ϕn(r, 0, t) = O(
√

a2 − r2) as r → a and r < a. We conclude
that the pressure is square-root singular at the contact line r = a(t) during the impact
stage, p(r, 0, t) = O(1/

√
a2 − r2), and behaves as p(r, 0, t) = O(

√
1 − r2) during the

penetration stage, where r → 1 − 0. As a result, the series (3.33) converges slowly when
a(t) < 1. To improve the convergence, we decompose the series (3.33) during the impact
stage as

p(r, 0, t) = B(t)
H(a2 − r2)√

a2 − r2
+

∞∑
n=1

p̃n(t)ψn(r), (3.41)

where H(x) is the Heaviside step function, H(x) = 1 for x ≥ 0 and H(x) = 0 for x < 0.
Multiplying both sites of (3.41) by ψm(r)r and integrating the results with respect to r
from zero to one using the orthogonality relation (3.2), we find

p̃m(t) = pm(t)− aB(t)Qm(a), (3.42)

during the impact stage where a(t) < 1. During the penetration stage, we have a(t) = 1
and B(t) = 0 in (3.42). Coefficients p̃m decay quicker as m → ∞ than pm(t) given by
(3.33).

Note that the pressure in the problem of rigid cone impact reads

p(R)(r, 0, t) = 8a
π2

H(a2 − r2)√
a2 − r2

. (3.43)

The dimensionless hydrodynamic force F(t) acting on the entering elastic cone is
obtained using (3.41), as

F(t) = 2π

∫ a(t)

0
p(r, 0, t)r dr = 2πaB(t)H(1 − a)+ 2π

∞∑
n=1

p̃n(t)
∫ a(t)

0
ψn(r)r dr,

(3.44)
where the scale of the force is ρV2R2.
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Water entry of an elastic conical shell

4. Numerical results

Calculations are performed for two cases. In case 1, which was considered by Scolan
(2004), a conical shell was made of aluminium with density ρs = 2700 kg m−3, Young
modulus E = 1.2 × 1011 N m−2 and Poisson ratio ν = 0.3. The thickness of the shell h =
1.5 mm, the length of the cone (the length of the generator segment) is R = 12.8 cm, and
deadrise angle 6◦. The conical shell entered water at constant speed 8.28 m s−1, which
corresponds to a free drop test from the height 3.5 m. We shall compare the results of the
present model in the terms of the structural deflection and radius of the contact region with
those predicted by the Scolan model, which corresponds to the present model with δ = 0.
Note that, in the conditions of case 1, δ = 965.3. The deadrise angle of 6◦ is visually
small and it looks reasonable to approximate the cone with such small deadrise angle by a
circular plate. The present analysis with equations of conical shells demonstrates that this
approximation is too rough. Scolan (2004) did not study dry and wet modes of a conical
shell. His results are for the deflection of the circular plate, the radius of its wetted part,
and impact pressure.

Case 2, which was considered by Malenica et al. (2022), a conical shell was made of
steel with density ρs = 7850 kg m−3, Young modulus E = 2.1 × 1011 N m−2 and Poisson
ratio ν = 0.3. The thickness of the shell h = 1 cm, the length of the cone is R = 1 m
and deadrise angle 10◦. The constant entry speed was varied from 1 to 16 m s−1. The
dimensionless parameters in this case are δ = 3730.9 and γ = 12.74. This case was
selected by Malenica et al. (2022) to determine the DAF for an elastic cone. We shall
compare the dry frequencies of the conical shell, computed by Malenica et al. (2022) with
the frequencies predicted by the present model. Note that computations of the structural
deflections were performed Malenica et al. (2022) not for an elastic cone, but for a fictitious
structure, dry modes of which are the modes of the corresponding elastic circular plate
obtained by Scolan (2004).

