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Abstract

In this paper we introduce a class of left shift semigroups that are differentiable. With the help of
perturbation theory for differentiable semigroups we show that solutions of an integrodifferential equation
can be infinitely differentiable if the convolution kernel is sufficiently smooth and regular.
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1. Introduction

In this paper, we are interested in the semigroup approach to the following
integrodifferential equation

u̇(t) = Au(t)+
∫ t

0
B(t − s)u(s) ds, (1.1)

u(0) = x,

where A is the generator of a C0-semigroup on a Banach space X and B :R+
→ B(D(A), X). It was the main objection against the semigroup approach for many
years that it is not possible to obtain regularity of the solutions. This is not true.
In [1] we have shown via semigroups that the solutions of (1.1) are analytic provided
the semigroup generated by A is analytic and B and B ′ have analytic extensions to a
sector

6ϕ := {z ∈C : z 6= 0 and |arg z| ≤ ϕ}.

In [2] we have shown maximal L p-regularity for (1.1) via semigroups. In the present
paper, we show that solutions of (1.1) are C∞ if A generates a differentiable semigroup
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and the kernel B has an analytic extension to a set of an appropriate shape. This result
on differentiability is neither stronger nor weaker than the result obtained by Prüss
(see [10, Theorems 3.1 and 7.2]). Comparison of the two results can be found at the
end of this paper.

The solutions of (1.1) are given by the first coordinate of the semigroup T generated
by

A=
(

A δ0
B(·) D

)
, D(A)= D(A)× D(D) (1.2)

if A is a generator. Here δ0 f := f (0) is the Dirac operator and D f := f ′ is the first
derivative. Properties of T depend of course on A but also on the space on which
acts the operator D. So, we shall start in Section 2 with the definition of spaces Y q ,
Y∞, where the operator D defines a differentiable translation semigroup. Then we use
perturbation theory. It is obvious that the operator

A00 :=

(
A 0
0 D

)
generates T00(t)=

(
T (t) 0

0 S(T )

)
,

which is differentiable if T and S are differentiable. We perturb A00 by(
0 δ0
0 0

)
and

(
0 0

B(·) 0

)
respectively and show that also the perturbed operator A generates a differentiable
semigroup. Section 3 is therefore devoted to the perturbation theory for differentiable
semigroups. It contains results that are applied in Section 4, but some of them may
be interesting on their own. In Section 4 we obtain C∞-solutions of (1.1). The main
results of this paper are Theorems 4.1 and 4.2. Finally we compare these results to
[10, Theorems 3.1 and 7.2].

2. Differentiable translation semigroups

In [1] we have shown that the left translation semigroup on the space of bounded
holomorphic functions on a sector, and also on the space of holomorphic functions on
a sector that are L p-integrable, is analytic. In this section we introduce translation
semigroups on spaces of holomorphic functions defined on other areas.

DEFINITION 2.1. We say that a function h :R+→R+ is admissible if h is increasing
and convex and h(0)= 0. For an admissible function h we define

6h := {x + iy ∈C : x > 0 and |y|< h(x)}.

By ϕh let us denote the supremum of all angles of sectors contained in 6h , that is,
ϕh := sup{arctg h′(x) : x ∈R+}.
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Let us define the spaces

Y∞h := H∞(6h, X) ∩ Cb(6h, X),

that is, the space of bounded holomorphic functions continuous to the boundary
equipped with sup-norm, and

Y q
h := H∞(6h, X) ∩ Lq(6h, X),

that is, the space of holomorphic functions with the norm

‖ f ‖q :=

(∫ ∫
6h

‖ f (x + iy)‖q dx dy

)1/q

<+∞.

The left translation semigroup on these spaces is defined by

(S(t) f )(z) := f (t + z).

