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No general rule for determining the number N(n) of topologies definable
for a finite set of cardinal n is known. In this note we relate N(n) to a
function Ft{rlt • • •, rt+1) defined below which has a simple combinatorial
interpretation. This relationship seems useful for the study of N(n). In
particular this can be used to calculate N(n) for small values. For
n= 3, 4, 5, 6wefind2V(3) = 29,iV(4) = 355,iV(5) = 7,181,AT (6) = 145,807.

Let T be a topology on a finite set E. Let Sx be the collection of all
non-empty sets in T which do not properly contain any non-empty set
in T. It is clear that S1 is a collection of disjoint subsets of E. If for any
collection K of sets Pv (K) denotes the set of all non-empty unions of sets
in K then Pu (SJ Q T. Let u St be the union of all sets in St. Then every
non-empty set in T is of the form U u V where V e Po (Sx) and U is a
subset of £— u Sx. Let 7\ be the collection of all the sets U and the null set.
It can be easily proved that 7\ is a topology on E— u Sx. We shall refer
to Sx and T1 as "nucleus" and "orbital topology" of the topology T,
respectively.

By a "reduced base" of a topology on a finite set we shall mean a
base such that no base set is a union of other base sets.

THEOREM. Let Bt be a reduced base for T1. Then there is a unique single-
valued mapping f : Bx^ £\j(Si) such that B = {Xt u XJ, Xx e Bj] u St

is a reduced base for T. Also, f preserves the inclusion relation Q for sets.
Conversely if Sx is a non-empty collection of disjoint non-empty subsets of E,
T1 is any topology on E— u S j and f is a single-valued mapping from a reduced
base B± for T± into Pa (Sx) which preserves Q then B = {X1 u Xtf,
Xt e Bj] u St is a reduced base for a topology T on E such that Slt 7\ are
respectively the nucleus and the orbital topology of T.

PROOF. For any X1e Blt we define Xxf to be a member of PU(S1)
such that X± u XJ e T and Xt u V 4 T if Xxf D V. X1f exists because Tt

is the orbital topology of T. If V* e P o (Sx) has the property stated for
Xxf then V* 2 XJ and XJ 2 V*. so that XJ = V*. Thus / is a mapping
from 5 1 into P o (Sx). We show that / is the mapping required by the first
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part of the theorem. Let X1 Q X[; then

(X, u XJ) n (XI u X'J) = X1 u (Zx/ n X'xf) e 7\

since Z1( X^/ are disjoint for all Xlt X'1eB1. We conclude from the defi-
nition of / that XJ n X'xf = Xxf so that XJQX'J and hence / preserves
C. Next let Y e T and let Y = £7 u V, where C7 e 7\, 7 e PO(SX). Since
Bx is a base for 7\ we can write J7 = u B'x for some subcollection B\ of Bx.
If U is empty, Y is trivially a union of sets in

B = {X1uX1f,X1eB1}uS1.

Hence we can suppose B\ non-empty. Then X'xfQ V for every X[ e B\; for

i J u f F n X[f) = (U u V) n (Z; u Xj/) e T

and therefore V n X[f = X'J. Hence Y = u {X[ u Xj/, X[ e B[} u
(union of sets in 5X). This proves that B is a base for T. That Z? is reduced
follows directly from the definition of / and the assumption that Bt is
reduced. To prove the uniqueness of the mapping / suppose that /* is
another mapping satisfying the first part of the theorem. Then, for some
Xt e Blt Xxf C Xxf*. But Xt u Xxf e T and therefore is a union of sets in
B* = {Yx u Yj/*, Yx e Bj} u Sx. Since B± is reduced this is impossible in
view of XJ C XJ*.

For the converse, let B be as defined in the theorem. Then
£ = u B = ( u BJ u (u 5j). Let Y, Y* be any two members of B and write
y = l 1 u l 1 / , y * = Xf u X*/. Since / preserves Q,

Y nY* = [X1n X*) u (Xt/ n XJ/)

= ( ^ n X*) u (Xa n Xf)/ u (union of sets in SJ.

Now Xj, X* e Bx and Xx n Xf = u B^, where B't is a subcollection of Bx.
Since ZJQ (Xx n X*)/ for every Z^ e B^, this gives

Y n Y* = u {Ẑ  u Zj/, Z^ e B }̂ u (union of members of Sj);

so that Y n Y* is a union of members of B. In case one or both of Y, Y*
are members of Sx and therefore not expressible in the form X u Xf,
Y n Y* is trivially a union of sets in B. Hence the intersection of any two
members of B is a union of members of B and therefore B is a base for a
topology T on £. The rest of the theorem now follows directly.

For any topology T on a finite set E we can form the sequence To = T,
(si> Ti)> (S2> Ti)> ' ' •> (St. Tt), St+1, where Sk, Tk are respectively the
nucleus and the orbital topology of Th_^ for t ^ k 2; 1 and St+1 is a reduced
base as well as the nucleus of Tt, so that Tt = Po{St+1). By the above
theorem there is a unique sequence of mappings /x , ••• , /« such that for
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l ^ i g / , /, maps Si into Po(Si), where Bt is a reduced base for Tt and
is defined by

u u
for 0

By our theorem, every topology on E can be obtained as follows:
Partition E into any number, say r, of disjoint and collectively exhaustive
classes Elt • • •, Er and then partition, in an arbitrary way, the set
{E1, • • •, Er} into disjoint and collectively exhaustive classes, say,
Slt • • •, St+1. Let /1( ••-,/< be any mappings such that

(i) ft maps Bt = St+1 into Pu{St),
(ii) ft_t maps Bt_t into Pu(S4_i) where

Bt_{ = {XKJ Xft_i+1, X e Bt_i+1} u S,_<+1>

(iii) each of the mappings fx, • • -, ft preserves the inclusion relation
Q for sets.