The ratio of the wetting time, which is estimated as T(im) = (πR sinβ)/(4V), and the
period of the first fully wetted mode T(w)1 , see (3.26), is equal to 0.558 for case 1. In case 2,
this ratio is equal to 1.13 for speed V = 12 m s−1 and 2.26 for speed V = 6 m s−1. This
ratio is important for identifying regime of hydroelastic interactions, see Malenica et al.
(2022). Then case 1 corresponds to the impulsive regime, case 2 with V = 12 m s−1 to the
dynamic regime and case 2 with V = 6 m s−1 to the quasi-static regime.

4.1. Wet/dry modes and their frequencies
The angular frequencies of the wet, ω(w), and dry, ω(d), modes of elastic conical shell are
obtained using the roots μn, where μn+1 > μn and n ≥ 1, of the equation,

det((I + γS(1))−1(D + δT)− μI) = 0, (4.1)

with γ > 0 and γ = 0 correspondingly for the conditions of case 2. The dry, ω(d)n /2π, and
wetω(w)n /2π, frequencies as functions of the cone deadrise angle β are shown in figure 4(a)
and 4(b). To calculate four lowest frequencies, the matrix ((I + γS(1))−1(D + δT)− μI)

is truncated retaining 20 terms and its determinant is calculated as a function of μ with
a certain step starting from μ = 0. The intervals, where the determinant changes its sign,
are identified and the bisection method is used within each interval to find the roots μn
with a required accuracy of 10−10.

The ratios of the corresponding wet and dry frequencies, see figure 4(c), weakly
depend on the cone deadrise angle. The mean values Δw(av)n of the ratios in the interval
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Figure 4. The frequencies of dry (a) and wet (b) modes with n = 1, 2, 3, 4 as functions of the cone deadrise
angle β for case 2. The ratios of wet and dry frequencies for lowest modes with n = 1, 2, 3, 4 (c) and the
deviations of the ratios from their mean values (d) in percentage.

0 ≤ β ≤ 15◦ are Δω
(av)
1 = 0.396, Δω

(av)
2 = 0.55, Δω

(av)
3 = 0.624 and Δω

(av)
4 = 0.683.

The relative deviations of the ratios from their mean values,

Δωn = ω
(w)
n (β)/ω

(d)
n (β)− Δω

(av)
n

Δω
(av)
n

· 100 %, (4.2)

are shown in figure 4(d) for n = 1, 2, 3 and 4. We conclude that both dry and wet
frequencies strongly depend on the cone deadrise angle, but their ratios are approximately
constant in the interval 0 ≤ β ≤ 15◦. Here β = 0 corresponds to the circular elastic
plate, which is clamped at the centre and at the edge. The obtained results about weak
dependence of the ratios of dry and wet frequencies on the cone deadrise angle are similar
to the findings by Korobkin et al. (2023) for the ratios of dry and wet frequencies of
two-dimensional floating complex elastic structures.

The frequencies of the three lowest dry modes of the cone with deadrise angle β = 10◦
were computed with the help of the finite-element structural solver ABAQUS by Malenica
et al. (2022) as ω(d)1 /2π = 247 Hz, ω(d)2 /2π = 334.6 Hz and ω(d)3 /2π = 475.9 Hz. The
frequencies ω(d)1 /2π = 247.25 Hz, ω(d)2 /2π = 336.2 Hz and ω(d)3 /2π = 479 Hz predicted
by the present model, see figure 4(a), are very closed to the computed ones.

The shapes of the dry and wet modes of the elastic cone for case 2, as well as the shapes
of the circular plate modes are shown in figure 5 for n = 1, 2, 3 and n = 10. It is seen
that the higher modes are weakly dependent on the deadrise angle and the presence of the
liquid in contact with the structure.