It is easy to show that

D f = f ′, D(D)= { f ∈ Y q
: f ′ ∈ Y q

}

is the generator of S (where 1≤ q ≤+∞). Moreover, S is differentiable since for
every t > 0 we have S(T ) f ∈ D(D). In fact, the Cauchy formula yields

‖ f ′(t + z)‖ ≤
1

2π

∫
γ

‖ f (w)‖

r2 |dw| (2.1)

and the diameter r of the circle γ centered in t + z is independent of z since the
distance of the shifted area 6h + t from the boundary of 6h is positive. Then

‖ f ′(t + z)‖ ≤
1
r

sup{‖ f (w)‖ : w ∈ γ }

and we have proved the differentiability on Y∞. The Lq estimate follows from (2.1)
by Fubini’s theorem and Hölder’s inequality.

However, the semigroup S is more than just differentiable. It has an analytic
extension to 6h . In fact, we can define

(S(z) f )(w) := f (z + w) for z ∈6h ∪ {0}, w ∈6h (or w ∈6h if q =+∞)

and this extension has the complex derivative. If h′(0) > 0, then there exists a sector
6ϕ ⊂6h and the semigroup S is analytic. If h′(0)= 0, then there is no sector (with
the vertex in zero) contained in 6h . Hence, in this case S is not an analytic semigroup.
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3. On bounded perturbations of differentiable semigroups

In the next section we show that solutions of (1.1) are C∞ under appropriate
assumptions on A and B. Our main tool will be perturbation theory. Therefore,
we devote the present section to bounded perturbations of generators of differentiable
semigroups.

If A is the generator of a C0-semigroup (respectively norm-continuous semigroup,
analytic semigroup) and B is bounded, then A + B is again a generator of a C0-
semigroup (respectively norm-continuous semigroup, analytic semigroup). These
properties are preserved under bounded perturbations. Unfortunately, the same is not
true for differentiable semigroups. Renardy in [11] gave an example of a generator of a
differentiable semigroup and its perturbation which is not differentiable. On the other
hand, Doytchinov et al. [5] proved that all bounded perturbations of a differentiable
semigroup T are differentiable if the semigroup T satisfies

lim sup
t→0

t · log(‖T ′(t)‖)
log(1/t)

= L <+∞. (3.1)

Pazy [9] gave conditions on the resolvent of the generator A. In fact, if for every
β > 0 there exists c ∈R such that

Dβ,c ⊂ ρ(A) and lim
|Im λ|→∞,λ∈Dβ,c

‖R(λ, A)‖ = 0, (3.2)

then every bounded perturbation of A generates a differentiable semigroup. Here

Dβ,c := {λ ∈C : Re λ≥ c − β log |λ|}. (3.3)

Iley showed in [7] that the condition (3.2) is also necessary. A consequence of this fact
is that if A satisfies (3.2) then every bounded perturbation of A satisfies (3.2) as well.
We show that semigroups with analytic extensions to 6h satisfy (3.2).

LEMMA 3.1. Let f ∈ C(R+, X) and its restriction to (T,∞) have a bounded
analytic extension to T +6ϕ , ϕ ∈ (0, π/2]. Then the Laplace transform f̂ (λ) exists
for all λ with |arg λ|< π/2+ ϕ and there exists M > 0 such that

‖ f̂ (λ)‖ ≤
M

|λ|
(1+ |e−λT

|) (3.4)

holds for all λ ∈6π/2+ϕ .

PROOF. Since g(s) := f (T + s) is bounded and analytic in 6ϕ , there exists ĝ(λ) for
all λ ∈6π/2+ϕ and

‖ĝ(λ)‖ ≤
M̃

|λ|
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holds on subsectors of 6π/2+ϕ . It follows from boundedness of f that M is
independent of subsectors. We have

ĝ(λ) =
∫
+∞

0
e−λs g(s) ds = eλT

∫
+∞

0
e−λ(s+T ) f (s + T ) ds

= eλT
∫
+∞

T
e−λs f (s) ds = eλT

(
f̂ (λ)−

∫ T

0
e−λs f (s) ds

)
.