Then B = Bo = [Xx u Xxflt Xx e By} u Sĵ  is a base for a topology
on E and every topology on E is obtained in this way.

In view of this we can express the number N(n) of topologies definable
for a finite set of cardinal n as follows:

(1) N(n) =
r=l

where Mn >r is the number of ways a set of order n can be partitioned into
r unordered classes and Ft(rx, • • -,rt+1) is the number of sequences of
mappings flt • • •, ft described above when Sx, • • •, St+1 have rx, • • •, rt+1

members respectively. The summation in curly brackets extends over all
finite sequences rx, • • •, rt+1 of positive integers satisfying rx-\-- • -+rt+1 = r.

The following recurrence relation holds for M ny.

The function Ft(rlt • • •, rt+1) has a simple combinatorial interpretation
which we explain by taking t = 3 and by referring to the figure below.

x(l,e,)

^ ( 2 , ^ + 1)

X(3,e2+1) x(3.e3)

x{4,e3+i)

Figure 1
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In this figure we have taken ex = r4, e2 = ^3+^4, e3 = r.2
J
t-r3

J\-ri,
et = i'\Jri'<iJrir

z
J
rri. Every one of the r4 squares in the first row is given to

be occupied with just one of the symbols x(l, 1), • • •, x(l, ej that are labels
for sets in S4. In the second row only the last r3 squares on the right are
given to be initially occupied, each by just one of the r3 symbols
x{2,el-\-l),-•-,x{2, e2) that similarly stand for sets in S3; and so on.
Let us refer to the jth square from the left in the ith row from the top as
a(i, j). In what follows we shall not explicitly mention the restrictions on
the ranges of the variables i, j , k, • • •. Write Z{i, j) — {x(i, j)} if a(i, j) is
not initially empty. The combinatorial problem now is to place in every
empty square a(i, j) a non-empty set E(i, j) of symbols such that

(iv) 27(«, /) Q {x(i, e^+1), • • ; x(i, e{)},

(v) x(i, k) e Z{i, j) implies Z"(*+l, k) Q I{i+1, j).

Thus, for example, the conditions (iv), (v) compel us to place in the empty
squares of the third row in Fig. 1 symbols chosen from x (3, e2-{-l), •••,x(S, e3),
and if x(3, e3) has been placed in a(3, e2) (the square immediately below
the one containing x(2, e2)) then x(3, e3) will have to occur in any set of
symbols to be placed in a square of the third row which comes directly
under a square containing x(2, e.2). Let Y(i, k) = (JLa ^ (^ ^)- Then it is
easily seen that if we let Bt_t be the set of all Y(i, k) for fixed i and write
Y(i, k)f^i = Z{i+1, k) then B^, /4_, satisfy (i), (ii), (iii) for t = 3.1 It
follows that F3(rlt ri,r3,ri) is the number of ways of placing the symbols
x(i, j) in the empty squares of Fig. 1 such that (iv) and (v) are satisfied.

We can use this interpretation of Ft(rx, • • -, rt+1) to prove the following
formulae.

(3) ^ = 1,

(4) F^.r^ = (2

(5) F2(rltl,r3) =

(6) F 2 ( l , r 1 ( r 2 ) =

(7) Ft(l,l. • • • , ! ,

I ("/)
r, r2

rt+1) =

* - (

Ji>0,

7)r2)(2r»

2
i,T-+)|Sr1+1

(2'«-l)'i-'{(2"-l)'-»(2—i-l)'},

1 Strictly speaking, members of B4_( must be taken as the unions U Y(i, k) of all sets
represented by the z's in Y(i, A), but since x's represent disjoint sets this will not effect our
conclusion about F3(rlt • • •, rt).
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As an illustration we prove (5). We have to consider the number of
ways some of the x(i, j) can be placed in the empty squares in fig. 2 below
such that (iv), (v) are satisfied.

JC(I.I)
—

x(2,e,+ »

x(a,e2+\) x(a,e3)

Figure 2

In every empty square of the second row of this figure we must put just
x(2, ex+l) . In the square a(3, ex+l) under x(2, ^ + 1 ) we can place any
subset 27(3, e2-f-l) of {x(3, e2+l), • • •, x(3, ea)}. In the remaining empty
squares of the third row we must put every symbol in 2"(3, e2+!) m a(l-
dition to some other symbols arbitrarily selected from

{*(3,e2+l), •••>(3e3)}-Z(3,e2+l).

The formula (5) is now obvious.
We have employed formulae (1) — (7) in calculatingN(n) for n = 3,4,5,6.

In the end I would like to thank Professor Hanna Neumann for her
useful suggestions for the improvement in the presentation of the material
of this paper. My thanks are also due to the referee for his very valuable
criticism.
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