The eigenfrequencies of a conical shell strongly depend on the deadrise angle of the
cone. Figure 4(a) shows that the lowest dry frequency ω(d)1 /2π of the circular plate is
56.5 Hz and the frequencies of the conical shell with β = 5◦ and 10◦ are 141.5 and
247.25 Hz correspondingly. We conclude that a conical shell is much less flexible than
an equivalent circular plate with the same elastic characteristics even for small deadrise
angles. It is important to mentioned that dry and wet lowest modes of the cone, see figure 5,
are not close to each other as is the case for two-dimensional problems of hydroelasticity,
see Korobkin et al. (2023).
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Figure 5. Shapes of the elastic modes in case 2 for β = 10◦ with n = 1 (a), n = 2 (b), n = 3 (c) and n = 10
(d). The blue lines are for dry modes ψn(r) of equivalent circular plate, black lines are for dry modes W(d)

n (r)
and red lines are for wet modes W(w)

n (r) of the conical shell.

4.2. Deflections and strains during the conical shell impact on water
Calculations are performed for case 1 to compare the deflections of the elastic cone
within the Scolan model and the present model. Note that the results by Scolan (2004)
are provided by the present model with δ = 0. The system (3.19) and (3.20) is integrated
with respect to the dimensionless radius of the wetted surface a(t) using the Runge–Kutta
fourth-order method with step Δa = 10−4. The system is integrated with 8 and 20 modes
to confirm convergence of the results in terms of the mode number. Difference of the
functions a(t) and w(x, t) computed with 8 and 20 modes are small. Only results with 20
modes are shown in the following.

The dimensional radius, a(t), of the wetted part of the elastic cone for case 1 is shown
in figure 6(a) for δ = 0 (circular elastic plate) and δ = 965.3 (conical shell with deadrise
angle of 6◦). It is seen that the conical shell is less flexible than the circular plate, and
the radius of the wetted part of the conical shell is close to the radius for the rigid cone,
a(t) = 4Vt/(π sin β), shown by dashed line.

The dimensionless coefficients b1(t), b2(t), b3(t) in the series (3.5) for the normal
displacements of the shell elements are shown in figure 6(b,d) correspondingly for δ = 0
(blue lines) and for δ = 965.3 (red lines). It is seen that the coefficient b1(t) of the lowest
mode is larger for δ = 0, but other coefficients with δ = 0 are smaller than those with
δ /= 0. Therefore, the total deflection of the conical shell is smaller than in the model by
Scolan (2004). However, the contributions of the dry modes starting from the second one
in the model by Scolan are higher than in the present model of conical shells.

Dimensional normal displacements of the cone at different time instants are shown in
figure 7 for Scolan model, see figure 7(a), and the present model, figure 7(b). The scale
of the normal displacement is R sinβ = 1.338 × 10−2 m for case 1, see (2.10a–d). The
conical shell is much less deformed at the early stage. The maximum deflection of the
shell is more than twice smaller than the deflection of an equivalent circular plate.

Calculations of the shell deflection in case 2 are performed with 20 modes and
step of integration da = 10−5 and with 8 modes and step of integration da = 10−4 by
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Figure 6. Comparison of the results within the Scolan model (blue lines) and the present model of conical
shell (red lines): (a) dimensional radius of the wetted area a(t), dashed line is for rigid cone; (b–d) coefficients
bn(t) in the series (21).
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Figure 7. Normal dimensional displacement w(x, t) of the circular plate (a) and the conical shell (b) for case
1 during the impact stage at time instants when aj/R = 0.1 · j, 1 ≤ j ≤ 10. Displacement of the wetted parts of
the structure are shown in blue and displacements of the dry parts are shown in red.

Runge–Kutta fourth-order method. The results with 20 modes and with 8 modes are very
close. In the following, the normal displacements with 20 modes are shown for the impact
speed 6 m s−1 (see figure 8a) and 12 m s−1 (see figure 8b). It is seen that double increase
of the impact speed results in the increase of the maximum shell deflection more than four
times.