It follows that

‖ f̂ (λ)‖ ≤ e−λT
·

M̃

|λ|
+ sup

t∈[0,T ]
‖ f (t)‖

∣∣∣∣e−λT
− 1
−λ

∣∣∣∣≤ M

|λ|
(1+ |e−λT

|). 2

The following theorem is an easy consequence of Lemma 3.1.

THEOREM 3.2. Let T be a C0-semigroup with a bounded analytic extension to
6h for an admissible function h. Let A be the generator of T . Denote
θ = limx→∞ arctg(ϕ′(x)). Then 6π/2+θ ⊂ ρ(A) and there exist cα , M > 0 such that

‖R(λ, A)‖ ≤
M

|λ|
(1+ |e−λcα |) (3.5)

for all λ ∈6π/2+α , α < θ . Moreover, cα can be taken in such a way that cα→ 0
for α→ 0.

THEOREM 3.3. Let T be a C0-semigroup with a bounded analytic extension to6h for
an admissible function h. Let A be the generator of T . Then (3.2) holds.

PROOF. Let β > 0. Take c ∈R such that Dβ,c ⊂ ρ(A) and λn ∈ Dβ,c such that
|Im λn| →∞. Then |arg λn| → π/2. It follows that

‖R(λn, A)‖ ≤
M

|Im λn|
(1+ e− Re λncn )≤

M + Mecn(β log |Im λn |−c)

|Im λn|

≤
M + Me−cnc

|Im λn|
cnβ

|Im λn|
→ 0

since cnβ < 1 for large n. 2

Condition (3.1) of Doytchinov et al. [5] is stronger than (3.2). Since the growth
of T ′ is given by the shape of 6h , we can only expect (3.1) for not very sharp cusps
in zero.

THEOREM 3.4. Let A be the generator of a C0-semigroup T with a bounded analytic
extension to 6h for an admissible function h. Let

lim sup
t→0

t · log(1/h(t))

log(1/t)
= L <+∞. (3.6)

Then T satisfies (3.1).
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PROOF. From the Cauchy formula we obtain

‖T ′(t)‖ ≤
1

2π

∫ 2π

0

‖T (t + reiα)‖

r2 · r dα ≤
M

r
,

where the disc of radius r centered in t is a subset of 6h . So, r depends on t and for
small t we can take r = h(t)/2; hence

‖T ′(t)‖ ≤
2M

h(t)
(3.7)

and (3.1) follows. 2

Since not only (3.7) but also the opposite inequality holds, we have examples of
T with differentaible bounded perturbations and with arbitrarily fast growth of ‖T ′‖
at zero.

4. Differentiable solutions of integrodifferential equations

In this section we show that the semigroup T generated by A (defined in the
introduction) is differentiable if B is in an appropriate space. First we consider the
case of Y∞ and then the case of Y q .

THEOREM 4.1. Let A be the generator of a differentiable semigroup T
satisfying (3.2). Let B, B ′ ∈ Y∞(6h, B(D(A), X)), where h is an admissible function.
Then A generates a differentiable semigroup on X × Y∞(6h, X).

PROOF. Since A and the operator D on Y∞(6h, X) satisfy (3.2), the operator

A00 :=

(
A 0
0 D

)
, D(A00) := D(A)× D(D) with

R(λ,A00)=

(
R(λ, A) 0

0 R(λ, D)

)
satisfies (3.2) as well. Since

B1 :=

(
0 δ0
0 0

)
is bounded, operator A0 :=A00 + B1 generates a differentiable semigroup and
satisfies (3.2) by Iley [7].