There are two strain components for a conical shell, εxx(x, t) and εθθ (x, t), as shown
in figure 3 and (2.19a,b). The distributions of the membrane, ε(m)xx (x, t) and ε(m)θθ (x, t),
and bending, ε(b)xx (x, t), ε(b)θθ (x, t), strains, see (2.20a,b), along the cone at different time
instants are shown in figures 9(a) and 9(b) for case 2 with impact speed 12 m s−1. Strain
are given in microstrains (μs). We may conclude that the bending strains are greater that
the membrane strains in the radial direction, but the membrane strains are higher than the
bending strains in the azimuthal direction. All strain components are of about the same
order. The maximum strains are achieved at the edge of the cone because of bending. The
strain distributions on the inner and outer surfaces of the cone are shown in figures 9(c)
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Figure 9. Distributions of the strain components at the three time instants corresponding to the radius of the
contact region a(t) = 0.3 (curve 1), a(t) = 0.6 (curve 2) and a(t) = 0.9 (curve 3): (a) radial membrane and
bending strain components; (b) azimuthal membrane and bending strain components; radial (c) and azimuthal
(d) strains along the inner (−) and outer (+) surfaces of the cone, V = 12 m s−1. The strains (in microstrains)
are shown for case 2.

and 9(d). Note that the strains are singular at the tip of the cone, see the discussions in the
last paragraph of § 2.

Strain components at two points of conical shell, x = 0.5 and x = 0.75, are shown as
functions of the dimensionless time t̃ in figure 10. This figure indicates that all components
of the strain should be evaluated during both, the impact and penetration stages to find
the maximum strain at a certain point of the conical shell. The strain are unbounded at
the tip of the cone, x = 0. However, the elastic displacement near the tip are small and a
vicinity of the tip can be treated as rigid. A better way of dealing with the strain singularity
is to consider a frustum of a cone, where part near the vertex is rigid and elastic shell
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Figure 10. Radial and azimuthal strains (in microstrains) as functions of dimensionless time at dimensionless
distances x = 0.5 and x = 0.75 from the cone tip for case 2 with impact speed 12 m s−1. Bending and membrane
components x = 0.5 (a) and x = 0.75 (b). Strains at the inner (−) and outer (+) surface of the cone, x = 0.5
(c) and x = 0.75 (d). Time scale is 14.5 ms.

corresponds to Rm < x < R. Elastic shell is clamped to the rigid part near the vertex at
x = Rm.

4.3. Hydrodynamic pressure
It was discussed in § 3.3 that the hydrodynamic loads acting on the conical shell during
water impact are difficult to compute and measure. However, the loads should be estimated
to guarantee that they do not drop to the level where the liquid starts cavitating. In the case
of very low pressures, the hydrodynamic model should be changed to include cavitation
effects.

The dimensionless pressure distributions shown in figure 11 for four time instants with
a = 0.2, 0.6, 0.8 and 1 are calculated by series (3.33) (blue lines) and by the series with
improved convergence (3.41) (red lines) for Case 2 with 20 modes and speed of impact
1 m s−1. The series (3.33) gives the pressure in the contact region, 0 < r < a, as well as
in the dry part of the cone, where a < r < 1 and p(r, 0, t) = 0. The series (3.33) does not
reproduce the square-root singularity of the pressure at r = a(t). The pressure distributions
provided by formula (3.41) with improved convergence of the series are smooth, but some
oscillations of the pressure occur due to elastic vibration of the shell. Note that the modes
ψn(r) in (3.5) are such that ψn(0) = ψn(1) = 0, see (3.1a,b). Correspondingly, the series
(3.33) incorrectly gives p(0, 0, t) = p(1, 0, t) = 0 for an any finite number of retained
terms.

The pressure distributions for case 2 and impact speed 6 m s−1 are shown in figure 12(a)
in the dimensionless variables at five time instants, which corresponds to a = 0.2, 0.4,
0.6, 0.8 and 1. There are four types of lines in this figure. The pressures by formulae
(3.33) and (3.41) are shown by green and red lines correspondingly. The black lines are
for the pressures acting on the equivalent rigid cone. The blue lines show the differences
between the elastic and rigid cone pressures. It is seen that the elastic and rigid pressures
are different only at the end of the impact stage. Within the rigid cone model, the pressure
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Figure 11. Hydrodynamic pressure distributions in case 2 with entry speed 1 m s−1, calculated by series (3.33)
(blue lines) and by the series with improved convergence (3.41) (red lines) at time instants, when a = 0.2 (a),
a = 0.6 (b), a = 0.8 (c) and a = 1 (d), in dimensionless variables.
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Figure 12. (a) Dimensionless pressure distributions in case 2 with entry speed 6 m s−1 calculated by series
(3.33) (green lines), by formula (3.41) (red lines) and without account for cone elasticity (black lines). The
difference between elastic and rigid pressure are shown by blue lines. (b) Hydrodynamic pressure given by the
series (41) at the end of the impact stage with 8 (magenta), 15 (black) and 20 (blue) retained modes compared
with the pressure provided by (3.41) with 20 modes. (c) The difference between the elastic (3.41) and rigid
(3.43) pressures, calculated with 8 (magenta), 15 (black) and 20 (blue) modes.

p(R)(r, 0, t) is given by (3.43) where the radius a(t) is calculated without account for
cone elasticity. The blue lines show the differences p − p(R) between the elastic and rigid
pressures for the same values of the radius a. It is interesting that the elastic pressure can
be higher than the rigid pressure in some places.

The convergence of the pressure given by (3.33) to the pressure provided by (3.41) with
increase of the number of retained modes is demonstrated in figure 12(b) for the same
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conditions as in figure 12(a), but only at the end of the impact stage when a(t) = 1. The
pressure distributions by the series (3.33) with 8 modes (magenta), 15 modes (black) and
20 modes (blue) converge to the pressure predicted by (3.41) (red line) but very slowly.

The differences between the elastic (3.41) and rigid (3.43) pressures p − p(R), which are
shown in figure 12(a) by blue lines, are shown now with 8 (magenta), 15 modes (black)
and 20 modes (blue) modes retained in (3.41) in figure 12(c) for 5 time instants as in
figure 12(a). This figure demonstrates fast convergence of the series (3.41) with increase
of the retained modes. It is seen that the elastic pressure (3.41) is smaller then the rigid
pressure (3.43) (the difference is negative) for a = 0.2, 0.4 and 0.6, but at the end of the
impact stage elastic pressure is higher than the rigid pressure. This effect can be caused by
deflection of the elastic cone, when the local deadrise angle at x = a(t) increases initially
decreasing the hydrodynamic pressure, but then decreases at the end of the impact stage
increasing the impact pressure.

4.4. Convergence of the numerical solution
Convergence issues with respect to the number of the retained modes N were addressed
qualitatively in §§ 4.2 and 4.3. In the present section, the convergence issues are addressed
quantitatively for local quantities, such as deflection, strain and pressure distributions
along the wetted part of the conical shell, at a certain time instant. All results in the
following are given for case 2 with impact speed V = 6 m s−1 for the normal displacements
of the shell elements and hydrodynamic pressures, and V = 12 m s−1 for both radial and
azimuthal strains on the outer surface of the shell. The deflection, strain and pressure
distributions are compared at the time instant t∗, when the dimensionless radius of wetted
part of the elastic cone is equal to 0.9, a(t∗) = 0.9.

The relative differences in percentage of the normal displacements of shell elements
computed with N retained modes, wN(x, t∗), and 20 modes, w20(x, t∗), at time t∗,

Δ∗w(x, t∗) = wN(x, t∗)− w20(x, t∗)
max0≤x≤1(w20(x, t∗))

· 100 %, (4.3)

are shown in figure 13(a) for N = 5, 10 and 15. The deflection w20(x, t∗) is shown in
figure 8(a) by the line with absolute maximum, which is achieved at x = 0.72. It is
seen that relative difference between w10(x, t∗) and w20(x, t∗) is less than 0.5 % (see the
magenta line). The convergence of normal displacements wN(x, t∗) with increase of the
number of the retained modes N is clear from figure 13(a).