Since

B2 :=

(
0 0
B 0

)
is a bounded operator on D(A0) with the graph norm, the operator A :=A0 + B
generates a C0-semigroup by [4] (see [6, Corollary III.1.5]). The resolvent operator
of A0|D(A0) is similar to the resolvent operator of A0, according to [6, Section II.5a].
Hence, the restricted resolvent operator satisfies (3.2). It follows that the restriction of
the semigroup generated by A is differentiable. Since the semigroup generated by A
is similar to its differentiable restriction, it is differentiable too. 2
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The case Y q is more complicated, since δ0 is not a bounded operator from
Y q(6h, X)→ X . Therefore, it is not true thatA0 generates a differentiable semigroup
and satisfies (3.2) for all q and h. We shall prove the following theorem.

THEOREM 4.2. Let A satisfy (3.2). Let h be an admissible function satisfying∫ 1

0
|h(x)|1−s dx <+∞ (4.1)

for some s > 1. Let B, B ′ ∈ Y q(6h, B(D(A), X)) for some q ≥ s/(s − 1). Then A
generates a differentiable semigroup on X × Y q(6h, X).

In fact, s < 2 since h(x)≥ cx for some c > 0 in the neighborhood of 0. It follows
that q > 2. Condition (4.1) means that the cusp of 6h in zero is polynomial (not
exponential).

IfA0 satisfies (3.2), then the rest of the proof is the same as in Theorem 4.1. We first
show that A0 generates a C0-semigroup, then we show that R(λ,A0) satisfies (3.2).

Since A and D generate C0-semigroups T and S on X and Y q
h , respectively, then

A0 generates a C0-semigroup if and only if

R(t) f :=
∫ t

0
T (t − s)δS(s) f ds =

∫ t

0
T (t − s) f (s) ds

extends to a bounded operator from Y q
h to X satisfying lim supt→0 ‖R(t)‖<∞. The

semigroup generated by A0 is then given by

T0(t) :=

(
T (t) R(t)

0 S(t)

)
. (4.2)

This result is due to Nagel [8, Proposition 3.1].
Let us start with the following lemma, which will be of help for proving

boundedness of R(t) as well as (3.2).

LEMMA 4.3. Let h be an admissible function and s > 1 be such that (4.1) holds. Then
for every q ≥ s/(s − 1) and every R > 0 there exists C > 0 such that∫ R

0
‖ f (t)‖ dt ≤ C‖ f ‖q (4.3)

holds for every f ∈ Y q
h .

PROOF. We estimate the value of ‖ f (r)‖ using the Cauchy formula. The integra-
tion path will consist of two circle segments. Let γ1(t) := r + c · h(r)− h(r)ei t ,
t ∈ [−α, α] and γ2(t) := r − c · h(r)+ h(r)ei t , t ∈ [−α, α] with c < 1 and
α := arc cos c. Since h′(r) is bounded on [0, R], γ := γ1 + γ2 is contained in 6h
for every r if 1− c is small enough. In particular, we need h′(r) < cotg α.
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We have

‖ f (r)‖ =

∥∥∥∥ 1
2π i

∫
γ

f (z)

z − r
dz

∥∥∥∥≤ 1
2π

∫ α

−α

‖ f (r + ch(r)− h(r)ei t )‖

ch(r)
‖h(r)iei t

‖ dt

+
1

2π

∫ α

−α

‖ f (r − ch(r)+ h(r)ei t )‖

ch(r)
‖h(r)iei t

‖ dt.

Hence, ∫ R

ρ

‖ f (r)‖ dr ≤ C
∫ ∫

M
‖ f (r + ch(r)− h(r)ei t )‖ dr dt

+ C
∫ ∫

M
‖ f (r − ch(r)+ h(r)ei t )‖ dr dt

for M := (ρ, R)× (−α, α). We shall estimate the first integral, and the second one
can be estimated in a similar way. A change of variables

ψ(r, t) := (r + ch(r)− h(r) cos t, h(r) sin t),

|Jψ | = |h(r)(cos t + ch′(r) cos t − h′(r))|

yields ∫ ∫
M
‖ f (r + ch(r)− h(r)ei t )‖ dr dt ≤

∫ ∫
M ′

‖ f (x + iy)‖

c1h(x)
dx dy (4.4)

with M ′ = ψ(M). In fact, from h′(r) < cotg α we obtain

|Jψ | ≥ |h(r)|c(1−
√

1− c2).