The relative differences in percentage of the strain ε+xx(x, t) along the cone generator
and the strain ε+θθ (x, t) in the angular azimuthal direction (see figure 3) computed for the
outer surface of the conical shell with N retained modes, ε+N,xx(x, t) and ε+N,θθ (x, t), at time
instant t∗

Δ∗ε+xx(x, t∗) = ε+N,xx(x, t∗)− ε+20,xx(x, t∗)
ε+20,xx(1, t∗)

· 100 %, (4.4)

Δ∗ε+θθ (x, t∗) = ε+N,θθ (x, t∗)− ε+20,θθ (x, t∗)
ε+20,θθ (0.66, t∗)

· 100 %, (4.5)

are shown in figures 13(b) and 13(c) correspondingly for N = 5, 10 and 15. Note that
strains are unbounded at x = 0 and, therefore, convergence of the strains should be
considered out of a vicinity of the cone vertex. The denominators ε+20,xx(1, t∗) and
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Figure 13. Relative differences of the normal displacement (4.3) (a), radial strains (4.4) (b), azimuthal strains
(4.5) (c) and impact loads (4.6) (d) calculated with N = 5 (blue lines), N = 10 (magenta lines) and N = 15
(black lines) with respect to the results, calculated with 20 modes retained in the corresponding series, at time
instant t∗, when 90 % of the cone generator is wetted.

ε+20,θθ (0.66, t∗) in (4.4) and (4.5) are the extreme of the corresponding strains outside
the vicinities of the vertex. It is seen that relative differences between ε+20,xx(x, t∗) and
ε+15,xx(x, t∗), and between ε+20,θθ (x, t∗) and ε+15,θθ (x, t∗), are less than 2 % for 0.1 < x < 1.

It is well known that convergence of the strains with respect to the number of retained
modes is slower than convergence of the deflections, because strains are computed as
second derivatives of the deflections with respect to the radial coordinate x. The terms
in the series (3.5) for the normal displacement w(x, t) are at the order O(bnψn) = O(bn)
because the normalised modes (3.3) are of order O(1). The second derivatives ψ ′′

n (r)
are of order O(n2) for 0 < r < 1. Therefore, the series for the strains are with terms of
order O(n2bn(t)) as n → ∞. From this analysis, we may conclude that the corresponding
series for hydrodynamic pressure, which follows from the shell equations (2.4) and (2.5)
and series (3.6) are with terms of order O(n4bn(t)) as n → ∞. The convergence of such
series for the hydrodynamic pressure to the pressure provided by the series with improved
convergence (3.41) is shown in figure 12(b), which demonstrates that the convergence is
not acceptable for practical estimates of impact loads.

The relative differences in percentage of the pressure given by (3.41) with N retained
modes in (3.41) and (3.40), pN(x, t∗), and 20 modes, p20(x, t∗),

Δ∗p(x, t∗) = pN(x, t∗)− p20(x, t∗)
p20(x, t∗)

· 100 %, (4.6)

are shown in figure 13(d) for N = 5, 10 and 15 at time instant t∗ when a(t∗) = 0.9. It is
seen that the relative difference between p15(x, t∗) and p20(x, t∗) is less than 0.5 %. This
result confirms that the accuracy of the formula (3.41) for the impact loads is comparable
with the accuracy of the series for the shell displacements.
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5. Conclusion

The deflections and strains of a conical shell with a small deadrise angle, which enters
the water surface with a constant speed, have been investigated within the most general
linear theory of conical shells and the Wagner model of hydrodynamic impact loads. The
water was of infinite depth, and its flow was assumed to be axisymmetric and potential.
The hydrodynamic loads have been calculated as well separating the singular part of the
load and using series with improved convergence.

The wet and dry modes of natural vibrations of the conical shells together with
their corresponding frequencies were calculated and compared with numerical results by
Malenica et al. (2022). The wet and dry modes were presented as superpositions of the
natural dry modes of a circular elastic plate with the radius equal to the length of the cone
generator and the same edge conditions as for the original cone.