Since |h(r)| ≥ c̃|h(x)|, there exists a constant c1 such that (4.4) holds. Also

M ′ ⊂ M ′′ := {x + iy ∈C : |y|< c′h(x), x ∈ (0, R + δ)}

holds for an appropriate 0< c′ < 1. By this inclusion and Hölder’s inequality, (4.4) is
estimated by

1
c1

(∫
M ′′
‖ f (x + iy)‖s

′

dx dy

)1/s′(∫
M ′′

1
h(x)s

dx dy

)1/s

, (4.5)

where s′ = s/(s − 1). Since M ′′ is bounded, we have Lq ↪→ Ls′ for q > s′. The
second integral in (4.5) is equal to(∫ R+δ

0

c′h(x)

h(x)s
dx

)1/s

= C̃ <+∞

by the assumptions of this lemma. This proves (4.3). 2

https://doi.org/10.1017/S0004972708000683 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000683


[9] Smooth solutions of Volterra equations via semigroups 257

If the estimate (4.3) holds, we can write

‖R(t) f ‖ ≤ sup
0≤s≤t

‖T (s)‖
∫ t

0
‖ f (s)‖ ds ≤ C‖ f ‖q .

Hence, R(·) satisfies both of the properties mentioned before Lemma 4.3 and A0 is
the generator of a C0-semigroup. We have proved the following theorem.

THEOREM 4.4. Let h be an admissible function and s > 1 be such that (4.1) holds.
Let A be the generator of a C0-semigroup T on X. ThenA0 generates a C0-semigroup
on X × Lq(6h, X) for every q ≥ s/(s − 1).

In the following two lemmas we show that A0 satisfies (3.2). In fact, the first
lemma says that the left shift semigroup satisfies a stronger growth condition than that
by Doytchinov et al. [5]. The second lemma shows that if this condition holds, then
the operator A0 on the product space satisfies (3.2).

LEMMA 4.5. Let s > 1 and h be an admissible function satisfying (4.1). Then h
satisfies

lim sup
t→0+

t log(1/h(t))= 0. (4.6)

PROOF. Assume for contradiction that there exist ε > 0 and a sequence tn→ 0 such
that

tn log(1/h(tn)) > ε.

Hence,
1

h(tn)
≥ eε/tn .

Since h is increasing,∫ 1

0

1

h(t)s−1 dt ≥
∞∑

n=k

eε(s−1)/tn (tn − tn+1). (4.7)

Since we can choose the sequence such that tn+1 < tn/2, the right-hand side of (4.7)
is greater than

1
2

∞∑
n=k

eε(s−1)/tn+log tn =+∞.

This means that (4.1) does not hold. 2

LEMMA 4.6. Let s > 1 and h be an admissible function satisfying (4.1). Then A0
satisfies (3.2).

PROOF. Since the resolvent of A0 is equal to

R(λ,A0)=

(
R(λ, A) R(λ, A)δ0 R(λ, D)

0 R(λ, D)

)
,
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and ‖R(λ, A)‖, ‖R(λ, D)‖→ 0, it is sufficient to show that ‖δ0 R(λ, D)‖ is bounded
on Dβ,c ∩ {λ > K }.

We have the following Sobolev-type imbedding. There exists L > 0 such that

sup
z∈�
‖ f (z)‖ ≤ L(‖ f ‖Y q + ‖ f ′‖Y q ) (4.8)

for all f ∈ D(D). In fact, inequality (4.8) follows from the Sobolev imbedding
W 1,q ↪→ CB on � ∩ {z : |z|> ε} since this set has a nice boundary and q > 2
according to the remark below Theorem 4.2. For z near the cusp (|z| ≤ ε) we have

‖ f (z)‖ ≤ ‖ f (R)‖ +

∥∥∥∥∫ R

z
f ′(t) dt

∥∥∥∥≤ ‖ f (R)‖ + C‖ f ′‖q

by Lemma 4.3 if z ∈R. Here ‖ f (R)‖ is estimated by W 1,q -norm since |R|> ε. If
z 6∈R we can write

‖ f (z)‖ ≤ ‖ f (iIm z + R)‖ +

∥∥∥∥∫ R

Re z
f ′(iIm z + t) dt

∥∥∥∥≤ ‖ f (R)‖ + C‖ f ′‖q ,

where the last estimate follows in a similar way as in Lemma 4.3.
From (4.8) we have

‖δ0 R(λ, D)‖ ≤ L(‖DR(λ, D)‖ + ‖R(λ, D)‖)= L(‖λR(λ, D)− I‖ + ‖R(λ, D)‖)

≤ L + L|λ|‖R(λ, D)‖ + L‖R(λ, D)‖.

By Theorem 3.2 we have

‖R(λ, D)‖ ≤
M

|λ|
(1+ e− Re λTα ),

for λ ∈6π/2+α . So, it is sufficient to show that −Re λTα is bounded from above for
λ→∞, λ ∈ Dβ,c.

Take K > 0 large enough and λ ∈ Dβ,c, |λ|> K . Then −Re λ≤ β log K − c.
Moreover, we have

−Re λ
|Im λ|

≤
β log K − c

K
=: tg α. (4.9)

We show that (β log K − c)Tα remains bounded as K →+∞.
It follows from Lemma 3.1 that Tα should be such that Tα +6α ⊂6h . Hence, we

can take
Tα := inf{t > 0 : h′(t)≥ tg α}. (4.10)

From (4.6) we have t log(1/h(t))≤ ε for all t small enough. Hence,

h(t)≥ e−ε/t .
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Since h′ is nondecreasing, we obtain h′(t)≥ ((e−ε/t )/t)= e−ε/t−log t
≥ e−(ε+1)/t if t

is small enough. Hence, taking z = e−(ε+1)/t we obtain

h′
(
−
ε + 1
log z

)
≥ z, for all z small enough. (4.11)

For K large tg α is small (see (4.9)). So, we can take z := tg α in (4.11) and obtain

Tα ≤−
ε + 1
ln tg α

by (4.10). Now (4.8) and (4.9) yield

Tα(β log K − c)≤
(ε + 1)(β log K − c)

log K − log(β log K − c)− 1
→ β(ε + 1)

as K →+∞. 2

This lemma completes the proof of Theorem 4.2.
A special case of an admissible function h is h(t)= tg(ϕ) · t . In this case,6h =6ϕ

is a sector and the shift semigroup on this sector is even analytic. However, if A is
not a generator of an analytic semigroup, one cannot expect that the semigroup T is
analytic. In this case, the conditions on h and q become more simple.

COROLLARY 4.7. Let A be the generator of a differentiable semigroup T
satisfying (3.2) and 0< ϕ ≤ π/2. Let B, B ′ ∈ Y q(6ϕ, B(D(A), X)) for some q > 2
or q =∞. Then A generates a differentiable semigroup on X × Y q(6ϕ, X).

Our results are neither weaker nor stronger than the results in [10]. In fact, our
result does not apply to kernels which are unbounded in the neighborhood of zero.
On the other hand, it applies to some kernels that are not k-regular for all k ∈N.
Let a be any scalar function such that a′, a′′ ∈ Y q

h and a(t) > 0 for t > 0 (for example
a(z)= 1/(z + 1)). Then a − c is not k-regular for some constant c > 0, since â(λ)= 0
for some λ > 0. Hence, [10, Theorem 3.1] does not apply to

u(t)=
∫ t

0
a(t − s) Ãu(s) ds + x . (4.12)

However, differentiating (4.12) we obtain our Equation (1.1) with A = a(0) Ã and
B(s)= a′(s) Ã and Theorems 4.1 and 4.2 can be applied.
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