The circular elastic plate clamped at its edge and at its centre was used by Scolan (2004)
as a structural model of an elastic cone with small deadrise angle. Conditions under which
this approximation of a conical shell is justified have been derived in § 2.

It was shown that the ratios of wet and dry frequencies of a conical shell are weakly
dependent on the cone deadrise angle, even both frequencies monotonically increase with
increase of the deadrise angle.

It was shown that lowest dry and wet modes are not close one to another in contrast
with the case of two-dimensional floating elastic structures. However, the shapes of
high-frequency dry and wet modes of a conical shell are very close one to another and
to the corresponding shapes of the dry modes of a circular elastic plate.

The hydrodynamic part of the problem is the same as in the study by Scolan (2004)
because the structural normal modes are the same as in present study, they are the modes
of a circular plate. However, the structural part of the present study is different from the
structural model of the elastic cone employed by Scolan.

Comparison of the present results for a conical shell and the results by Scolan within the
flat-disc approximation of the cone confirmed that a conical shell is much less flexible than
the ‘equivalent’ circular plate, deflections of conical shells are smaller than the deflections
within the flat-disc approximation, but higher modes are better pronounced for a conical
shell than for circular plate.

The strains in a conical shell are made of membrane strains and bending strains. All
strain components are of similar order. They should be evaluated at each point of the
cone to conclude about a possible damage to the conical shell during water impact. For a
complete cone, the strains are unbounded at the cone vertex, but bounded for a frustum of
the cone with part of the cone near the vertex being rigid.

The hydrodynamic pressures acting on an elastic cone entering the water at a constant
speed were shown to be smaller than the pressures acting on an equivalent rigid cone
during the early stage of impact but then they become higher than the pressures for the
rigid cone closer to the end of the impact stage, when the cone is completely wetted.

The normal mode method in hydroelastic problems, which employs normal modes of
a simplified structure, has been used in the past for two-dimensional slamming problems
(see Korobkin et al. 2023 and references there). In the present paper, this approach is
applied successfully to axisymmetric slamming problems for the first time. This approach
can be applied to the problem of a spherical shell impact on water without any difficulties.

Deflections and strains were calculated only for the impact stage, when the elastic cone
is partly wetted. The nonlinear system (3.19) and (3.37) was integrated in time. During
the next, penetration stage, when the cone is completely wetted and continues to penetrate
into the liquid, the linear system (3.22) with constant coefficients should be integrated.
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Numerical analysis of the penetration stage was not performed in this paper. This analysis
is required to determine maximum deflection of the shell and maximum strain at certain
points of the structure. This will be done in a future paper by the authors where the
predictions by the semi-analytical model of three-dimensional hydroelastic slamming will
be compared with the computational results using OpenFoam and FEM solvers. The
predictions by the quasi-static model, where the hydrodynamic loads are calculated for
the rigid cone and applied to the static structural model, will be also compared with the
present results obtained by the simplified dynamic and coupled model.

Impact on water by elastic panels with double curvature is still a challenging problem.
Even in a simple case, where the edge of the panel is circular, x2 + y2 < R2, but the panel
is ellipsoidal with the initial shape z = x2/(2rx)+ y2/(2ry). We can use the modes of the
circular elastic plate with corresponding edge conditions; however, the hydrodynamic part
of the problem is truly three-dimensional with the contact line between the deformed panel
and the disturbed water being a three-dimensional curve, which should be determined as
part of the solution. Therefore, for water impact by an elastic panel with double curvature,
the main difficulty are due to three-dimensionality of the flow caused by impact and
coupling this flow with two-dimensional deflection of the panel. In terms of numerical
difficulties with three-dimensional problems of hydroelastic slamming within the Wagner
model of water impact, one should mention that the number of natural modes required
for convergence in 3D problems is much higher than in similar 2D coupled problems (see
Korobkin & Khabakhpasheva 2022).
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